

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 2.75V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf47j13t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1: PIC18F47J13 FAMILY	TYPES
-----------------------------	-------

		<u> </u>		ble		ь С	F		MSSF)	_	ors	eb	٩		
PIC18F Device	Pins	Progran Memory (bytes)	SRAM (bytes)	Remappa Pins	Timers 8/16-Bi	ECCP/CC	EUSAR	w/	spi Dma	I ² C	12-Bit A/D (ch	Comparat	Deep Sle	Sd/dWd	CTMU	RTCC
PIC18F26J13	28	64K	3760	19	4/4	3/7	2	2	Y	Y	10	3	Y	Ν	Y	Y
PIC18F27J13	28	128K	3760	19	4/4	3/7	2	2	Y	Y	10	3	Y	Ν	Y	Y
PIC18F46J13	44	64K	3760	25	4/4	3/7	2	2	Y	Y	13	3	Y	Y	Y	Y
PIC18F47J13	44	128K	3760	25	4/4	3/7	2	2	Y	Y	13	3	Y	Y	Y	Y
PIC18LF26J13	28	64K	3760	19	4/4	3/7	2	2	Y	Y	10	3	Ν	Ν	Y	Y
PIC18LF27J13	28	128K	3760	19	4/4	3/7	2	2	Y	Y	10	3	Ν	Ν	Y	Y
PIC18LF46J13	44	64K	3760	25	4/4	3/7	2	2	Y	Y	13	3	Ν	Y	Y	Y
PIC18LF47J13	44	128K	3760	25	4/4	3/7	2	2	Y	Y	13	3	Ν	Y	Y	Y

Pin Diagrams (Continued)

	Pin Nu	umber				
Pin Name	28-SPDIP/ SSOP/ SOIC	28-QFN	Pin Type	Buffer Type	Description	
MCLR	1 ⁽²⁾	26 ⁽²⁾	I	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.	
OSC1/CLKI/RA7 OSC1	/CLKI/RA7 9 6 I ST Oscillator crystal or external clock input. Oscillator crystal input or external clock input. ST ST Oscillator crystal or external clock input. Oscillator crystal input or external clock input. ST buffer when configured in R CMOS otherwise. Main oscillator input connection. LKI I CMOS External clock source input; always at with pin function, OSC1 (see related OSC1/CLKI pins).		Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; CMOS otherwise. Main oscillator input			
			I	CMOS	External clock source input; always associated with pin function, OSC1 (see related OSC1/CLKI pins).	
RAA			1/0	TIL/DIG		
OSC2/CLKO/RA6 OSC2	10	7	ο	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode	
CLKO	CLKO O E		DIG	Main oscillator feedback output connection. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate		
RA6 ⁽¹⁾			I/O	TTL/DIG	Digital I/O.	
Legend: TTL = TTL compati ST = Schmitt Trigg I = Input P = Power DIG = Digital output	ble input ger input wi	th CMOS	levels	CI Ar O OI I ² (MOS = CMOS compatible input or output nalog = Analog input = Output D = Open-Drain (no P diode to VDD) C = Open-Drain, I ² C specific	

TABLE 1-3:	PIC18F2XJ13 PINOUT I/O DESCRIPTIONS

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

2: 5.5V tolerant.

	Pin N	umber	Din	Buffor	
Pin Name	44- QFN	44- TQFP	Туре	Туре	Description
MCLR	18 ⁽³⁾	18	I	ST	Master Clear (Reset) input; this is an active-low Reset to the device.
OSC1/CLKI/RA7 OSC1	32	30	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; otherwise CMOS. Main oscillator input
CLKI			I	CMOS	External clock source input; always associated with pin function, OSC1 (see related OSC1/CLKI pins).
RA7 ⁽¹⁾			I/O	TTL/DIG	Digital I/O.
OSC2/CLKO/RA6 OSC2	33	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode
CLKO			0	_	Main oscillator feedback output connection in RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6 ⁽¹⁾			I/O	TTL/DIG	Digital I/O.
Legend: TTL = TTL compatible in ST = Schmitt Trigger in I = Input P = Power DIG = Digital output	put put wit	h CMO	S level	S .	CMOS= CMOS compatible input or outputAnalog= Analog inputO= OutputOD= Open-Drain (no P diode to VDD)I²C= Open-Drain, I²C specific
Note 1: RA7 and RA6 will be disa	abled it	FOSC1	and O	SC2 are	used for the clock function.

