

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 2.75V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf27j13t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 4-6: DSWAKEL: DEEP SLEEP WAKE LOW BYTE REGISTER (BANKED F4A	STER 4-6: DSWAKEL: DEEP SL	EP WAKE LOW BYTE	REGISTER (BANKED F4Ah
--	----------------------------	------------------	------------------------------

						•	,			
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-1			
DSFLT	_	DSULP	DSWDT	DSRTC	DSMCLR	—	DSPOR			
bit 7							bit 0			
Legend:										
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown			
bit /	DSFLI: Deep	Sleep Fault De	etected bit							
	1 = A Deep S	Sleep Fault was	s detected dui	ring Deep Siee	p Sleen					
bit 6		tod: Pead as '	, ,	during Deep (bieep					
bit 5		Delling Littra Law Dawer Wake up Status hit								
bit 5	1 = An ultra l	ow-nower wak	ake-up Status	curred during [Deen Sleen					
	0 = An ultra l	ow-power wake	e-up event die	d not occur dur	ing Deep Sleep					
bit 4	DSWDT: Dee	p Sleep Watch	dog Timer Tin	ne-out bit						
	1 = The Deep	o Sleep Watcho	dog Timer tim	ed out during [Deep Sleep					
	0 = The Deep	o Sleep Watch	dog Timer did	not time out d	uring Deep Slee	ep				
bit 3	DSRTC: Real	-Time Clock ar	nd Calendar A	larm bit						
	1 = The Real	-Time Clock/Ca	alendar trigge	red an alarm d	luring Deep Slee	ep				
	0 = The Real	-Time Clock /C	alendar did n	ot trigger an al	arm during Dee	p Sleep				
bit 2	DSMCLR: MO	CLR Event bit								
	1 = Ihe MCL	<u>R</u> pin was asse	erted during L	eep Sleep						
hit 1		ted: Deed on the		ig Deep Sleep						
		ieu: Reau as	U vant hit							
DILU	1 - The Vec				want waa dataa	tod(1)				
	\perp = The VDD s 0 = The VDD s	supply POR clr supply POR cir	cuit was activ	e and a POR e	event was detec	nt detect a POI	R event			

Note 1: Unlike the other bits in this register, this bit can be set outside of Deep Sleep.

PIC18F47J13 FAMILY

REGISTER 5-1: RCON: RESET CONTROL REGISTER (ACCESS FD0h)

R/W-0	U-0	R/W-1	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN		CM	RI	TO	PD	POR	BOR
bit 7		•					bit 0
Legend:	1.1. 1.9		1.11				
R = Reada	able bit	VV = VVritable	bit		emented bit, rea	id as '0'	
-n = Value	at POR	'1' = Bit is set	t	0° = Bit is cl	eared	x = Bit is unki	nown
bit 7	IPEN: Intern	upt Priority Enal	ble bit				
	1 = Enable	priority levels or	n interrupts				
	0 = Disable	priority levels o	n interrupts (F	PIC16CXXX C	ompatibility mo	de)	
bit 6	Unimpleme	nted: Read as	0'				
bit 5	CM: Configu	uration Mismatcl	h Flag bit				
	1 = A Confi	guration Mismat	tch Reset has	not occurred			
	0 = A Confi Mismat	iguration Misma	itch Reset ha	s occurred (m	nust be set in s	software after a	Configuration
bit 4	RI: RESET I	nstruction Flag b) pit				
	1 = The RE	SET instruction	was not execu	ited (set by firi	mware only)		
	0 = The RE	SET instruction	was executed	d causing a d	evice Reset (m	ust be set in so	oftware after a
	Brown-o	out Reset occur	s)				
bit 3	TO: Watchd	og Time-out Fla	g bit				
	1 = Set by p 0 = A WDT	time-out occurr	DT instruction ed	or sleep inst	ruction		
bit 2	PD: Power-I	Down Detection	Flag bit				
	1 = Set by p	power-up or by t	he CLRWDT in	struction			
	0 = Set by e	execution of the	SLEEP instrue	ction			
bit 1	POR: Powe	r-on Reset Statu	is bit				
	1 = A Powe	er-on Reset has	not occurred (set by firmwa	re only)	r on Roadt agou	ro)
hit 0	BOP: Brown	n-out Reset Stat	ue bit	Set III Suitwai	e allei a Fowe	I-OII Resel Occu	15)
DILU	1 = A Brown	n-out Reset has	not occurred	(set by firmwa	ure only)		
	0 = A Brown	n-out Reset occ	urred (must be	e set in softwa	re after a Brow	n-out Reset occ	urs)
Note 1:	It is recommende	ed that the POR	bit be set afte	r a Power-on	Reset has beer	detected, so th	at subsequent
	Power-on Reset	s may be detect	ted.				
2:	If the on-chip vo BOR" for more i	Itage regulator	is disabled, B	OR remains '()' at all times. S	See Section 5.4	.1 "Detecting
3:	Brown-out Rese '1' by software ir	t is said to have nmediately afte	occurred whe r a Power-on I	en <mark>BOR</mark> is '0' a Reset).	nd \overline{POR} is '1' (a	assuming that \overline{P}	OR was set to

