

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	20
Program Memory Size	24KB (8K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f3010-20e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Special Microcontroller Features:

- Enhanced Flash Program Memory:
 - 10,000 erase/write cycle (min.) for industrial temperature range, 100K (typical)
- Data EEPROM Memory:
 - 100,000 erase/write cycle (min.) for industrial temperature range, 1M (typical)
- Self-Reprogrammable under Software Control
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Flexible Watchdog Timer (WDT) with On-Chip Low-Power RC Oscillator for Reliable Operation
- Fail-Safe Clock Monitor Operation Detects Clock Failure and Switches to On-Chip Low-Power RC Oscillator
- Programmable Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- Selectable Power Management modes:
 - Sleep, Idle and Alternate Clock modes

CMOS Technology:

- Low-Power, High-Speed Flash Technology
- Wide Operating Voltage Range (2.5V to 5.5V)
- Industrial and Extended Temperature Ranges
- Low Power Consumption

dsPIC30F Motor Control and Power Conversion Family

Device	Pins	Program Mem. Bytes/ Instructions	SRAM Bytes	EEPROM Bytes	Timer 16-Bit	Input Cap	Output Comp/Std PWM	Motor Control PWM	A/D 10-Bit 1 Msps	Quad Enc	UART	IdS	I ² C TM
dsPIC30F3010	28	24K/8K	1024	1024	5	4	2	6 ch	6 ch	Yes	1	1	1
dsPIC30F3011	40/44	24K/8K	1024	1024	5	4	4	6 ch	9 ch	Yes	2	1	1

Table 1-2 provides a brief description of the device I/O pinout and the functions that are multiplexed to a port pin. Multiple functions may exist on one port pin. When multiplexing occurs, the peripheral module's functional requirements may force an override of the data direction of the port pin.

Pin Name	Pin Type	Buffer Type	Description							
AN0-AN5	I	Analog	Analog input channels. AN0 and AN1 are also used for device programming data and clock inputs, respectively.							
AVdd	Р	Р	Positive supply for analog module. This pin must be connected at all times.							
AVss	Р	Р	Ground reference for analog module. This pin must be connected at all times.							
CLKI	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.							
CLKO	ο	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.							
CN0-CN7	I	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.							
EMUD	I/O	ST	ICD Primary Communication Channel data input/output pin.							
EMUC	I/O	ST	ICD Primary Communication Channel clock input/output pin.							
EMUD1	I/O	ST	ICD Secondary Communication Channel data input/output pin.							
EMUC1	I/O	ST	ICD Secondary Communication Channel clock input/output pin.							
EMUD2	I/O	ST	ICD Tertiary Communication Channel data input/output pin.							
EMUC2	I/O	ST	ICD Tertiary Communication Channel clock input/output pin.							
EMUD3	I/O	ST	ICD Quaternary Communication Channel data input/output pin.							
EMUC3	I/O	ST	CD Quaternary Communication Channel clock input/output pin.							
IC1, IC2, IC7, IC8	I	ST	Capture inputs 1, 2, 7 and 8.							
INDX		ST	Quadrature Encoder Index Pulse input.							
QEA	I	ST	Quadrature Encoder Phase A input in QEI mode.							
			Auxiliary Timer External Clock/Gate input in Timer mode.							
QEB	I	ST	Quadrature Encoder Phase B input in QEI mode.							
			Auxiliary Timer External Clock/Gate input in Timer mode.							
INT0		ST	External interrupt 0.							
INT1	1	ST	External interrupt 1.							
INT2	1	ST	External interrupt 2.							
FLTA		ST	PWM Fault A input.							
PWM1L	Ó	_	PWM1 Low output.							
PWM1H	0	_	PWM1 High output.							
PWM2L	0	_	PWM2 Low output.							
PWM2H	0	_	PWM2 High output.							
PWM3L	0	_	PWM3 Low output.							
PWM3H	0	—	PWM3 High output.							
MCLR	I/P	ST	Master Clear (Reset) input or programming voltage input. This pin is an active low Reset to the device.							
OCFA		ST	Compare Fault A input (for Compare channels 1, 2, 3 and 4)							
OC1, OC2	0	_	Compare outputs 1 and 2.							
Legend: CM	IOS = C	MOS compation	tible input or output Analog = Analog input							
ST	= S	chmitt Trigge	r input with CMOS levels O = Output							
I	= Ir	nput	P = Power							