TARIE 1.4. PIC18F4X 113 PINOLIT I/O DESCRIPTIONS

2: Available only on 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

3: 5.5V tolerant.

5.5 Configuration Mismatch (CM)

The Configuration Mismatch (CM) Reset is designed to detect, and attempt to recover from, random memory corrupting events. These include Electrostatic Discharge (ESD) events, which can cause widespread single bit changes throughout the device and result in catastrophic failure.

In PIC18FXXJ Flash devices, the device Configuration registers (located in the configuration memory space) are continuously monitored during operation by comparing their values to complimentary shadow registers. If a mismatch is detected between the two sets of registers, a CM Reset automatically occurs. These events are captured by the CM bit (RCON<5>). The state of the bit is set to '0' whenever a CM event occurs; it does not change for any other Reset event.

A CM Reset behaves similarly to MCLR, RESET instruction, WDT time-out or Stack Event Resets. As with all hard and power Reset events, the device Configuration Words are reloaded from the Flash Configuration Words in program memory as the device restarts.

5.6 Power-up Timer (PWRT)

PIC18F47J13 Family devices incorporate an on-chip PWRT to help regulate the POR process. The PWRT is always enabled. The main function is to ensure that the device voltage is stable before code is executed.

The Power-up Timer (PWRT) of the PIC18F47J13 Family devices is a counter which uses the INTRC source as the clock input. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC clock and will vary from chip-to-chip due to temperature and process variation. See DC parameter 33 (TPWRT) for details.

5.6.1 TIME-OUT SEQUENCE

The PWRT time-out is invoked after the POR pulse has cleared. The total time-out will vary based on the status of the PWRT. Figure 5-2, Figure 5-3, Figure 5-4 and Figure 5-5 all depict time-out sequences on power-up with the PWRT.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the PWRT will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately if a clock source is available (Figure 5-4). This is useful for testing purposes or to synchronize more than one PIC18F device operating in parallel.

FIGURE 5-2: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)

6.4 Data Addressing Modes

Note:	The execution of some instructions in the
	core PIC18 instruction set are changed
	when the PIC18 extended instruction set is
	enabled. See Section 6.6 "Data Memory
	and the Extended Instruction Set" for
	more information.

While the program memory can be addressed in only one way through the PC, information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in more detail in **Section 6.6.1 "Indexed Addressing with Literal Offset**".

6.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device, or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way, but require an additional explicit argument in the opcode. This is known as Literal Addressing mode, because they require some literal value as an argument. Examples include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

6.4.2 DIRECT ADDRESSING

Direct Addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit literal address as their LSB. This address specifies either a register address in one of the banks of data RAM (Section 6.3.3 "General Purpose

Register File") or a location in the Access Bank (Section 6.3.2 "Access Bank") as the data source for the instruction.

The Access RAM bit, 'a', determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 6.3.1 "Bank Select Register") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit, 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

6.4.3 INDIRECT ADDRESSING

Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as SFRs, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code using loops, such as the example of clearing an entire RAM bank in Example 6-5. It also enables users to perform Indexed Addressing and other Stack Pointer operations for program memory in data memory.

EXAMPLE 6-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0, 0x100;	
NE	XT CLRF	POSTINCO ;	Clear INDF
		;	register then
		;	inc pointer
	BTFSS	FSROH, 1 ;	All done with
		;	Bank1?
	BRA	NEXT ;	NO, clear next
CO	NTINUE	;	YES, continue

