

Welcome to E-XFL.COM

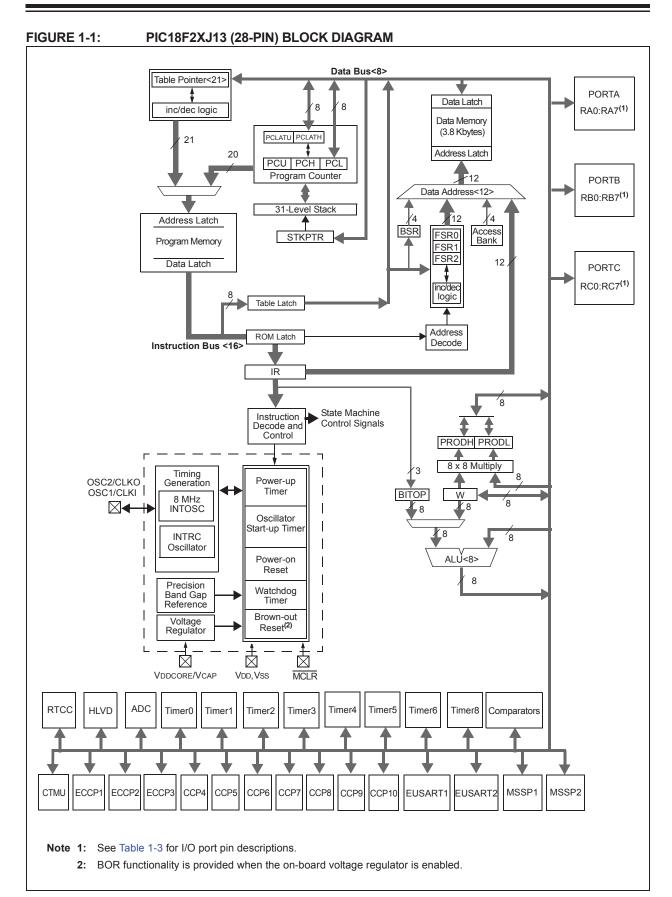
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


2 014110	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 2.75V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf47j13t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

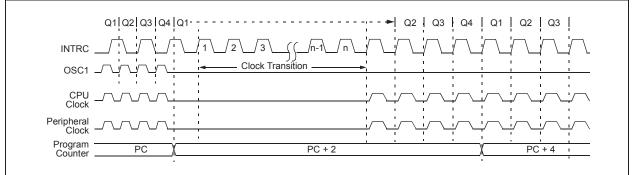
Table of Contents

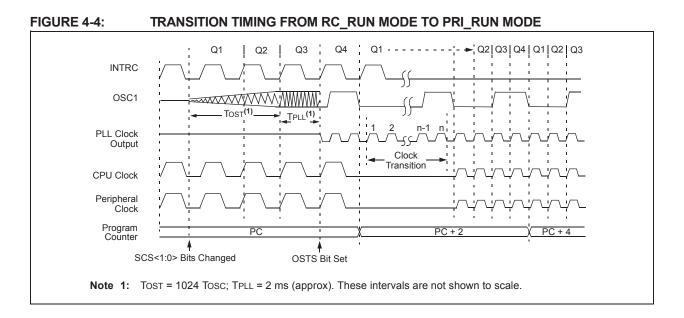
1.0	Device Overview	9
2.0	Guidelines for Getting Started with PIC18FJ Microcontrollers	28
3.0	Oscillator Configurations	32
4.0	Low-Power Modes	43
5.0	Reset	60
6.0	Memory Organization	75
7.0	Flash Program Memory	. 101
8.0	8 x 8 Hardware Multiplier	. 111
9.0	Interrupts	. 113
10.0	I/O Ports	. 133
11.0	Parallel Master Port (PMP)	. 173
12.0	Timer0 Module	. 198
13.0	Timer1 Module	. 202
14.0	Timer2 Module	. 212
15.0	Timer3/5 Module	. 214
16.0	Timer4/6/8 Module	. 226
17.0	Real-Time Clock and Calendar (RTCC)	. 229
18.0	Capture/Compare/PWM (CCP) Modules	. 248
19.0	Enhanced Capture/Compare/PWM (ECCP) Module	. 260
20.0	Master Synchronous Serial Port (MSSP) Module	
21.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	. 336
22.0	10/12-Bit Analog-to-Digital Converter (A/D) Module	. 358
23.0	Comparator Module	
24.0	Comparator Voltage Reference Module	
25.0	High/Low Voltage Detect (HLVD)	. 380
26.0	Charge Time Measurement Unit (CTMU)	
27.0	Special Features of the CPU	. 403
28.0	Instruction Set Summary	. 420
29.0	Development Support	. 470
30.0	Electrical Characteristics	
31.0	Packaging Information	. 516
	ndix A: Revision History	
Appe	ndix B: Migration From PIC18F46J11 to PIC18F47J13	. 534
	/icrochip Website	
	mer Change Notification Service	
	mer Support	
Produ	uct Identification System	. 536