TABLE 1-2: dsPIC30F3010 I/O PIN DESCRIPTIONS

2.3 Divide Support

The dsPIC DSC devices feature a 16/16-bit signed fractional divide operation, as well as 32/16-bit and 16/ 16-bit signed and unsigned integer divide operations, in the form of single instruction iterative divides. The following instructions and data sizes are supported:

- 1. DIVF 16/16 signed fractional divide
- 2. DIV.sd 32/16 signed divide
- 3. DIV.ud 32/16 unsigned divide
- 4. DIV. sw 16/16 signed divide
- 5. DIV.uw 16/16 unsigned divide

The divide instructions must be executed within a REPEAT loop. Any other form of execution (e.g. a series of discrete divide instructions) will not function correctly because the instruction flow depends on RCOUNT. The divide instruction does not automatically set up the RCOUNT value, and it must, therefore, be explicitly and correctly specified in the REPEAT instruction, as shown in Table 2-1 (REPEAT will execute the target instruction {operand value + 1} times). The REPEAT loop count must be set up for 18 iterations of the DIV/DIVF instruction. Thus, a complete divide operation requires 19 cycles.

Note: The divide flow is interruptible. However, the user needs to save the context as appropriate.

Instruction	Function
DIVF	Signed fractional divide: Wm/Wn \rightarrow W0; Rem \rightarrow W1
DIV.sd	Signed divide: (Wm + 1:Wm)/Wn \rightarrow W0; Rem \rightarrow W1
DIV.sw	Signed divide: Wm/Wn \rightarrow W0; Rem \rightarrow W1
DIV.ud	Unsigned divide: (Wm + 1:Wm)/Wn \rightarrow W0; Rem \rightarrow W1
DIV.uw	Unsigned divide: Wm/Wn \rightarrow W0; Rem \rightarrow W1

TABLE 2-1: DIVIDE INSTRUCTIONS

2.4 DSP Engine

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a barrel shifter, and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The dsPIC30F devices have a single instruction flow which can execute either DSP or MCU instructions. Many of the hardware resources are shared between the DSP and MCU instructions. For example, the instruction set has both DSP and MCU multiply instructions which use the same hardware multiplier.

The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations, which require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has various options selected through various bits in the CPU Core Configuration register (CORCON), as listed below:

- 1. Fractional or integer DSP multiply (IF).
- 2. Signed or unsigned DSP multiply (US).
- 3. Conventional or convergent rounding (RND).
- 4. Automatic saturation on/off for ACCA (SATA).
- 5. Automatic saturation on/off for ACCB (SATB).
- 6. Automatic saturation on/off for writes to data memory (SATDW).
- 7. Accumulator Saturation mode selection (ACCSAT).

A block diagram of the DSP engine is shown in Figure 2-2.

TABLE 2-2:	DSP INSTRUCTION
	SUMMARY

Instruction	Algebraic Operation
CLR	A = 0
ED	$A = (x - y)^2$
EDAC	$A = A + (x - y)^2$
MAC	$A = A + (x \bullet y)$
MOVSAC	No change in A
MPY	$A = x \bullet y$
MPY.N	$A = -x \bullet y$
MSC	$A = A - x \bullet y$

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation, or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The overflow and saturation status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic which typically uses both the accumulators.

The device supports three Saturation and Overflow modes.

1. Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFF) or maximally negative 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (e.g., gain calculations).

- Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF) or maximally negative 1.31 value (0x008000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used (so the OA, OB or OAB bits are never set).
- 3. Bit 39 Catastrophic Overflow The bit 39 overflow status bit from the adder is used to set the SA or SB bit, which remain set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

2.4.2.2 Accumulator 'Write Back'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- 1. W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13]+=2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

2.4.2.3 Round Logic

The round logic is a combinational block, which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word (lsw) is simply discarded.