Pin	Function	TRIS Setting	I/O	l/O Type	Description
RE0/AN5/	RE0	1	Ι	ST	PORTE<0> data input; disabled when analog input is enabled.
PMRD		0	0	DIG	LATE<0> data output; not affected by analog input.
	AN5 1 I ANA A/D I		ANA	A/D Input Channel 5; default input configuration on POR.	
	PMRD	1	Ι	ST/TTL	Parallel Master Port (io_rd_in).
		0	0	DIG	Parallel Master Port read strobe.
RE1/AN6/	RE1	1	Ι	ST	PORTE<1> data input; disabled when analog input is enabled.
PMWR		0	0	DIG	LATE<1> data output; not affected by analog input.
	AN6	1	Ι	ANA	A/D Input Channel 6; default input configuration on POR.
	PMWR	1	Ι	ST/TTL	Parallel Master Port (io_wr_in).
		0	0	DIG	Parallel Master Port write strobe.
RE2/AN7/	RE2	1	Ι	ST	PORTE<2> data input; disabled when analog input is enabled.
PMCS		0	0	DIG	LATE<2> data output; not affected by an analog input.
	AN7	1	I	ANA	A/D Input Channel 7; default input configuration on POR.
	PMCS	0	0	DIG	Parallel Master Port byte enable.

TABLE 10-11: PORTE I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level I = Input; O = Output; P = Power

TABLE 10-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTE ⁽¹⁾	—	—	_		_	RE2	RE1	RE0
LATE ⁽¹⁾	—	—	—	—	_	LATE2	LATE1	LATE0
TRISE ⁽¹⁾	RDPU	REPU	_	_	_	TRISE2	TRISE1	TRISE0
ANCON0	PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTE.

Note 1: These registers and/or bits are not available in 28-pin devices (PIC18F26J13, PIC18F27J13, PIC18LF26J13 and PIC18LF26J13).

Note:	bit 7	RDPU: PORTD Pull-up Enable bit
	0 =	All PORTD pull-ups are disabled
	1 =	PORTD pull-ups are enabled for any input pad
	bit 6	REPU: PORTE Pull-up Enable bit
	0 =	All PORTE pull-ups are disabled
	1 =	PORTE pull-ups are enabled for any input pad

Choosing the configuration requires the review of all PPSs and their pin assignments, especially those that will not be used in the application. In all cases, unused pin selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pin selectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use.

Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled, as if it were tied to a fixed pin. Where this happens in the application code (immediately following device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that the PPS functions neither override analog inputs nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as digital I/O when used with a PPS.

Example 10-7 provides a configuration for bidirectional communication with flow control using EUSART2. The following input and output functions are used:

- Input Function RX2
- Output Function TX2

EXAMPLE 10-7: CONFIGURING EUSART2 INPUT AND OUTPUT FUNCTIONS

; Unlock Registers

MOVLB 0x0E ; PPS registers in BANK 14
BCF INTCON, GIE ; Disable interrupts
MOVLW 0x55
MOVWF EECON2, 0
MOVLW 0xAA
MOVWF EECON2, 0
; Turn off PPS Write Protect
BCF PPSCON, IOLOCK, BANKED
; * * * * * * * * * * * * * * * * * * *
; Configure Input Functions
; (See Table 10-13)
;*****

; Assign RX2 To Pin RPO

MOVLW 0x00
MOVWF RPINR16, BANKED

; Configure Output Functions
; (See Table 10-14)

; Assign TX2 To Pin RP1

MOVLW 0x06
MOVWF RPOR1, BANKED
· ·

: Lock Registers

BCF INTCON, GIE
MOVI.W 0x55
MOVWE EECON2. 0
MOVIW OXAA
MOVWE EECON2. 0
. Write Protect PPS
REF DESCON TOLOCK BANKED
DOL TIDCON, TODOCN, DAMADD

Note: If the Configuration bit, IOL1WAY = 1, once the IOLOCK bit is set, it cannot be cleared, preventing any future RP register changes. The IOLOCK bit is cleared back to '0' on any device Reset.

REGISTER 10-24: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0 (BANKED EC1h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-25: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1 (BANKED EC7h)

U-0	U-0	U-0 U-0 R/W-0 R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	
—			RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-26: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2 (BANKED EC3h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—			RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 11-2: PMCONL: PARALLEL PORT CONTROL REGISTER LOW BYTE (BANKED F5Eh)⁽¹⁾