TABLE 1-3 :	PIC18F2XJ	PIC18F2XJ13 PINOUT I/O DESCRIPTIONS (CONTINUED)								
		Pin Number								

	Pin Nu	ımber					
Pin Name	28-SPDIP/ SSOP/ SOIC	28-QFN	Pin Type	Buffer Type	Description		
					PORTC is a bidirectional I/O port.		
RC0/T1OSO/T1CKI/RP11 RC0 T1OSO T1CKI RP11	11	8	I/O O I I/O	ST/DIG Analog ST ST/DIG	Digital I/O. Timer1 oscillator output. Timer1 external digital clock input. Remappable Peripheral Pin 11 input/output.		
RC1/CCP8/T1OSI/RP12 RC1 CCP8 T1OSI RP12	12	9	I/O I/O I I/O	ST/DIG ST/DIG Analog ST/DIG	Digital I/O. Capture/Compare/PWM input/output. Timer1 oscillator input. Remappable Peripheral Pin 12 input/output.		
RC2/AN11/C2IND/CTPLS/RP13 RC2 AN11 C2IND CTPLS RP13	13	10	I/O I I O I/O	ST/DIG Analog Analog DIG ST/DIG	Digital I/O. Analog Input 11. Comparator 2 Input D. CTMU pulse generator output. Remappable Peripheral Pin 13 input/output.		
RC3/SCK1/SCL1/RP14 RC3 SCK1 SCL1 RP14	14	11	I/O I/O I/O I/O	ST/DIG ST/DIG I ² C ST/DIG	Digital I/O. SPI clock input/output. I ² C clock input/output. Remappable Peripheral Pin 14 input/output.		
RC4/SDI1/SDA1/RP15 RC4 SDI1 SDA1 RP15	15	12	I/O I I/O I/O	ST/DIG ST I ² C ST/DIG	Digital I/O. SPI data input. I ² C data input/output. Remappable Peripheral Pin 15 input/output.		
RC5/SDO1/RP16 RC5 SDO1 RP16	16	13	I/O O I/O	ST/DIG DIG ST/DIG	Digital I/O. SPI data output. Remappable Peripheral Pin 16 input/output.		
RC6/CCP9/TX1/CK1/RP17 RC6 CCP9 TX1 CK1 RP17	17 ⁽²⁾	14(2)	I/O I/O I/O I/O	ST/DIG ST/DIG DIG ST/DIG ST/DIG	Digital I/O. Capture/Compare/PWM input/output. EUSART1 asynchronous transmit. EUSART1 synchronous clock (see related RX1/DT1). Remappable Peripheral Pin 17 input/output.		
RC7/CCP10/RX1/DT1/RP18 RC7 CCP10 RX1 DT1 RP18	18 ⁽²⁾	15 ⁽²⁾	I/O I/O I I/O	ST/DIG ST/DIG ST ST/DIG ST/DIG	Digital I/O. Capture/Compare/PWM input/output. Asynchronous serial receive data input. Synchronous serial data output/input. Remannable Perinberal Pin 18 input/output		
RP18 I/O ST/DIG Remappable Peripheral Pin 18 input/output. Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I = Input P = Power DIG = Digital output CMOS = CMOS compatible input or output 0 = Output OD = Output OD = Output OD = Open-Drain (no P diode to VDD) I ² C = Open-Drain, I ² C specific Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function. 2: 5.5V tolerant.							