Conventional rounding takes bit 15 of the accumulator, zero-extends it and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value will tend to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. If this is the case, the LSb (bit 16 of the accumulator) of ACCxH is examined. If it is '1', ACCxH is incremented. If it is '0', ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme will remove any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC) or rounded (SAC.R) version of the contents of the target accumulator to data memory, via the X bus (subject to data saturation, see **Section 2.4.2.4 "Data Space Write Saturation"**). Note that for the MAC class of instructions, the accumulator write-back operation will function in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

NOTES:

TABLE 5-2: INTERRUPT CONTROLLER REGISTER MAP⁽¹⁾

SFR Name	ADR	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
INTCON1	0080	NSTDIS	—	—	_	—	OVATE	OVBTE	COVTE	—	_	_	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000 0000 0000 0000
INTCON2	0082	ALTIVT	DISI						_	_	_				INT2EP	INT1EP	INT0EP	0000 0000 0000 0000
IFS0	0084	CNIF	MI2CIF	SI2CIF	NVMIF	ADIF	U1TXIF	U1RXIF	SPI1IF	T3IF	T2IF	OC2IF	IC2IF	T1IF	OC1IF	IC1IF	INT0IF	0000 0000 0000 0000
IFS1	0086		—					U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	IC8IF	IC7IF	INT1IF	0000 0000 0000 0000
IFS2	0088		-			FLTAIF			QEIIF	PWMIF	_				—	_	—	0000 0000 0000 0000
IEC0	008C	CNIE	MI2CIE	SI2CIE	NVMIE	ADIE	U1TXIE	U1RXIE	SPI1IE	T3IE	T2IE	OC2IE	IC2IE	T1IE	OC1IE	IC1IE	INT0IE	0000 0000 0000 0000
IEC1	008E		-	_		_	_	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	IC8IE	IC7IE	INT1IE	0000 0000 0000 0000
IEC2	0090		-	_	-	FLTAIE			QEIIE	PWMIE	—		—		—	—	—	0000 0000 0000 0000
IPC0	0094	_	٦	T1IP<2:0>	•	-	C	DC1IP<2:0	>	—		IC1IP<	2:0>	—		NT0IP<2:0>	>	0100 0100 0100 0100
IPC1	0096		Т	31P<2:0	>			T2IP<2:0>		—		OC2IP<	:2:0>			IC2IP<2:0>		0100 0100 0100 0100
IPC2	0098		A	\DIP<2:0>	>		U	1TXIP<2:0)>	_		U1RXIP	<2:0>		5	SPI1IP<2:0	>	0100 0100 0100 0100
IPC3	009A	_	C	CNIP<2:0	>	-	N	112CIP<2:0	>	—		SI2CIP<	:2:0>	—	١	VMIP<2:0	>	0100 0100 0100 0100
IPC4	009C	_	0	C3IP<2:0	>	—	I	C8IP<2:0>	>	—		IC7IP<	2:0>	—	1	NT1IP<2:0>	>	0100 0100 0100 0100
IPC5	009E	—	IN	T2IP<2:0	>	—		T5IP<2:0>		—		T4IP<2	2:0>	—	(C4IP<2:0>	>	0100 0100 0100 0100
IPC6	00A0	_	-	—	_	_	—		—	—		U2TXIP	<2:0>	—	U	2RXIP<2:0	>	0100 0000 0100 0100
IPC7	00A2	_	-	—	_	—	—	-	—	—	—	—	-	—	—	—	—	0000 0000 0000 0000
IPC8	00A4	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	0000 0000 0000 0000
IPC9	00A6	—	P۱	NMIP<2:0)>	—	—	—	—	—		NT41IP	<2:0>	—	1	NT3IP<2:0	>	0100 0000 0100 0100
IPC10	00A8	—	Fl	_TAIP<2:0)>	—	—	—	—	—	—	—	—	—		QEIIP<2:0>		0100 0000 0000 0100
IPC11	00AA	_	—	—	_	—	—	_	—	—	_	_	_	_	_	_	—	0000 0000 0000 0000

Legend: — = unimplemented, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

7.3.2 WRITING A BLOCK OF DATA EEPROM

To write a block of data EEPROM, write to all sixteen latches first, then set the NVMCON register and program the block.