IABLE V L.			NOT ON ALL INLOI			
Register	Applicable Devices		Power-on Reset, Brown-out Reset, Wake From Deep Sleep	MCLR Resets WDT Reset RESET Instruction Stack Resets CM Resets	Wake-up via WDT or Interrupt	
CM3CON	PIC18F2XJ13	PIC18F4XJ13	0001 1111	0001 1111	นนนน นนนน	
TMR5H	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	սսսս սսսս	
TMR5L	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	սսսս սսսս	
T5CON	PIC18F2XJ13	PIC18F4XJ13	0000 0000	սսսս սսսս	սսսս սսսս	
T5GCON	PIC18F2XJ13	PIC18F4XJ13	00x0 0x00	uuuu uquu	uuuu uquu	
TMR6	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	uuuu uuuu	
PR6	PIC18F2XJ13	PIC18F4XJ13	1111 1111	1111 1111	uuuu uuuu	
T6CON	PIC18F2XJ13	PIC18F4XJ13	-000 0000	-000 0000	-uuu uuuu	
TMR8	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	uuuu uuuu	
PR8	PIC18F2XJ13	PIC18F4XJ13	1111 1111	1111 1111	uuuu uuuu	
T8CON	PIC18F2XJ13	PIC18F4XJ13	-000 0000	-000 0000	-uuu uuuu	
PSTR3CON	PIC18F2XJ13	PIC18F4XJ13	00-0 0001	00-0 0001	uu-u uuuu	
ECCP3AS	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	uuuu uuuu	
ECCP3DEL	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	uuuu uuuu	
CCPR3H	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	uuuu uuuu	
CCPR3L	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	uuuu uuuu	
CCP3CON	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	uuuu uuuu	
CCPR4H	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	นนนน นนนน	นนนน นนนน	
CCPR4L	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	นนนน นนนน	นนนน นนนน	
CCP4CON	PIC18F2XJ13	PIC18F4XJ13	00 0000	00 0000	uu uuuu	
CCPR5H	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	uuuu uuuu	
CCPR5L	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	uuuu uuuu	
CCP5CON	PIC18F2XJ13	PIC18F4XJ13	00 0000	00 0000	uu uuuu	
CCPR6H	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	uuuu uuuu	
CCPR6L	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	uuuu uuuu	
CCP6CON	PIC18F2XJ13	PIC18F4XJ13	00 0000	00 0000	uu uuuu	
CCPR7H	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	սսսս սսսս	
CCPR7L	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	นนนน นนนน	นนนน นนนน	
CCP7CON	PIC18F2XJ13	PIC18F4XJ13	00 0000	00 0000	00 0000	
CCPR8H	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	uuuu uuuu	
CCPR8L	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	սսսս սսսս	
CCP8CON	PIC18F2XJ13	PIC18F4XJ13	00 0000	00 0000	uu uuuu	

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, – = unimplemented bit, read as '0', q = value depends on condition.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

- 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- 3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- 4: See Table 5-1 for the Reset value for a specific condition.
- 5: Not implemented on PIC18F2XJ13 devices.
- 6: Not implemented on "LF" devices.

REGISTER 10-27: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3 (BANKED EC3h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-28: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4 (BANKED EC4h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-29: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5 (BANKED EC5h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP5R<4:0>:** Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 10-14 for peripheral function numbers)

13.8.4 TIMER1 GATE SINGLE PULSE MODE

When Timer1 Gate Single Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/T1DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/T1DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/T1DONE bit is once again set in software.

Clearing the T1GSPM <u>bit of the T1GCON</u> register will also clear the T1GGO/T1DONE bit. See Figure 13-6 for timing details.

Enabling the Toggle mode and the Single Pulse mode, simultaneously, will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. See Figure 13-7 for timing details.