2: 5.5V tolerant.

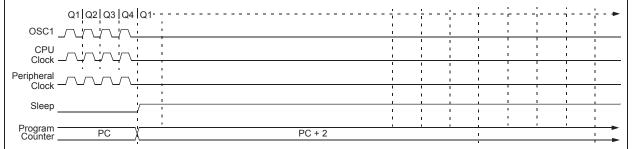

4.2.3 RC_RUN MODE

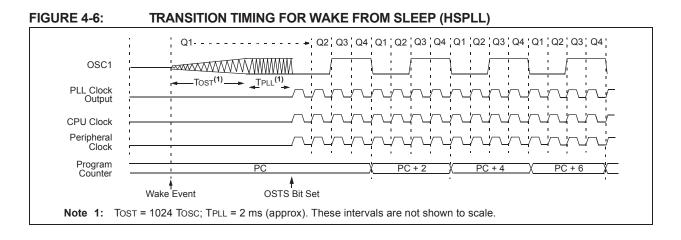

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator; the primary clock is shut down. This mode provides the best power conservation of all the Run modes while still executing code. It works well for user applications, which are not highly timing-sensitive or do not require high-speed clocks at all times.

This mode is entered by setting the SCS<1:0> bits (OSCCON<1:0>) to '11'. When the clock source is switched to the internal oscillator block (see Figure 4-3), the primary oscillator is shut down and the OSTS bit is cleared.

On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC block while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC clock source will continue to run if either the WDT or the FSCM is enabled.

FIGURE 4-3: TRANSITION TIMING TO RC_RUN MODE




4.3 Sleep Mode

The power-managed Sleep mode is identical to the legacy Sleep mode offered in all other PIC devices. It is entered by clearing the IDLEN bit (the default state on device Reset) and executing the SLEEP instruction. This shuts down the selected oscillator (Figure 4-5). All clock source status bits are cleared.

Entering the Sleep mode from any other mode does not require a clock switch. This is because no clocks are needed once the controller has entered Sleep mode. If the WDT is selected, the INTRC source will continue to operate. If the Timer1 oscillator is enabled, it will also continue to run. When a wake event occurs in Sleep mode (by interrupt, Reset or WDT time-out), the device will not be clocked until the clock source selected by the SCS<1:0> bits becomes ready (see Figure 4-6), or it will be clocked from the internal oscillator if either the Two-Speed Start-up or the FSCM is enabled (see Section 27.0 "Special Features of the CPU"). In either case, the OSTS bit is set when the primary clock is providing the device clocks. The IDLEN and SCS bits are not affected by the wake-up.

6.3.4 SPECIAL FUNCTION REGISTERS

The SFRs are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy more than the top half of Bank 15 (F40h to FFFh). Table 6-2, Table 6-3 and Table 6-4 provide a list of these registers.

The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and Interrupt registers are described in their corresponding chapters, while the

ALU's STATUS register is described later in this section. Registers related to the operation of the peripheral features are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's

Note: The SFRs located between EB0h and F5Fh are not part of the Access Bank. Either BANKED instructions (using BSR) or the MOVFF instruction should be used to access these locations. When programming in MPLAB[®] C18, the compiler will automatically use the appropriate addressing mode.