		_	
MOV	<pre>#LOW_ADDR_WORD,W0</pre>	;	Init pointer
MOV	#HIGH_ADDR_WORD,W1		
MOV	W1 TBLPAG		
MOV	#data1,W2	;	Get 1st data
TBLWTL	W2 [W0]++	;	write data
MOV	#data2,W2	;	Get 2nd data
TBLWTL	W2 [W0]++	;	write data
MOV	#data3,W2	;	Get 3rd data
TBLWTL	W2 [W0]++	;	write data
MOV	#data4,W2	;	Get 4th data
TBLWTL	W2 [W0]++	;	write data
MOV	#data5,W2	;	Get 5th data
TBLWTL	W2 [W0]++	;	write data
MOV	#data6,W2	;	Get 6th data
TBLWTL	W2,[W0]++	;	write data
MOV	#data7,W2	;	Get 7th data
TBLWTL	W2,[W0]++	;	write data
MOV	#data8,W2	;	Get 8th data
TBLWTL	W2,[W0]++	;	write data
MOV	#data9,W2	;	Get 9th data
TBLWTL	W2,[W0]++	;	write data
MOV	#data10,W2	;	Get 10th data
TBLWTL	W2,[W0]++	;	write data
MOV	#datal1,W2	;	Get 11th data
TBLWTL	W2,[W0]++	;	write data
MOV	#data12,W2	;	Get 12th data
TBLWTL	W2,[W0]++	;	write data
MOV	#data13,W2	;	Get 13th data
TBLWTL	W2,[W0]++	;	write data
MOV	#data14,W2	;	Get 14th data
TBLWTL	W2,[W0]++	;	write data
MOV	#data15,W2	;	Get 15th data
TBLWTL	W2,[W0]++	;	write data
MOV	#data16,W2	;	Get 16th data
TBLWTL	W2,[W0]++	;	write data. The NVMADR captures last table access address.
MOV	#0x400A,W0	;	Select data EEPROM for multi word op
MOV	WU NVMCON	;	Operate Key to allow program operation
DISI	#5	;	Block all interrupts with priority </td
		;	for next 5 instructions
MOV	#0x55,W0		Weiter the Ouff have
MOV	WU NVMKEY	i	write the UX55 Key
MOV	HUXAA,W1		Write the Own how
MUV	WI NVMKEI	΄.	Stort write guale
NOD ROFI	IN VINCOIN, #WR	'	Start write cycle
NOD			
INOP			

EXAMPLE 7-5: DATA EEPROM BLOCK WRITE

7.4 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.5 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared; also, the Power-up Timer prevents EEPROM write.

The write initiate sequence, and the WREN bit together, help prevent an accidental write during brown-out, power glitch or software malfunction.

NOTES:

10.1 Timer Gate Operation

The 32-bit timer can be placed in the Gated Time Accumulation mode. This mode allows the internal TCY to increment the respective timer when the gate input signal (T2CK pin) is asserted high. Control bit, TGATE (T2CON<6>), must be set to enable this mode. When in this mode, Timer2 is the originating clock source. The TGATE setting is ignored for Timer3. The timer must be enabled (TON = 1) and the timer clock source set to internal (TCS = 0).

The falling edge of the external signal terminates the count operation, but does not reset the timer. The user must reset the timer in order to start counting from zero.

10.2 ADC Event Trigger

When a match occurs between the 32-bit timer (TMR3/ TMR2) and the 32-bit combined Period register (PR3/ PR2), a special ADC trigger event signal is generated by Timer3.

10.3 Timer Prescaler

The input clock (FOSC/4 or external clock) to the timer has a prescale option of 1:1, 1:8, 1:64 and 1:256, selected by control bits, TCKPS<1:0> (T2CON<5:4> and T3CON<5:4>). For the 32-bit timer operation, the originating clock source is Timer2. The prescaler operation for Timer3 is not applicable in this mode. The prescaler counter is cleared when any of the following occurs:

- A write to the TMR2/TMR3 register
- Clearing either of the TON (T2CON<15> or T3CON<15>) bits to '0'
- A device Reset such as a POR and BOR

However, if the timer is disabled (TON = 0), the Timer2 prescaler cannot be reset, since the prescaler clock is halted.