13.8.5 TIMER1 GATE VALUE STATUS

When the Timer1 gate value status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

FIGURE 13-6: TIMER1 GATE SINGLE PULSE MODE

REGISTER 16-1: TxCON: TIMER4/6/8 CONTROL REGISTER (ACCESS F76h, BANKED F1Eh, BANKED F1Bh)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	TxOUTPS3	TxOUTPS2	TxOUTPS1	TxOUTPS0	TMRxON	TxCKPS1	TxCKPS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-3	TxOUTPS<3:0>: Timerx Output Postscale Select bits
	0001 = 1:2 Postscale
	•
	•
	•
	1111 = 1:16 Postscale
bit 2	TMRxON: Timerx On bit
	1 = Timerx is on
	0 = Timerx is off
bit 1-0	TxCKPS<1:0>: Timerx Clock Prescale Select bits
	00 = Prescaler is 1
	01 = Prescaler is 4
	1x = Prescaler is 16

16.2 Timer4/6/8 Interrupt

The Timer4/6/8 modules have 8-bit Period registers, PRx, that are both readable and writable. Timer4/6/8 increment from 00h until they match PR4/6/8 and then reset to 00h on the next increment cycle. The PRx registers are initialized to FFh upon Reset.

16.3 Output of TMRx

The outputs of TMRx (before the postscaler) are used only as a PWM time base for the ECCP modules. They are not used as baud rate clocks for the MSSP modules as is the Timer2 output.

17.1.1 RTCC CONTROL REGISTERS

REGISTER 17-1: RTCCFG: RTCC CONFIGURATION REGISTER (BANKED F3Fh)⁽¹⁾

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0		
RTCEN ⁽²	²⁾ —	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0		
bit 7							bit 0		
Legend:									
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	lown		
bit 7	RTCEN: RTC	CC Enable bit ⁽²⁾							
	1 = RTCC m	odule is enable	d						
hit 6			-'						
bit 5		REAU AS	J Daiotoro Mrito	Enchlo bit					
DIL D	1 = RTCVAL	H and RTCVAL	l registers ca	n be written to	by the user				
	0 = RTCVAL	H and RTCVAL	L registers ar	e locked out fro	om being writte	n to by the use	r		
bit 4	RTCSYNC: F	RTCC Value Re	gisters Read	Synchronization	n bit	-			
	1 = RTCVAL	H, RTCVALL ar	nd ALCFGRP	T registers can	change while r	eading due to a	rollover ripple		
	resulting	in an invalid da	ata read						
	If the register	is read twice a	nd results in t	he same data, t	the data can be	e assumed to b	e valid.		
hit 3		lalf-Second Sta	tue hit(3)	registers can b		concern over a			
bit 0	1 = Second I	half period of a	second						
	0 = First half	period of a sec	cond						
bit 2	RTCOE: RTC	CC Output Enat	ole bit						
	1 = RTCC cl	ock output enal	bled						
	0 = RTCC cl	ock output disa	bled						
bit 1-0	RTCPTR<1:0	D>: RTCC Value	e Register Wir	ndow Pointer bi	ts				
	The RTCPTR	corresponding F <1.0> value de	crements on e	gisters when rea every read or wr	ite of RTCVAL	/ALH and RTC\ Huntil it reache:	/ALL registers.		
	RTCVAL<15:	8>:		long road of m					
	00 = Minutes								
	01 = Weekda	у							
	10 = Month 11 = Reserve	ed.							
	RTCVAL<7:0	>:							
	00 = Second	S							
	01 = Hours								
	11 = Year								
				D					
NOTE 1:	A write to the BTC	Ster is only affe	cted by a PO						
۷.		и пи пе	nowed wildli						

3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

19.0 ENHANCED CAPTURE/COMPARE/PWM (ECCP) MODULE

PIC18F47J13 Family devices have three Enhanced Capture/Compare/PWM (ECCP) modules: ECCP1, ECCP2 and ECCP3. These modules contain a 16-bit register, which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. These ECCP modules are upwardly compatible with CCP.

Note: Throughout this section, generic references are used for register and bit names that are the same – except for an 'x' variable that indicates the item's association with the ECCP1, ECCP2 or ECCP3 module. For example, the control register is named CCPxCON and refers to CCP1CON, CCP2CON and CCP3CON. The ECCP modules are implemented as standard CCP modules with enhanced PWM capabilities. These include:

- Provision for two or four output channels
- · Output Steering modes
- · Programmable polarity
- Programmable dead-band control
- Automatic shutdown and restart

The enhanced features are discussed in detail in Section 19.4 "PWM (Enhanced Mode)".