TABLE 6-2: ACCESS BANK SPECIAL FUNCTION REGISTER MAP

Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	PSTR1CON	F9Fh	IPR1	F7Fh	SPBRGH1
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	ECCP1AS	F9Eh	PIR1	F7Eh	BAUDCON1
FFDh	TOSL	FDDh	POSTDEC2 ⁽¹⁾	FBDh	ECCP1DEL	F9Dh	PIE1	F7Dh	SPBRGH2
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR1H	F9Ch	RCSTA2	F7Ch	BAUDCON2
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCPR1L	F9Bh	OSCTUNE	F7Bh	TMR3H
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP1CON	F9Ah	T1GCON	F7Ah	TMR3L
FF9h	PCL	FD9h	FSR2L	FB9h	PSTR2CON	F99h	IPR5	F79h	T3CON
FF8h	TBLPTRU	FD8h	STATUS	FB8h	ECCP2AS	F98h	PIR5	F78h	TMR4
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	ECCP2DEL	F97h	T3GCON	F77h	PR4
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	CCPR2H	F96h	TRISE	F76h	T4CON
FF5h	TABLAT	FD5h	TOCON	FB5h	CCPR2L	F95h	TRISD	F75h	SSP2BUF
FF4h	PRODH	FD4h	(5)	FB4h	CCP2CON	F94h	TRISC	F74h	SSP2ADD ⁽³⁾
FF3h	PRODL	FD3h	OSCCON	FB3h	CTMUCONH	F93h	TRISB	F73h	SSP2STAT
FF2h	INTCON	FD2h	CM1CON	FB2h	CTMUCONL	F92h	TRISA	F72h	SSP2CON1
FF1h	INTCON2	FD1h	CM2CON	FB1h	CTMUICON	F91h	PIE5	F71h	SSP2CON2
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRG1	F90h	IPR4	F70h	CMSTAT
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	RCREG1	F8Fh	PIR4	F6Fh	PMADDRH ^(2,4)
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	TXREG1	F8Eh	PIE4	F6Eh	PMADDRL ^(2,4)
FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXSTA1	F8Dh	LATE ⁽²⁾	F6Dh	PMDIN1H ⁽²⁾
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	RCSTA1	F8Ch	LATD ⁽²⁾	F6Ch	PMDIN1L ⁽²⁾
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	SPBRG2	F8Bh	LATC	F6Bh	TXADDRL
FEAh	FSR0H	FCAh	T2CON	FAAh	RCREG2	F8Ah	LATB	F6Ah	TXADDRH
FE9h	FSR0L	FC9h	SSP1BUF	FA9h	TXREG2	F89h	LATA	F69h	RXADDRL
FE8h	WREG	FC8h	SSP1ADD ⁽³⁾	FA8h	TXSTA2	F88h	DMACON1	F68h	RXADDRH
FE7h	INDF1 ⁽¹⁾	FC7h	SSP1STAT	FA7h	EECON2	F87h	OSCCON2 ⁽⁵⁾	F67h	DMABCL
FE6h	POSTINC1 ⁽¹⁾	FC6h	SSP1CON1	FA6h	EECON1	F86h	DMACON2	F66h	DMABCH
FE5h	POSTDEC1 ⁽¹⁾	FC5h	SSP1CON2	FA5h	IPR3	F85h	HLVDCON	F65h	_
FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE ⁽²⁾	F64h	_
FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD ⁽²⁾	F63h	_
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC	F62h	—
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB	F61h	—
FE0h	BSR	FC0h	WDTCON	FA0h	PIE2	F80h	PORTA	F60h	_

Note 1: This is not a physical register.

2: This register is not available on 28-pin devices.

3: SSPxADD and SSPxMSK share the same address.

4: PMADDRH and PMDOUTH share the same address, and PMADDRL and PMDOUTL share the same address. PMADDRx is used in Master modes and PMDOUTx is used in Slave modes.

5: Reserved; do not write to this location.

REGISTER 10-1: ODCON1: PERIPHERAL OPEN-DRAIN CONTROL REGISTER 1 (BANKED F42h)									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CCP8OD	CCP7OD	CCP6OD	CCP5OD	CCP4OD	ECCP3OD	ECCP2OD	ECCP10D		
bit 7		•					bit 0		
Legend:									
R = Readable		W = Writable		•	nented bit, read				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
hit 7		CD9 Onen Drei	- Output Ench	a hit					
bit 7		CP8 Open-Drai ain capability is		e bit					
		ain capability is							
bit 6		CP7 Open-Drai		e bit					
		ain capability is	•						
		ain capability is							
bit 5	CCP6OD: CO	CP6 Open-Drai	n Output Enabl	e bit					
		ain capability is							
	•	ain capability is							
bit 4		CP5 Open-Drai	•	e bit					
		ain capability is ain capability is							
bit 3	•	CP4 Open-Drai		a bit					
DIL 3		ain capability is		e bit					
		ain capability is							
bit 2	•	ECCP3 Open-D		able bit					
		ain capability is	•						
	0 = Open-dra	ain capability is	disabled						
bit 1	ECCP2OD: E	ECCP2 Open-D	rain Output En	able bit					
		ain capability is							
		ain capability is							
bit 0		ECCP1 Open-D		able bit					
		ain capability is ain capability is							
		an capability is	นเรสมเย่น						

10.4 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register read and write the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions (see Table 10-7). The pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRISx bits for each PORTC pin. Some peripherals override the TRISx bit to make a pin an output, while other peripherals override the TRISx bit to make a pin an input. The user should refer to the corresponding peripheral section for additional information.