TMR2/TMR3 is not cleared when T2CON/T3CON is written.

10.4 Timer Operation During Sleep Mode

During CPU Sleep mode, the timer will not operate, because the internal clocks are disabled.

10.5 Timer Interrupt

The 32-bit timer module can generate an interrupt-onperiod match, or on the falling edge of the external gate signal. When the 32-bit timer count matches the respective 32-bit Period register, or the falling edge of the external "gate" signal is detected, the T3IF bit (IFS0<7>) is asserted and an interrupt will be generated if enabled. In this mode, the T3IF interrupt flag is used as the source of the interrupt. The T3IF bit must be cleared in software.

Enabling an interrupt is accomplished via the respective Timer Interrupt Enable bit, T3IE (IEC0<7>).

NOTES:

15.1.4 DOUBLE-UPDATE MODE

In the Double-Update mode (PTMOD<1:0> = 11), an interrupt event is generated each time the PTMR register is equal to zero, as well as each time a period match occurs. The postscaler selection bits have no effect in this mode of the timer.

The Double-Update mode provides two additional functions to the user. First, the control loop bandwidth is doubled because the PWM duty cycles can be updated, twice per period. Second, asymmetrical center-aligned PWM waveforms can be generated, which are useful for minimizing output waveform distortion in certain motor control applications.

Note: Programming a value of 0x0001 in the Period register could generate a continuous interrupt pulse, and hence, must be avoided.

15.1.5 PWM TIME BASE PRESCALER

The input clock to PTMR (Fosc/4), has prescaler options of 1:1, 1:4, 1:16, or 1:64, selected by control bits, PTCKPS<1:0> in the PTCON SFR. The prescaler counter is cleared when any of the following occurs:

- A write to the PTMR register
- A write to the PTCON register
- Any device Reset

The PTMR register is not cleared when PTCON is written.

15.1.6 PWM TIME BASE POSTSCALER

The match output of PTMR can optionally be postscaled through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling).

The postscaler counter is cleared when any of the following occurs:

- A write to the PTMR register
- A write to the PTCON register
- Any device Reset

The PTMR register is not cleared when the PTCON register is written.

15.2 PWM Period

PTPER is a 15-bit register and is used to set the counting period for the PWM time base. PTPER is a double- buffered register. The PTPER buffer contents are loaded into the PTPER register at the following instances:

- <u>Free-Running and Single-Shot modes:</u> When the PTMR register is reset to zero after a match with the PTPER register.
- <u>Continuous Up/Down Count modes:</u> When the PTMR register is zero.

The value held in the PTPER buffer is automatically loaded into the PTPER register when the PWM time base is disabled (PTEN = 0).

The PWM period can be determined using Equation 15-1:

EQUATION 15-1: PWM PERIOD (FREE-RUNNING MODE)

$$T_{PWM} = T_{CY} \bullet (PTPER + 1) \bullet PTMR Prescale Value$$

If the PWM time base is configured for one of the Continuous Up/Down Count modes, the PWM period is given by Equation 15-2.

EQUATION 15-2: PWM PERIOD (UP/DOWN COUNTING MODE)

$$T_{PWM} = T_{CY} \bullet 2 \bullet (PTPER + 1) \bullet PTMR Prescale Value$$

The maximum resolution (in bits) for a given device oscillator and PWM frequency can be determined using Equation 15-3:

EQUATION 15-3: PWM RESOLUTION

$$Resolution = \frac{\log (2 \bullet T_{PWM} / T_{CY})}{\log (2)}$$

15.3 Edge-Aligned PWM

Edge-aligned PWM signals are produced by the module when the PWM time base is in the Free-Running or Single-Shot mode. For edge-aligned PWM outputs, the output has a period specified by the value in PTPER and a duty cycle specified by the appropriate Duty Cycle register, as shown in Figure 15-2. The PWM output is driven active at the beginning of the period (PTMR = 0) and is driven inactive when the value in the Duty Cycle register matches PTMR.