REGISTER 19-1: CCPxCON: ECCP1/2/3 CONTROL (1, ACCESS FBAh; 2, FB4h; 3, BANKED F15h)

R/W-0	0 R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PxM1	PxM1 PxM0 DCxB1		DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	PxM<1:0>: Enhanced PWM Output Configuration bits
	<u>If CCPxM<3:2> = 00, 01, 10:</u>
	xx = PxA assigned as capture/compare input/output; PxB, PxC and PxD assigned as port pins
	<u>If CCPxM<3:2> = 11:</u>
	00 = Single output: PxA, PxB, PxC and PxD are controlled by steering (see Section 19.4.7 "Pulse Steering Mode")
	 01 = Full-bridge output forward: PxD modulated; PxA active; PxB, PxC inactive 10 = Half-bridge output: PxA, PxB modulated with dead-band control; PxC and PxD assigned as port pins
	11 = Full-bridge output reverse: PxB modulated; PxC active; PxA and PxD inactive
bit 5-4	DCxB<1:0>: PWM Duty Cycle Bit 1 and Bit 0
	<u>Capture mode:</u> Unused.
	Compare mode:
	Unused.
	PWM mode:
	These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are found
	in ECCPRxL.
bit 3-0	CCPxM<3:0>: ECCPx Mode Select bits
	0000 = Capture/Compare/PWM off (resets ECCPx module)
	0001 = Reserved
	0010 = Compare mode; toggle output on match
	0011 = Capture mode
	0100 = Capture mode; every falling edge
	0101 = Capture mode; every rising edge
	0110 = Capture mode; every fourth rising edge
	0111 = Capture mode; every 10 rising edge
	1000 = Compare mode; initialize ECCPX pin low, set output on compare match (set CCPXIP)
	1001 - Compare mode: generate software interrupt only ECCPy pin reverts to I/O state
	1011 = Compare mode: trigger special event (ECCPx resets TMR1 or TMR3 starts A/D conversion
	sets CCPxIF bit)
	1100 = PWM mode; PxA and PxC active-high; PxB and PxD active-high
	1101 = PWM mode; PxA and PxC active-high; PxB and PxD active-low
	1110 = PWM mode; PxA and PxC active-low; PxB and PxD active-high
	1111 = PWM mode; PxA and PxC active-low; PxB and PxD active-low

20.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCKx is the clock output)
- Slave mode (SCKx is the clock input)
- Clock Polarity (Idle state of SCKx)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCKx)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

Each MSSP module consists of a Transmit/Receive Shift register (SSPxSR) and a Buffer register (SSPxBUF). The SSPxSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPxSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full (BF) detect bit (SSPxSTAT<0>) and the interrupt flag bit, SSPxIF, are set. This double-buffering of the received data (SSPxBUF) allows the next byte to start reception before reading the data that was just received.

Any write to the SSPxBUF register during transmission or reception of data will be ignored and the Write Collision Detect bit, WCOL (SSPxCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPxBUF register completed successfully.

Note:	When the application software is expecting
	to receive valid data, the SSPxBUF should
	be read before the next byte of transfer
	data is written to the SSPxBUF. Application
	software should follow this process even
	when the current contents of SSPxBUF
	are not important.

The Buffer Full bit, BF (SSPxSTAT<0>), indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

Example 20-1 provides the loading of the SSPxBUF (SSPxSR) for data transmission.

The SSPxSR is not directly readable or writable and can only be accessed by addressing the SSPxBUF register. Additionally, the SSPxSTAT register indicates the various status conditions.

20.3.3 OPEN-DRAIN OUTPUT OPTION

The drivers for the SDOx output and SCKx clock pins can be optionally configured as open-drain outputs. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor, provided the SDOx or SCKx pin is not multiplexed with an ANx analog function. This allows the output to communicate with external circuits without the need for additional level shifters. For more information, see Section 10.1.4 "Open-Drain Outputs".

The open-drain output option is controlled by the SPI2OD and SPI1OD bits (ODCON3<1:0>). Setting an SPIxOD bit configures both the SDOx and SCKx pins for the corresponding open-drain operation.

EXAMPLE 20-1: LOADING THE SSP1BUF (SSP1SR) REGISTER

LOOP	BTFSS	SSP1STAT, BF	;Has data been received (transmit complete)?
	BRA	LOOP	;No
	MOVF	SSP1BUF, W	;WREG reg = contents of SSP1BUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSP1BUF	;New data to xmit

© 2010-2017 Microchip Technology Inc.