Note: On a Power-on Reset, PORTC pins (except RC2) are configured as digital inputs. RC2 will default as an analog input (controlled by the ANCON1 register).

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

EXAMPLE 10-4: INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	0x3F	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<5:0> as inputs
		; RC<7:6> as outputs
MOVLB	0x0F	; ANCON register is not in
		Access Bank
BSF	ANCON1, P	CFG11
		;Configure RC2/AN11 as
		digital input

REGISTER 10-24: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0 (BANKED EC1h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0

Legend:	R/W = Readable bit, V	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-25: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1 (BANKED EC7h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 7							bit 0

Legend:	R/W = Readable bit,	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-26: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2 (BANKED EC3h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, W	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 11-4: PMMODEL: PARALLEL PORT MODE REGISTER LOW BYTE (BANKED F5Ch)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAITB1 ⁽²⁾	WAITB0 ⁽²⁾	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1 ⁽²⁾	WAITE0 ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	WAITB<1:0>: Data Setup to Read/Write Wait State Configuration bits ⁽²⁾ 11 = Data Wait of 4 Tcy; multiplexed address phase of 4 Tcy 10 = Data Wait of 3 Tcy; multiplexed address phase of 3 Tcy 01 = Data Wait of 2 Tcy; multiplexed address phase of 2 Tcy 00 = Data Wait of 1 Tcy; multiplexed address phase of 1 Tcy
bit 5-2	WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits 1111 = Wait of additional 15 Tcy
	0001 = Wait of additional 1 Tcy 0000 = No additional Wait cycles (operation forced into one Tcy)
bit 1-0	WAITE<1:0>: Data Hold After Strobe Wait State Configuration bits ⁽²⁾ 11 = Wait of 4 Tcy 10 = Wait of 3 Tcy 01 = Wait of 2 Tcy 00 = Wait of 1 Tcy
Note 1	This register is only systemed on 44 nin devises

Note 1: This register is only available on 44-pin devices.

2: WAITBx and WAITEx bits are ignored whenever WAITM<3:0> = 0000.

15.6 Timer3/5 Interrupt

The TMRx register pair (TMRxH:TMRxL) increments from 0000h to FFFFh and overflows to 0000h. The Timerx interrupt, if enabled, is generated on overflow and is latched in the interrupt flag bit, TMRxIF. Table 15-3 gives each module's flag bit.

TABLE 15-3: TIMER3/5 INTERRUPT FLAG BITS

Timer Module	Flag Bit
3	PIR2<1>
5	PIR5<1>

This interrupt can be enabled or disabled by setting or clearing the TMRxIE bit, respectively. Table 15-4 gives each module's enable bit.

TABLE 15-4: TIMER3/5 INTERRUPT ENABLE BITS

Timer Module	Flag Bit
3	PIE2<1>
5	PIE5<2>

15.7 Resetting Timer3/5 Using the ECCP Special Event Trigger

If the ECCP modules are configured to use Timerx and to generate a Special Event Trigger in Compare mode (CCPxM<3:0> = 1011), this signal will reset Timerx. The trigger from ECCP2 will also start an A/D conversion if the A/D module is enabled. (For more information, see Section 19.3.4 "Special Event Trigger".)

The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPRxH:CCPRxL register pair effectively becomes a Period register for TimerX.

If Timerx is running in Asynchronous Counter mode, the Reset operation may not work.

In the event that a write to Timerx coincides with a Special Event Trigger from an ECCP module, the write will take precedence.

Note:	The Special Event Triggers from the
	ECCPx module will only clear the TMR3
	register's content, but not set the TMR3IF
	interrupt flag bit (PIR1<0>).

Note: The CCP and ECCP modules use Timers, 1 through 8, for some modes. The assignment of a particular timer to a CCP/ECCP module is determined by the Timer to CCP enable bits in the CCPTMRSx registers. For more details, see Register 18-3 and Register 19-2.