If the value in a particular Duty Cycle register is zero, then the output on the corresponding PWM pin will be inactive for the entire PWM period. In addition, the output on the PWM pin will be active for the entire PWM period if the value in the Duty Cycle register is greater than the value held in the PTPER register.

15.4 Center-Aligned PWM

Center-aligned PWM signals are produced by the module when the PWM time base is configured in a Continuous Up/Down Count mode, as shown in Figure 15-3.

The PWM compare output is driven to the active state when the value of the Duty Cycle register matches the value of PTMR and the PWM time base is counting downwards (PTDIR = 1). The PWM compare output is driven to the inactive state when the PWM time base is counting upwards (PTDIR = 0) and the value in the PTMR register matches the duty cycle value.

If the value in a particular Duty Cycle register is zero, then the output on the corresponding PWM pin will be inactive for the entire PWM period. In addition, the output on the PWM pin will be active for the entire PWM period if the value in the Duty Cycle register is equal to the value held in the PTPER register.

FIGURE 15-3: CENTER-ALIGNED PWM

15.5 PWM Duty Cycle Comparison Units

There are three 16-bit Special Function Registers (PDC1, PDC2 and PDC3) used to specify duty cycle values for the PWM module.

The value in each Duty Cycle register determines the amount of time that the PWM output is in the active state. The Duty Cycle registers are 16 bits wide. The LSb of a Duty Cycle register determines whether the PWM edge occurs in the beginning. Thus, the PWM resolution is effectively doubled.

15.5.1 DUTY CYCLE REGISTER BUFFERS

The three PWM Duty Cycle registers are doublebuffered to allow glitchless updates of the PWM outputs. For each duty cycle, there is a Duty Cycle register that is accessible by the user and a second Duty Cycle register that holds the actual compare value used in the present PWM period.

For edge-aligned PWM output, a new duty cycle value will be updated whenever a match with the PTPER register occurs and PTMR is reset. The contents of the duty cycle buffers are automatically loaded into the Duty Cycle registers when the PWM time base is disabled (PTEN = 0) and the UDIS bit is cleared in PWMCON2.

When the PWM time base is in the Continuous Up/ Down Count mode, new duty cycle values are updated when the value of the PTMR register is zero and the PWM time base begins to count upwards. The contents of the duty cycle buffers are automatically loaded into the Duty Cycle registers when the PWM time base is disabled (PTEN = 0).

18.2 Enabling and Setting Up UART

18.2.1 ENABLING THE UART

The UART module is enabled by setting the UARTEN bit in the UxMODE register (where x = 1 or 2). Once enabled, the UxTX and UxRX pins are configured as an output and an input respectively, overriding the TRIS and LATCH register bit settings for the corresponding I/O port pins. The UxTX pin is at logic '1' when no transmission is taking place.

18.2.2 DISABLING THE UART

The UART module is disabled by clearing the UARTEN bit in the UxMODE register. This is the default state after any Reset. If the UART is disabled, all I/O pins operate as port pins under the control of the LATCH and TRIS bits of the corresponding port pins.

Disabling the UART module resets the buffers to empty states. Any data characters in the buffers are lost and the baud rate counter is reset.

All error and status flags associated with the UART module are reset when the module is disabled. The URXDA, OERR, FERR, PERR, UTXEN, UTXBRK and UTXBF bits are cleared, whereas RIDLE and TRMT are set. Other control bits, including ADDEN, URXISEL<1:0>, UTXISEL, as well as the UxMODE and UxBRG registers, are not affected.

Clearing the UARTEN bit while the UART is active will abort all pending transmissions and receptions and reset the module as defined above. Re-enabling the UART will restart the UART in the same configuration.

