

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	20
Program Memory Size	24KB (8K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f3010-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

NOTES:

FIGURE 3-6: dsPIC30F3010/3011 DATA SPACE MEMORY MAP

TABLE 3-3: CORE REGISTER MAP⁽¹⁾

SFR Name	Address (Home)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State	
W0	0000								W0/WR	EG								0000 0000 0000 0000	
W1	0002								W1									0000 0000 0000 0000	
W2	0004								W2									0000 0000 0000 0000	
W3	0006								W3									0000 0000 0000 0000	
W4	0008		W4													0000 0000 0000 0000			
W5	000A		W5 C													0000 0000 0000 0000			
W6	000C		W6 C												0000 0000 0000 0000				
W7	000E								W7									0000 0000 0000 0000	
W8	0010								W8									0000 0000 0000 0000	
W9	0012								W9									0000 0000 0000 0000	
W10	0014								W10									0000 0000 0000 0000	
W11	0016								W11									0000 0000 0000 0000	
W12	0018								W12									0000 0000 0000 0000	
W13	001A								W13									0000 0000 0000 0000	
W14	001C								W14									0000 0000 0000 0000	
W15	001E								W15									0000 1000 0000 0000	
SPLIM	0020								SPLI	N								0000 0000 0000 0000	
ACCAL	0022								ACCA	L								0000 0000 0000 0000	
ACCAH	0024								ACCA	Н								0000 0000 0000 0000	
ACCAU	0026			Sign-E	xtension (ACCA<39	9>)						ACC	AU				0000 0000 0000 0000	
ACCBL	0028								ACCE	ŝĽ								0000 0000 0000 0000	
ACCBH	002A								ACCB	Н								0000 0000 0000 0000	
ACCBU	002C			Sign-E	xtension (ACCB<39	9>)						ACC	BU				0000 0000 0000 0000	
PCL	002E		_	_	_	_	_	_	PCL		_							0000 0000 0000 0000	
PCH	0030	_	_	—	—	—	—	_	—	—				PCH				0000 0000 0000 0000	
TBLPAG	0032	_	—	-	—	—	-	-	—				TBLF	PAG				0000 0000 0000 0000	
PSVPAG	0034	—	—	—	—	—	—	—	—				PSVI	PAG				0000 0000 0000 0000	
RCOUNT	0036								RCOU	NT								uuuu uuuu uuuu uuuu	
DCOUNT	0038	DCOUNT											uuuu uuuu uuuu uuuu						
DOSTARTL	003A		-	_	_		_	DC	OSTARTL								0	uuuu uuuu uuuu uuu0	
DOSTARTH	003C	_	_	—	—	—	—	—	_	—			D	OSTARTH				0000 0000 0uuu uuuu	
DOENDL	003E							C	OENDL								0	uuuu uuuu uuuu uuu0	
DOENDH	0040	_	_	—	—	—	—	—	—	—			[DOENDH				0000 0000 0uuu uuuu	
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	P. IPL1 IPL0 RA N OV Z C						

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 3-3: CORE REGISTER MAP⁽¹⁾ (CONTINUED)

r		ii			•		,											i
SFR Name	Address (Home)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
CORCON	0044	—	_	—	US	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0000 0000 0010 0000
MODCON	0046	XMODEN	YMODEN		_		BWN	1<3:0>			YWI	M<3:0>			XWM<	<3:0>		0000 0000 0000 0000
XMODSRT	0048		XS<15:1> 0 u											uuuu uuuu uuuu uuu0				
XMODEND	004A							X	E<15:1>								1	uuuu uuuu uuul
YMODSRT	004C							Y	S<15:1>								0	uuuu uuuu uuuu uuu0
YMODEND	004E		_	YE<15:1> 1 u									uuuu uuuu uuul					
XBREV	0050	BREN	REN XB<14:0>											uuuu uuuu uuuu uuuu				
DISICNT	0052	—	DISICNT<13:0>											0000 0000 0000 0000				

Legend: u = uninitialized bit; - = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

Address Error Trap:

This trap is initiated when any of the following circumstances occurs:

- 1. A misaligned data word access is attempted.
- 2. A data fetch from our unimplemented data memory location is attempted.
- 3. A data access of an unimplemented program memory location is attempted.
- 4. An instruction fetch from vector space is attempted.
 - Note: In the MAC class of instructions, wherein the data space is split into X and Y data space, unimplemented X space includes all of Y space, and unimplemented Y space includes all of X space.
- 5. Execution of a "BRA #literal" instruction or a "GOTO #literal" instruction, where literal is an unimplemented program memory address.
- 6. Executing instructions after modifying the PC to point to unimplemented program memory addresses. The PC may be modified by loading a value into the stack and executing a RETURN instruction.

Stack Error Trap:

This trap is initiated under the following conditions:

- 1. The Stack Pointer is loaded with a value which is greater than the (user-programmable) limit value written into the SPLIM register (stack overflow).
- 2. The Stack Pointer is loaded with a value which is less than 0x0800 (simple stack underflow).

Oscillator Fail Trap:

This trap is initiated if the external oscillator fails and operation becomes reliant on an internal RC backup.

5.3.2 HARD AND SOFT TRAPS

It is possible that multiple traps can become active within the same cycle (e.g., a misaligned word stack write to an overflowed address). In such a case, the fixed priority shown in Figure 5-2 is implemented, which may require the user to check if other traps are pending, in order to completely correct the Fault.