R/W-0	R/W-0	R/W-0 ⁽²⁾	U-0	R/W-0 ⁽²⁾	R/W-0	R/W-0	R/W-0
CSF1	CSF0	ALP	—	CS1P	BEP	WRSP	RDSP
bit 7 bit 0							

U = Unimplemented bit,	read as '0'
'0' = Bit is cleared	x = Bit is unknown
	U = Unimplemented bit, '0' = Bit is cleared

bit 7-6	CSF<1:0>: Chip Select Function bits
	11 = Reserved
	 10 = Chip select function is enabled and PMCS acts as chip select (in Master mode). Up to 13 address bits only can be generated.
	01 = Reserved
	00 = Chip select function is disabled (in Master mode). All 16 address bits can be generated.
bit 5	ALP: Address Latch Polarity bit ⁽²⁾
	 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH)
bit 4	Unimplemented: Maintain as '0'
bit 3	CS1P: Chip Select Polarity bit ⁽²⁾
	1 = Active-high (PMCS)
	0 = Active-low(PMCS)
bit 2	BEP: Byte Enable Polarity bit
	1 = Byte enable active-high (PMBE)
	0 = Byte enable active-low (PMBE)
bit 1	WRSP: Write Strobe Polarity bit
	For Slave modes and Master Mode 2 (PMMODEH<1:0> = 00,01,10):
	0 = Write strobe active-low (PMWR)
	For Master Mode 1 (PMMODEH<1:0> = 11):
	1 = Enable strobe active-high (PMENB)
	0 = Enable strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit
	For Slave modes and Master Mode 2 (PMMODEH<1:0> = 00,01,10):
	1 = Read strobe active-high (PMRD)
	0 = Read strobe active-low (PMRD)
	$\frac{1}{1} = \text{Read/write stroke active-high (PMRD/PMWR)}$
	0 = Read/write strobe active-low (PMRD/PMWR)

- Note 1: This register is only available on 44-pin devices.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

15.5.2 TIMER3/5 GATE SOURCE SELECTION

The Timer3/5 gate source can be selected from one of four different sources. Source selection is controlled by the TxGSS<1:0> bits (TxGCON<1:0>). The polarity for each available source is also selectable and is controlled by the TxGPOL bit (TxGCON<6>).

TABLE 15-2	TIMER3/5 GATE	SOURCES

TxGSS<1:0>	Timerx Gate Source
00	TxG timer gate pin
01	TMR4/6 matches PR4/6
10	Comparator 1 output
11	Comparator 2 output

15.5.2.1 TxG Pin Gate Operation

The TxG pin is one source for Timer3/5 gate control. It can be used to supply an external source to the gate circuitry.

15.5.2.2 Timer4/6 Match Gate Operation

The TMR4/6 register will increment until it matches the value in the PR4/6 register. On the very next increment cycle, TMR4/6 will be reset to 00h. When this Reset occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timer3/5 gate circuitry.

15.5.3 TIMER3/5 GATE-TOGGLE MODE

When Timer3/5 Gate Toggle mode is enabled, it is possible to measure the full cycle length of a Timer3/5 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. (For timing details, see Figure 15-3.)

The TxGVAL bit will indicate when the Toggled mode is active and the timer is counting.

Timer3/5 Gate Toggle mode is enabled by setting the TxGTM bit (TxGCON<5>). When the TxGTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

FIGURE 15-3: TIMER3/5 GATE TOGGLE MODE

19.4.1 HALF-BRIDGE MODE

In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the PxA pin, while the complementary PWM output signal is output on the PxB pin (see Figure 19-6). This mode can be used for half-bridge applications, as shown in Figure 19-7, or for full-bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in half-bridge power devices. The value of the PxDC<6:0> bits of the ECCPxDEL register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. For more details on the dead-band delay operations, see **Section 19.4.6 "Programmable Dead-Band Delay Mode"**. Since the PxA and PxB outputs are multiplexed with the port data latches, the associated TRIS bits must be cleared to configure PxA and PxB as outputs.

FIGURE 19-6: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 19-7: EXAMPLE OF HALF-BRIDGE APPLICATIONS

© 2010-2017 Microchip Technology Inc.