18.2.3 ALTERNATE I/O

The alternate I/O function is enabled by setting the ALTIO bit (U1MODE<10>). If ALTIO = 1, the UxATX and UxARX pins (alternate transmit and alternate receive pins, respectively) are used by the UART module instead of the UxTX and UxRX pins. If ALTIO = 0, the UxTX and UxRX pins are used by the UART module.

18.2.4 SETTING UP DATA, PARITY AND STOP BIT SELECTIONS

Control bits, PDSEL<1:0> in the UxMODE register, are used to select the data length and parity used in the transmission. The data length may either be 8 bits with even, odd or no parity, or 9 bits with no parity.

The STSEL bit determines whether one or two Stop bits will be used during data transmission.

The default (power-on) setting of the UART is 8 bits, no parity, 1 Stop bit (typically represented as 8, N, 1).

18.3 Transmitting Data

18.3.1 TRANSMITTING IN 8-BIT DATA MODE

The following steps must be performed in order to transmit 8-bit data:

- 1. Set up the UART:
 - First, the data length, parity and number of Stop bits must be selected. Then, the transmit and receive interrupt enable and priority bits are set up in the UxMODE and UxSTA registers. Also, the appropriate baud rate value must be written to the UxBRG register.
- Enable the UART by setting the UARTEN bit (UxMODE<15>).
- 3. Set the UTXEN bit (UxSTA<10>), thereby enabling a transmission.
- 4. Write the byte to be transmitted to the lower byte of UxTXREG. The value will be transferred to the Transmit Shift register (UxTSR) immediately and the serial bit stream will start shifting out during the next rising edge of the baud clock. Alternatively, the data byte may be written while UTXEN = 0, following which, the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 5. A transmit interrupt will be generated depending on the value of the interrupt control bit, UTXISEL (UxSTA<15>).

18.3.2 TRANSMITTING IN 9-BIT DATA MODE

The sequence of steps involved in the transmission of 9-bit data is similar to 8-bit transmission, except that a 16-bit data word (of which the upper 7 bits are always clear) must be written to the UxTXREG register.

18.3.3 TRANSMIT BUFFER (UXTXB)

The transmit buffer is 9 bits wide and 4 characters deep. Including the Transmit Shift register (UxTSR), the user effectively has a 5-deep FIFO (First In First Out) buffer. The UTXBF Status bit (UxSTA<9>) indicates whether the transmit buffer is full.

If a user attempts to write to a full buffer, the new data will not be accepted into the FIFO, and no data shift will occur within the buffer. This enables recovery from a buffer overrun condition.

The FIFO is reset during any device Reset, but is not affected when the device enters or wakes up from a power-saving mode.

TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of words	# of cycle s	Status Flags Affected
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f -1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f - 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C, OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C, OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C, OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C, OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C, OV
31	DO	DO	#lit14,Expr	Do Code to PC+Expr, lit14 + 1 Times	2	2	None
		DO	Wn,Expr	Do Code to PC+Expr, (Wn) + 1 Times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side		1	С
37	FF1R	FF1R Ws, Wnd Find First One from Right (LSb) S		Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to Address	2	2	None
		GOTO	Wn	Go to Indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd, AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB

NOTES:

DC CHA	RACTERI	STICS	Standa (unless Operation	rd Operat otherwis ng tempe	t ing Co se state rature	nditions: 2.5V to 5.5V ed) -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended			
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
Operatir	ng Voltage	(2)							
DC10	Vdd	Supply Voltage	2.5	—	5.5	V	Industrial temperature		
DC11	Vdd	Supply Voltage	3.0	_	5.5	V	Extended temperature		
DC12	Vdr	RAM Data Retention Voltage ⁽³⁾	1.75	_	—	V			
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	—	—	Vss	V			
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	_	V/ms	0-5V in 0.1 sec 0-3V in 60 ms		

TABLE 23-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized but not tested in manufacturing.

3: This is the limit to which VDD can be lowered without losing RAM data.