DS30009974C-page 310

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur. The following events will cause the MSSP Interrupt Flag bit, SSPxIF, to be set (and MSSP interrupt, if enabled):

- · Start condition
- Stop condition
- · Data transfer byte transmitted/received
- · Acknowledge transmitted
- Repeated Start

FIGURE 20-18: MSSPx BLOCK DIAGRAM (I²C MASTER MODE)

20.5.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDAx while SCLx outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted, 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. S and P conditions are output to indicate the beginning and end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address, followed by a '1' to indicate the receive bit. Serial data is received via SDAx, while SCLx outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. S and P conditions indicate the beginning and end of transmission.

The BRG used for the SPI mode operation is used to set the SCLx clock frequency for either 100 kHz, 400 kHz or 1 MHz I^2 C operation. See Section 20.5.7 "Baud Rate" for more details.

A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPxCON2<0>).
- SSPxIF is set. The MSSP module will wait for the required start time before any other operation takes place.
- 3. The user loads the SSPxBUF with the slave address to transmit.
- 4. The address is shifted out of the SDAx pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPx-CON2 register (SSPxCON2<6>).
- The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 7. The user loads the SSPxBUF with 8 bits of data.
- 8. Data is shifted out of the SDAx pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPx-CON2 register (SSPxCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPxCON2<2>).
- 12. The interrupt is generated once the Stop condition is complete.

20.5.7 BAUD RATE

In I²C Master mode, the BRG reload value is placed in the lower seven bits of the SSPxADD register (Figure 20-19). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCLx pin will remain in its last state.

Table 20-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD. The SSPADD BRG value of 0x00 is not supported.

REGISTER 21-2: RCSTAX: RECEIVE STATUS AND CONTROL REGISTER (1 ACCESS FACh: 2 FC9h)

	(1, A	CCESS FACh	; 2, FC9h)				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
hit 7	CDENI Corio	l Dort Enchlo hi	4				
DIL 7	1 = Serial no		L				
	0 = Serial po	ort disabled (hel	d in Reset)				
bit 6	RX9: 9-Bit R	eceive Enable b	pit				
	1 = Selects	9-bit reception					
	0 = Selects	8-bit reception					
bit 5	SREN: Singl	e Receive Enab	le bit				
	Asynchronou	<u>us mode</u> :					
	Synchronous	s mode - Maste	r.				
	1 = Enables	single receive	<u>L.</u>				
	0 = Disables	s single receive					
	This bit is cle	eared after recept	otion is comple	ete.			
	<u>Synchronous</u> Don't care.	s mode – Slave:					
bit 4	CREN: Cont	inuous Receive	Enable bit				
	<u>Asynchronou</u>	<u>us mode:</u>					
	1 = Enables	receiver					
	0 = Disables	s receiver					
	1 = Enables	s continuous rec	eive until enab	le bit. CREN. is	cleared (CRE	N overrides SR	EN)
	0 = Disables	s continuous rec	eive				
bit 3	ADDEN: Add	dress Detect En	able bit				
	Asynchronou	us mode 9-Bit (F	<u>RX9 = 1)</u> :				
	1 = Enables	address detect	ion, enables ir	terrupt and load	ds the receive l	buffer when RS	R<8> is set
		is mode 8-Bit (F	2XQ = 0	are received an		an be used as	a parity bit
	Don't care.		<u>(// 9 – 0)</u> .				
bit 2	FERR: Fram	ing Error bit					
	1 = Framing	error (can be c	leared by read	ling the RCREG	Sx register and	receiving the n	ext valid byte)
	0 = No fram	ing error					
bit 1	OERR: Over	run Error bit					
	$\perp = Overrun$ 0 = No over	run error	eared by clea	ning bit, CREN)			
bit 0	RX9D. 9 th bi	t of Received D	ata				
	This can be a	an address/data	bit or a paritv	bit and must be	e calculated by	user firmware.	