TABLE 19-4: REGISTERS ASSOCIATED WITH ECCP1/2/3 MODULE AND TIMER1/2/3/4/6/8 (CONTINUED)

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T8CON	—	T8OUTPS3	T8OUTPS2	T8OUTPS1	T8OUTPS0	TMR8ON	T8CKPS1	T8CKPS0
CCPR1H	Capture/Compa	re/PWM Regi	ister 1 High B	yte				
CCPR1L	Capture/Compa	re/PWM Regi	ister 1 Low B	yte				
CCPR2H	Capture/Compa	re/PWM Regi	ister 2 High B	yte				
CCPR2L	Capture/Compa	re/PWM Regi	ister 2 Low B	yte				
CCPR3H	Capture/Compa	re/PWM Regi	ister 3 High B	yte				
CCPR3L	Capture/Compa	re/PWM Regi	ister 3 Low By	yte				
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
CCP2CON	P2M1	P2M0	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0
CCP3CON	P3M1	P3M0	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PMPIF ⁽²⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
PIE1	PMPIE ⁽²⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE
IPR1	PMPIP ⁽²⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
TRISC	TRISC7	TRISC6	_	_	_	TRISC2	TRISC1	TRISC0
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0
SSP1BUF	MSSP1 Rec	eive Buffer/Tr	ansmit Regis	ster				
SSPxCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
SSPxSTAT	SMP	CKE	D/Ā	Р	S	S R/W		BF
SSP2BUF	MSSP2 Rec	eive Buffer/Tr	ansmit Regis	ster				
ODCON3 ⁽¹⁾	CTMUDS	—	—	—	_	_	SPI2OD	SPI10D

TABLE 20-2: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: Shaded cells are not used by the MSSPx module in SPI mode.

Note 1: Configuration SFR overlaps with default SFR at this address; available only when WDTCON<4> = 1.

2: These bits are only available on 44-pin devices.

PIC18F47J13 FAMILY

BCF	Bit Clear f		BN		Branch if N	legative					
Syntax:	BCF f, b {,a}		Synta	ax:	BN n						
Operands:	$0 \leq f \leq 255$			Oper	ands:	$-128 \le n \le 127$					
	$\begin{array}{l} 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$		Oper	Operation:		if Negative bit is '1', (PC) + 2 + 2n \rightarrow PC					
Operation:	$0 \rightarrow f < b >$			Statu	Status Affected:		None				
Status Affected:	None			Enco	Encodina:		1110 0110 pppp ppp				
Encoding:	ding: 1001 bbba ffff ffff		Desc	ription:	If the Negat	ive bit is '1'. th	nen the				
Description:	Bit 'b' in reg	gister 'f' is clea	ared.			program wi	l branch.				
	If 'a' is ' 0 ', the Access Bank is selected. If 'a' is ' 1 ', the BSR is used to select the GPR bank (default).					The 2's con added to the incrementer	plement num PC. Since the to fetch the r	ber '2n' is e PC will have next			
If 'a' is '0' and set is enabled,		nd the extend ed, this instru	led instruction ction operates		PC + 2 + 2n. This instru 2-cycle instruction.			ction is then a			
	mode when	ever $f \le 95$ (5	Fh). See	Word	s:	1					
	Section 28	.2.3 "Byte-O	riented and	Cycle	es:	1(2)					
	Bit-Oriente	ed Instruction set Mode" for	r details.	Q C If Ju	ycle Activity: mp:						
Words:	1				Q1	Q2	Q3	Q4			
Cycles:	1				Decode	Read literal	Process	Write to			
Q Cycle Activity:						'n'	Data	PC			
Q1	Q2	Q3	Q4		No	No	No	No			
Decode	Read	Process	Write	If No		operation	operation	operation			
	register i	Data	register i	II INC	Q1	Q2	Q3	Q4			
Example:	BCF F	LAG REG,	7, 0		Decode	Read literal	Process	No			
Before Instruc	tion	·_ · ,	, -			'n'	Data	operation			
FLAG_R	EG = C7h										
After Instruction			Exam	<u>nple:</u>	HERE	BN Jump					
FLAG_REG = 4/N					Before Instruction PC = address (HERE) After Instruction						
		If Negati PC If Negati PC	ve = 1; = adv ve = 0; = adv	dress (Jump)	+ 2)						