DC CHA	RACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	ol Characteristic Min Typ ⁽¹⁾ Max Units					Conditions		
	VIL	Input Low Voltage ⁽²⁾							
DI10		I/O Pins: with Schmitt Trigger Buffer	Vss	_	0.2 Vdd	V			
DI15		MCLR	Vss	—	0.2 Vdd	V			
DI16		OSC1 (in XT, HS and LP modes)	Vss	—	0.2 Vdd	V			
DI17		OSC1 (in RC mode) ⁽³⁾	Vss	—	0.3 Vdd	V			
DI18		SDA, SCL	Vss	—	0.3 Vdd	V	SMbus disabled		
DI19		SDA, SCL	Vss	—	0.8	V	SMbus enabled		
	Viн	Input High Voltage ⁽²⁾							
DI20		I/O Pins: with Schmitt Trigger Buffer	0 8 Voo	_	Voo	V			
DI25			0.0 VDD	_	VDD	v			
DI26		OSC1 (in XT HS and LP modes)		_	VDD	v			
DI27		OSC1 (in RC mode) ⁽³⁾	0.9 VDD	_	VDD	V			
DI28		SDA, SCL	0.7 Vdd	_	Vdd	V	SMbus disabled		
DI29		SDA, SCL	2.1	_	Vdd	V	SMbus enabled		
	ICNPU	CNxx Pull-up Current ⁽²⁾							
DI30			50	250	400	μA	VDD = 5V, VPIN = VSS		
	lı∟	Input Leakage Current ^(2,4,5)							
DI50		I/O Ports	—	0.01	±1	μΑ	$VSS \le VPIN \le VDD,$ Pin at high-impedance		
DI51		Analog Input Pins	_	0.50	_	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at high-impedance} \end{split}$		
DI55		MCLR	—	0.05	±5	μΑ	$Vss \leq V \text{PIN} \leq V \text{DD}$		
DI56		OSC1	—	0.05	±5	μΑ	VSS \leq VPIN \leq VDD, XT, HS and LP Oscillator mode		

TABLE 23-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized but not tested in manufacturing.

3: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the dsPIC30F device be driven with an external clock while in RC mode.

4: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

5: Negative current is defined as current sourced by the pin.

AC CHA	ARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
OS10	Fosc	External CLKI Frequency ⁽²⁾ (External clocks allowed only in EC mode)	DC 4 4 4	 	40 10 10 7.5	MHz MHz MHz MHz	EC EC with 4x PLL EC with 8x PLL EC with 16x PLL			
		Oscillator Frequency ⁽²⁾	DC 0.4 4 4 4 4 10 31 —	 7.37 512	4 4 10 10 7.5 25 33 —	MHz MHz MHz MHz MHz MHz KHz MHz KHz	RC XTL XT XT with 4x PLL XT with 8x PLL XT with 16x PLL HS LP FRC internal LPRC internal			
OS20	Tosc	Tosc = 1/Fosc	—	—			See parameter OS10 for Fosc value			
OS25	TCY	Instruction Cycle Time ^(2,3)	33	_	DC	ns	See Table 23-16			
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time ⁽²⁾	.45 x Tosc	_	_	ns	EC			
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time ⁽²⁾	—	—	20	ns	EC			
OS40	TckR	CLKO Rise Time ^(2,4)		_	—	ns	See parameter DO31			
OS41	TckF	CLKO Fall Time ^(2,4)	_		_	ns	See parameter DO32			

TABLE 23-13: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized but not tested in manufacturing.

- 3: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- 4: Measurements are taken in EC or ERC modes. The CLKO signal is measured on the OSC2 pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

TABLE 23-20: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SY35	TFSCM	Fail-Safe Clock Monitor Delay		500	900	μS	-40°C to +85°C

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated.

3: Refer to Figure 23-1 and Table 23-10 for BOR.

FIGURE 23-6: BAND GAP START-UP TIME CHARACTERISTICS

TABLE 23-21: BAND GAP START-UP TIME REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SY40	TBGAP	Band Gap Start-up Time		40	65	μs	Defined as the time between the instant that the band gap is enabled and the moment that the band gap reference voltage is stable. RCON<13> status bit	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

Lead Width

Mold Draft Angle Top

Mold Draft Angle Bottom

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

b

α

β

0.30

11°

11°

0.37

12°

12°

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

0.45 13°

13°