21.2.5 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN/J2602 bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The Frame Break character is sent whenever the SENDB and TXEN bits (TXSTAx<3> and TXSTAx<5>) are set while the Transmit Shift Register is loaded with data.

Note that the value of data written to TXREGx will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN/J2602 specification).

Note that the data value written to the TXREGx for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 21-10 for the timing of the Break character sequence.

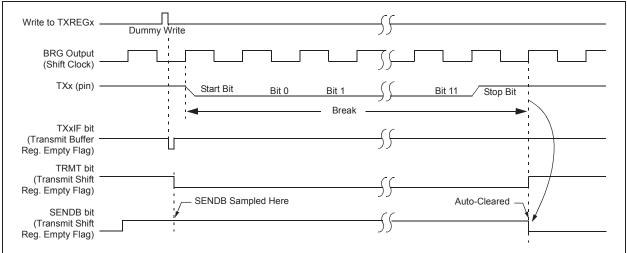
21.2.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. This sequence is typical of a LIN/J2602 bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to set up the Break character.
- 3. Load the TXREGx with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREGx to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware. The Sync character now transmits in the preconfigured mode.

When the TXREGx becomes empty, as indicated by the TXxIF, the next data byte can be written to TXREGx.

21.2.6 RECEIVING A BREAK CHARACTER


The Enhanced USART module can receive a Break character in two ways.

The first method forces configuration of the baud rate at a frequency of 9/13 of the typical speed. This allows for the Stop bit transition to be at the correct sampling location (13 bits for Break versus Start bit and 8 data bits for typical data).

The second method uses the auto-wake-up feature described in Section 21.2.4 "Auto-Wake-up on Sync Break Character". By enabling this feature, the EUSART will sample the next two transitions on RXx/DTx, cause an RCxIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABDEN bit once the TXxIF interrupt is observed.

FIGURE 21-10: SEND BREAK CHARACTER SEQUENCE

25.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

25.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR2	OSCFIF	CM2IF	CM1IF	—	BCL1IF	HLVDIF	TMR3IF	CCP2IF
PIE2	OSCFIE	CM2IE	CM1IE	_	BCL1IE	HLVDIE	TMR3IE	CCP2IE
IPR2	OSCFIP	CM2IP	CM1IP	_	BCL1IP	HLVDIP	TMR3IP	CCP2IP

TABLE 25-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

PIC18F47J13 FAMILY

RET	RETURN Return from Subroutine							
Synta	ax:	RETURN	{s}					
Oper	ands:	$s \in [0,1]$						
Oper	ation:	$(TOS) \rightarrow PC;$ if s = 1, $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged						
Statu	s Affected:	None						
Enco	ding:	0000	0000	000	1	001s		
Description: Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the program counter. If 's'= 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, STATUS and BSR. If 's' = 0, no update of these registers occurs (default).					ck (TOS) unter. If dow BSRS, nding R. If			
Word	ls:	1						
Cycle	es:	2	2					
QC	ycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	No operation	Proce Data		•	OP PC m stack		
	No	No	No			No		
	operation	operation	operat	tion	ор	eration		
<u>Exan</u>	<u>nple:</u> After Instructic	RETURN						

After Instruction: PC = TOS

RLCF	Rotate Lef		in Carry	/			
Syntax:	RLCF f	{,d {,a}}					
Operands:	$0 \le f \le 255$						
	d ∈ [0,1] a ∈ [0,1]						
Operation:	$(f < n >) \rightarrow de$	⊳st<n +<="" b=""> 1</n>	>				
operation.	$(f<7>) \rightarrow C$		-,				
	$(C) \rightarrow dest$	<0>					
Status Affected:	C, N, Z						
Encoding:	0011	0011 01da ffff					
Description:	lf 'd' is '0', t	ne left thr he result esult is sto	ough the is place	re rotated e Carry flag. ed in W. If 'd' ck in register			
		he BSR i		is selected. to select the			
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 28.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
			ctions i	n Indexed			
		set Mode	ctions i	n Indexed tails.			
	Literal Off	set Mode	ctions i " for de	n Indexed tails.			
Words:	Literal Off	set Mode	ctions i " for de	n Indexed tails.			
Cycles:	Literal Off	set Mode	ctions i " for de	n Indexed tails.			
Cycles: Q Cycle Activity:	Literal Offs C 1 1	set Mode	ctions i " for de egister f	n Indexed tails.			
Cycles: Q Cycle Activity: Q1	Literal Offs C 1 1 Q2	set Mode	ctions i " for de egister f	n Indexed tails.			
Cycles: Q Cycle Activity:	Literal Offs C 1 1	set Mode	ctions i "" for de egister f 3 ess	n Indexed tails.			