PIC18F47J13 FAMILY

MOVFF	Move f to f			MOVLB	Move Liter	al to Low Nik	ble in BSR		
Syntax:	MOVFF f _s ,f _d		Syntax:	MOVLW k	MOVLW k				
Operands:	$0 \le f_s \le 4095$		Operands:	$0 \le k \le 255$					
	$0 \le f_d \le 409$	5		Operation:	$k \to BSR$				
Operation:	$(f_{\text{S}}) \rightarrow f_{\text{d}}$			Status Affected:	None				
Status Affected:	None			Encoding:	0000	0001 kk	kk kkkk		
Encoding: 1st word (source) 2nd word (destin.)	1100 ffff ffff ffff _s 1111 ffff ffff ffff _d		Description:	The 8-bit literal 'k' is loaded into the Bank Select Register (BSR). The value of BSR<7:4> always remains '0'					
Description:	The content	ts of source re	egister 'f _s ' are		regardless	of the value o	f k ₇ :k ₄ .		
	l ocation of	estination reg	ister 'f _d '. h be anywhere	Words:	1	1			
	in the 4096-	-byte data spa	ace (000h to	Cycles:	1				
	FFFh) and I	location of de	stination 'f _d '	Q Cycle Activity:					
	can also be anywhere from 000h to			Q1	Q2	Q3	Q4		
	Either source or destination can be W (a useful special situation).		Decode	Read	Process	Write literal			
					Data	K to DOIN			
	MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFF instruction cannot use the			<u>Example:</u> Before Instruc BSR Reg After Instructio BSR Reg	MOVLB 5 ction egister = 02h ion egister = 05h				
	destination	register	JSL as the						
Words:	2								
Cycles:	2								
Q Cycle Activity:		0.0	0.4						
Q1	Q2	Q3	Q4						
Decode	register 'f' (src)	Data	operation						
Decode	No operation No dummy read	No operation	Write register 'f' (dest)						
Example:	MOVFF F	REG1, REG2							
Before Instruc RFG1	uon = 33	h							
REG2	= 11	n							
After Instructio REG1 REG2	on = 331 = 331	h h							

PIC18F47J13 FAMILY

RLNCF Rotate Left f (No Carry)										
Synta	ax:	RLNCF	f {,d {,a}}							
Oper	ands:	ds: $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$								
Oper	ation:	$(f \le n >) \rightarrow d$ $(f \le 7 >) \rightarrow d$	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow dest < 0 >$							
Statu	s Affected:	N, Z	N, Z							
Enco	ding:	0100	01da ff:	ff ffff						
Desc	ription: The contents of register 'f' are rotate one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result stored back in register 'f' (default).									
		If 'a' is '0', t If 'a' is '1', t GPR bank	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).							
If 'a' is '0' and the extended in set is enabled, this instruction in Indexed Literal Offset Addre mode whenever f ≤ 95 (5Fh). 1 Section 28.2.3 "Byte-Oriente Bit-Oriented Instructions in Literal Offset Mode" for deta										
		-	register f							
Word	ls:	1								
Cycle	es:	1								
QC	ycle Activity:									
	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process Data	Write to destination						
<u>Exan</u>	n <u>ple:</u> Before Instruc	RLNCF	RLNCF REG, 1, 0							
After Instruction REG = 0101 0111										

RRCF	Carry								
Syntax:	RRCF f{	,d {,a}}							
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Operation:	$(f < n >) \rightarrow d$ $(f < 0 >) \rightarrow C$ $(C) \rightarrow dest$	est <n 1="" –="">, , <7></n>							
Status Affected:	C, N, Z								
Encoding:	0011	00da fi	fff ffff						
Description:	The conter one bit to th flag. If 'd' is If 'd' is '1', ' register 'f' (ts of register ne right throug '0', the result the result is p (default).	'f' are rotated gh the Carry is placed in W. laced back in						
	If 'a' is '0', f If 'a' is '1', f GPR bank	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).							
	in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 28.2.3 "Byte-Oriented and Bit-Oriented Instructions in Index Literal Offset Mode" for details.								
Words:	1								
	1								
Q Cycle Activity. Q1	Q2	Q3	Q4						
Decode	Read register 'f'	Process Data	Write to destination						
Example:	RRCF	REG, 0,	0						
Before Instruc REG C	tion = 1110 (= 0	0110							
REG W C	= 1110 (= 0111 (= 0)110)011							