		SYNC = 0, BRGH = 0, BRG16 = 0										
BAUD	Fosc	= 40.000) MHz	Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_			_			_			_		
1.2	_	_	_	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	—	_	_
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	_	_

TABLE 21-3:BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz						
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)				
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51				
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12				
2.4	2.404	0.16	25	2.403	-0.16	12	—	_	—				
9.6	8.929	-6.99	6	—	_	_	_	_	_				
19.2	20.833	8.51	2	—	_	_	_	_	_				
57.6	62.500	8.51	0	—	_	_	—	_	_				
115.2	62.500	-45.75	0	—	_	_	—	_	_				

BAUD RATE (K)	SYNC = 0, BRGH = 1, BRG16 = 0											
	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	—	_			_		_			—	_	_
1.2	—	—	—	—	—	—	—	—	_	—	—	—
2.4	—	—	—	—	—	—	2.441	1.73	255	2.403	-0.16	207
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9615.	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	_

			S	YNC = 0, E	BRGH = 1	, BRG16 =	0			
BAUD	Foso	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	Fosc = 1.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	_	_	_	—	_	_	0.300	-0.16	207	
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51	
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25	
9.6	9.615	0.16	25	9.615	-0.16	12	—	_		
19.2	19.231	0.16	12	—	_	—	—			
57.6	62.500	8.51	3	—	_	—	—			
115.2	125.000	8.51	1	—	_	—	—	—	_	

 $\ensuremath{\textcircled{\sc c}}$ 2010-2017 Microchip Technology Inc.

PIC18F47J13 FAMILY

REGISTER 22-2: ADCON1: A/D CONTROL REGISTER 1 (ACCESS FC1h)

					,		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCAL	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7						÷	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	ADFM: A/D R 1 = Right just 0 = Left justifi	Result Format S ified ed	elect bit				
bit 6	ADCAL: A/D Calibration bit 1 = Calibration is performed on the next A/D conversion 0 = Normal A/D Converter operation						
bit 5-3	ACQT<2:0>: A/D Acquisition Time Select bits 111 = 20 TAD 110 = 16 TAD 101 = 12 TAD 100 = 8 TAD 011 = 6 TAD 010 = 4 TAD 001 = 2 TAD 000 = 0 TAD						
bit 2-0	ADCS<2:0>: A/D Conversion Clock Select bits 110 = Fosc/64 101 = Fosc/16 100 = Fosc/4 $011 = FRc (clock derived from A/D RC oscillator)^{(1)}$ 010 = Fosc/32 001 = Fosc/8 000 = Fosc/2						

Note 1: If the A/D FRC clock source is selected, a delay of one TcY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

22.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is illustrated in Figure 22-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω for 10-bit conversions and 1 k Ω for 12-bit conversions. After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding	g capa	acitor is disco	nne	ected from	the
	input p	ın.				

EQUATION 22-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 22-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \cdot (1 - e^{(-\text{TC/CHOLD}(\text{RIC} + \text{RSS} + \text{RS}))})$
or		
TC	=	$-(CHOLD)(RIC + RSS + RS) \ln(1/2048)$

EQUATION 22-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture co	befficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 μ s.
ТС	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2048) \ \mu s$ -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) $\ln(0.0004883) \ \mu s$ 1.05 μs
TACQ	=	0.2 μs + 1.05 μs + 1.2 μs 2.45 μs

To calculate the minimum acquisition time, Equation 22-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the 10-bit A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Equation 22-3 provides the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 2 \ k\Omega$
Temperature	=	85°C (system max.)

REGISTER 23-2: CMSTAT: COMPARATOR STATUS REGISTER (ACCESS F70h)

U-0	U-0	U-0	U-0	U-0	R-1	R-1	R-1
—	—	—	—	—	COUT3	COUT2	COUT1
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3	Unimplemented:	Read	as	'0'
				-

bit 2-0 **COUT<3:1>:** Comparator x Status bits (For example, COUT3 gives the status for Comparator 3.)

If CPOL (CMxCON<5>) = 0 (non-inverted polarity):

1 = Comparator VIN+ > VIN-

0 = Comparator VIN+ < VIN-

If CPOL = 1 (inverted polarity):

1 = Comparator VIN+ < VIN-

0 = Comparator VIN+ > VIN-

28.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note:	Enabling the PIC18 instruction set exten-
	sion may cause legacy applications to
	behave erratically or fail entirely.

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing (Section 6.6.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank (a = 0) or in a GPR bank designated by the BSR (a = 1). When the extended instruction set is enabled and a = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bit-oriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward-compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 28.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

28.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument, 'f', in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value, 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within the brackets, will generate an error in the MPASM Assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled), when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM Assembler.

The destination argument 'd' functions as before.

In the latest versions of the MPASM Assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_{Y}$, or the PE directive in the source listing.

28.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18F47J13 Family, it is very important to consider the type of code. A large, re-entrant application that is written in C and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.