30.4 DC Characteristics: PIC18F47J13 Family (Industrial)

DC CHA				Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Symbol	Characteristic	Тур	Мах	Units	Conditions		
	lı∟	Input Leakage Current ^(1,2)						
D060		I/O Ports without 5.5V Tolerance	±5	±200		$Vss \le VPIN \le VDD,$ Pin at high-impedance		
		I/O Ports with 5.5V Tolerance	±5	±200		Vss \leq VPIN \leq 5.5V, Pin at high-impedance		
D061		MCLR	±5	±200	nA	$Vss \leq V PIN \leq V DD$		
D063		OSC1	±5	±200	nA	$Vss \leq V \text{PIN} \leq V \text{DD}$		

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

TABLE 30-1: MEMORY PROGRAMMING REQUIREMENTS

DC CH/	ARACTI	ERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for industrial				
Param No.	Sym	Characteristic		Min Typ†		Units	Conditions
		Program Flash Memory					
D130	Eр	Cell Endurance	10K	—	_	E/W	-40°C to +85°C
D131	Vpr	VDDcore for Read	VMIN	—	2.75	V	Vміn = Minimum operating voltage
D132B	VPEW	VDDCORE for Self-Timed Erase or Write	2.25	—	2.75	V	
D133A	Tiw	Self-Timed Write Cycle Time	_	2.8	_	ms	64 bytes
D133B	TIE	Self-Timed Block Erase Cycle Time	_	33.0	_	ms	
D134	Tretd	Characteristic Retention	20	_	_	Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	_	3	_	mA	

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

Operating Conditions: 3.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments		
D300	VIOFF	Input Offset Voltage		<u>+</u> 5	<u>+</u> 25	mV			
D301	VICM	Input Common Mode Voltage	0	_	Vdd	V			
	Virv	Internal Reference Voltage	0.57	0.60	0.63	V			
D302	CMRR	Common Mode Rejection Ratio	55	_	_	dB			
D303	TRESP	Response Time ⁽¹⁾	—	150	400	ns			
D304	Тмс2о∨	Comparator Mode Change to Output Valid	—	—	10	μS			

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

TABLE 30-3: VOLTAGE REFERENCE SPECIFICATIONS

TABLE 4-1:

Operating Conditions: 3.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)

Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
D310	VRES	Resolution	Vdd/24	_	VDD/32	LSb	
D311	VRAA	Absolute Accuracy	_	—	1/2	LSb	
D312	VRur	Unit Resistor Value (R)	—	2k	—	Ω	
310	TSET	Settling Time ⁽¹⁾	_	—	10	μS	

Note 1: Settling time measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'.

TABLE 30-4: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

TABLE 4-2:

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)

Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments
	Vrgout	Regulator Output Voltage	2.35	2.5	2.7	V	Regulator enabled, VDD = 3.0V
	CEFC	External Filter Capacitor Value ⁽¹⁾	5.4	10	18	μF	ESR < 3Ω recommended ESR < 5Ω required

Note 1: CEFC applies for PIC18**F** devices in the family. For PIC18**LF** devices in the family, there is no specific minimum or maximum capacitance for VDDCORE, although proper supply rail bypassing should still be used.