DC CHARACTERISTICS			Standard Opera Operating tempe	ting Condit erature -40°0	ditions (unless otherwise stated) $0^{\circ}C \le TA \le +85^{\circ}C$ for industrial			
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions		
	VIL	Input Low Voltage						
		All I/O Ports:						
D030		with TTL Buffer	Vss	0.15 Vdd	V	VDD < 3.3V		
D030A		with TTL Buffer	Vss	0.8	V	3.3V <u><</u> Vdd <u><</u> 3.6V		
D031		with Schmitt Trigger Buffer	Vss	0.2 Vdd	V			
D031A		SCLx/SDAx	—	0.3 Vdd	V	I ² C enabled		
D031B		SCLx/SDAx	—	0.8	V	SMBus enabled		
D032		MCLR	Vss	0.2 Vdd	V			
D033		OSC1	Vss	0.3 Vdd	V	HS, HSPLL modes		
D033A		OSC1	Vss	0.2 Vdd	V	EC, ECPLL modes		
D034		T1OSI	Vss	0.3	V	T1OSCEN = 1		
	Vih	Input High Voltage						
		I/O Ports without 5.5V Tolerance:						
D040		with TTL Buffer	0.25 VDD + 0.8V	Vdd	V	Vdd < 3.3V		
D040A		with TTL Buffer	2.0	Vdd	V	3.3V <u><</u> Vdd <u><</u> 3.6V		
D041		with Schmitt Trigger Buffer	0.8 Vdd	Vdd	V			
		I/O Ports with 5.5V Tolerance:(4)						
Dxxx		with TTL Buffer	0.25 VDD + 0.8V	5.5	V	Vdd < 3.3V		
DxxxA			2.0	5.5	V	$3.3V \leq V\text{DD} \leq 3.6V$		
Dxxx		with Schmitt Trigger Buffer	0.8 Vdd	5.5	V			
D041A		SCLx/SDAx	0.7 Vdd	—	V	I ² C enabled		
D041B		SCLx/SDAx	2.1	—	V	SMBus enabled; VDD <u>></u> 3V		
D042		MCLR	0.8 Vdd	5.5	V			
D043		OSC1	0.7 Vdd	Vdd	V	HS, HSPLL modes		
D043A		OSC1	0.8 VDD	Vdd	V	EC, ECPLL modes		
D044		T1OSI	1.6	Vdd	V	T1OSCEN = 1		
	IPU	Weak Pull-up Current						
D070	Ipurb	PORTB, PORTD ⁽³⁾ and PORTE ⁽³⁾ Weak Pull-up Current	80	400	μA	VDD = 3.3V, VPIN = VSS		

30.3 DC Characteristics: PIC18F47J13 Family (Industrial)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

3: Only available in 44-pin devices.

4: Refer to Table 10-2 for pin tolerance levels.

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	_		12	bit	$\Delta VREF \ge 3.0V$
A03	EIL	Integral Linearity Error	_	<±1	±2	LSb	$\Delta VREF \ge 3.0V$
A04	Edl	Differential Linearity Error	—	<±1	1.5	LSb	$\Delta VREF \ge 3.0V$
A06	EOFF	Offset Error	—	<±1	5	LSb	$\Delta VREF \ge 3.0V$
A07	Egn	Gain Error	—	—	<±3.5	LSb	$\Delta V \text{REF} \geq 3.0 V$
A10		Monotonicity	G	uarantee	d ⁽¹⁾	—	$VSS \leq VAIN \leq VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	2.0 3	_		V V	$\begin{array}{l} VDD < 3.0V \\ VDD \geq 3.0V \end{array}$
A21	Vrefh	Reference Voltage High For 10-bit resolution For 12-bit resolution	VREFL Vss + 3V	_	Vdd + 0.3V Vdd + 0.3V	V V	
A22	Vrefl	Reference Voltage Low For 10-bit resolution For 12-bit resolution	Vss – 0.3V Vss – 0.3V	_	Vrefh Vdd - 3V	V V	
A25	VAIN	Analog Input Voltage	VREFL	—	Vrefh	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source For 10-bit resolution For 12-bit resolution		_	2.5 1	kΩ kΩ	
A50	IREF	VREF Input Current ⁽²⁾	—		5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

TABLE 30-31: A/D CONVERTER CHARACTERISTICS: PIC18F47J13 FAMILY (INDUSTRIAL)

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from RA3/AN3/C1INBVREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from RA2/AN2/C2INB/C1IND/C3INB/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

FIGURE 30-23: A/D CONVERSION TIMING