TABLE 30-5: ULPWU SPECIFICATIONS

			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D100	IULP	Ultra Low-Power Wake-up Current		60		nA	Net of I/O leakage and current sink at 1.6V on pin, VDD = 3.3V See Application Note AN879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879)

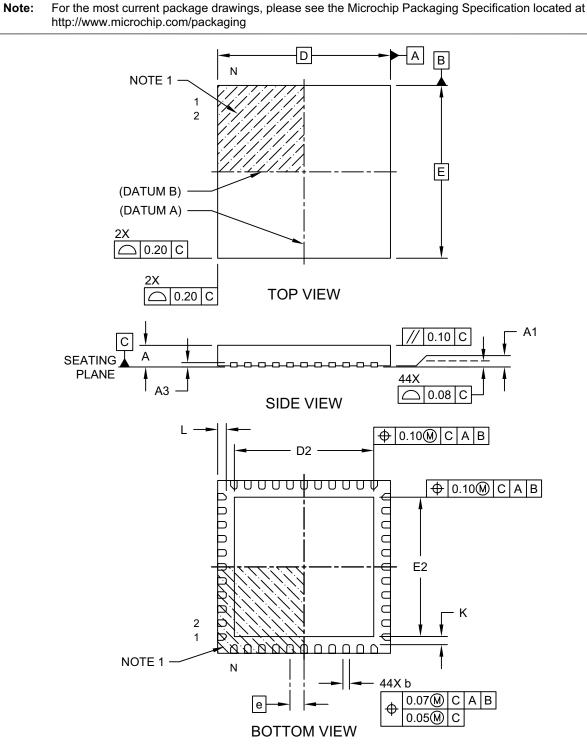
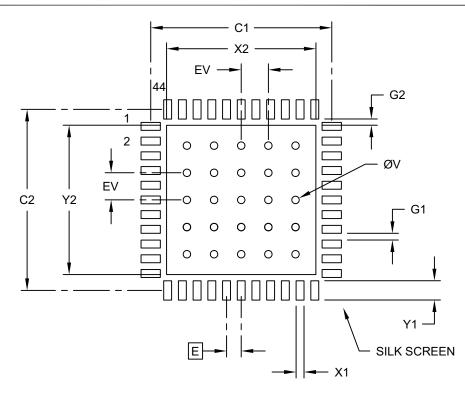

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 30-6: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Sym Characteristic		Min	Typ ⁽¹⁾	Мах	Units	Conditions	
	IOUT1	CTMU Current Source, Base Range	—	550	—	nA	CTMUICON<1:0> = 01	
	IOUT2 CTMU Current Source, 10x Range IOUT3 CTMU Current Source, 100x Range		—	5.5	_	μA	CTMUICON<1:0> = 10	
			—	55	_	μA	CTMUICON<1:0> = 11	

Note 1: Nominal value at center point of current trim range (CTMUICON<7:2> = 000000).


44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

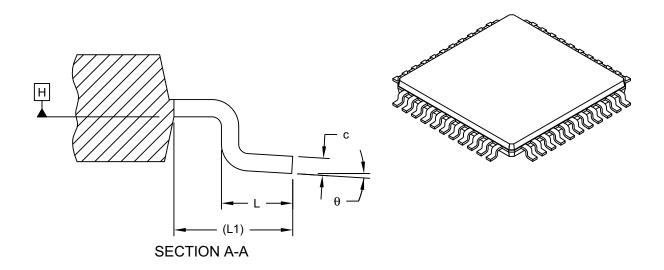
Microchip Technology Drawing C04-103D Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	Dimension Limits			MAX	
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	X2			6.60	
Optional Center Pad Length	Y2			6.60	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	
Contact Pad to Contact Pad (X40)	G1	0.30			
Contact Pad to Center Pad (X44)	G2	0.28			
Thermal Via Diameter	V		0.33		
Thermal Via Pitch	EV		1.20		


Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS							
Dimension	Limits	MIN	NOM	MAX				
Number of Leads	Ν		44					
Lead Pitch	е		0.80 BSC					
Overall Height	Α	-	-	1.20				
Standoff	A1	0.05	-	0.15				
Molded Package Thickness	A2	0.95	1.00	1.05				
Overall Width	E	12.00 BSC						
Molded Package Width	E1	10.00 BSC						
Overall Length	D	12.00 BSC						
Molded Package Length	D1	10.00 BSC						
Lead Width	b	0.30	0.37	0.45				
Lead Thickness	С	0.09	-	0.20				
Lead Length	L	0.45	0.60	0.75				
Footprint	L1	1.00 REF						
Foot Angle	θ	0°	3.5°	7°				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2