'Soft' traps include exceptions of priority Level 8 through Level 11, inclusive. The arithmetic error trap (Level 11) falls into this category of traps.

'Hard' traps include exceptions of priority Level 12 through Level 15, inclusive. The address error (Level 12), stack error (Level 13) and oscillator error (Level 14) traps fall into this category.

Each hard trap that occurs must be Acknowledged before code execution of any type may continue. If a lower priority hard trap occurs while a higher priority trap is pending, Acknowledged, or is being processed, a hard trap conflict will occur.

The device is automatically reset in a hard trap conflict condition. The TRAPR status bit (RCON<15>) is set when the Reset occurs, so that the condition may be detected in software.

FIGURE 5-1: TRAP VECTORS

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

The dsPIC30F family of devices contains internal program Flash memory for executing user code. There are two methods by which the user can program this memory:

- 1. In-Circuit Serial Programming[™] (ICSP[™]) capabilities
- 2. Run-Time Self-Programming (RTSP)

6.1 In-Circuit Serial Programming (ICSP)

dsPIC30F devices can be serially programmed while in the end application circuit. This is simply done with two lines for Programming Clock and Programming Data (which are named PGC and PGD, respectively), and three other lines for Power (VDD), Ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

6.2 Run-Time Self-Programming (RTSP)

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions.

With RTSP, the user may erase program memory, 32 instructions (96 bytes) at a time and can write program memory data, 32 instructions (96 bytes) at a time.

6.3 Table Instruction Operation Summary

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in Word or Byte mode.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can access program memory in Word or Byte mode.

A 24-bit program memory address is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 6-1.

FIGURE 6-1: ADDRESSING FOR TABLE AND NVM REGISTERS

7.0 DATA EEPROM MEMORY

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

The data EEPROM memory is readable and writable during normal operation over the entire VDD range. The data EEPROM memory is directly mapped in the program memory address space.

The four SFRs used to read and write the program Flash memory are used to access data EEPROM memory as well. As described in **Section 4.0 "Address Generator Units"**, these registers are:

- NVMCON
- NVMADR
- NVMADRU
- NVMKEY

The EEPROM data memory allows read and write of single words and 16-word blocks. When interfacing to data memory, NVMADR, in conjunction with the NVMADRU register, is used to address the EEPROM location being accessed. TBLRDL and TBLWTL instructions are used to read and write data EEPROM. The dsPIC30F3010/3011 devices have 1 Kbyte (512 words) of data EEPROM, with an address range from 0x7FFC00 to 0x7FFFE.

A word write operation should be preceded by an erase of the corresponding memory location(s). The write typically requires 2 ms to complete, but the write time will vary with voltage and temperature. A program or erase operation on the data EEPROM does not stop the instruction flow. The user is responsible for waiting for the appropriate duration of time before initiating another data EEPROM write/erase operation. Attempting to read the data EEPROM while a programming or erase operation is in progress results in unspecified data.

Control bit, WR, initiates write operations, similar to program Flash writes. This bit cannot be cleared, only set, in software. This bit is cleared in hardware at the completion of the write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a $\overline{\text{MCLR}}$ Reset, or a WDT Time-out Reset, during normal operation. In these situations, following Reset, the user can check the WRERR bit and rewrite the location. The address register, NVMADR, remains unchanged.

Note: Interrupt flag bit, NVMIF in the IFS0 register, is set when the write is complete. It must be cleared in software.

7.1 Reading the Data EEPROM

A TBLRD instruction reads a word at the current program word address. This example uses W0 as a pointer to data EEPROM. The result is placed in register W4, as shown in Example 7-1.

EXAMPLE 7-1: DATA EEPROM READ

MOV	#LOW_ADDR_WORD,W0 ; Init Po:	inter
MOV	#HIGH_ADDR_WORD,W1	
MOV	W1_TBLPAG	
TBLRDL	[W0], W4 ; read dat	a EEPROM

12.2.2 INPUT CAPTURE IN CPU IDLE MODE

CPU Idle mode allows input capture module operation with full functionality. In the CPU Idle mode, the Interrupt mode selected by the ICI<1:0> bits is applicable, as well as the 4:1 and 16:1 capture prescale settings, which are defined by control bits, ICM<2:0>. This mode requires the selected timer to be enabled. Moreover, the ICSIDL bit must be asserted to a logic '0'.

If the input capture module is defined as ICM<2:0> = 111in CPU Idle mode, the input capture pin will serve only as an external interrupt pin.

12.3 Input Capture Interrupts

The input capture channels have the ability to generate an interrupt based upon the selected number of capture events. The selection number is set by control bits, ICI<1:0> (ICxCON<6:5>).

Each channel provides an interrupt flag (ICxIF) bit. The respective capture channel interrupt flag is located in the corresponding IFSx register.

Enabling an interrupt is accomplished via the respective Input Capture Channel Interrupt Enable (ICxIE) bit. The capture interrupt enable bit is located in the corresponding IEC Control register.

14.3 Position Measurement Mode

There are two measurement modes which are supported and are termed x2 and x4. These modes are selected by the QEIM<2:0> mode select bits located in SFR, QEICON<10:8>.

When control bits, QEIM<2:0> = 100 or 101, the x2 Measurement mode is selected and the QEI logic only looks at the Phase A input for the position counter increment rate. Every rising and falling edge of the Phase A signal causes the position counter to be incremented or decremented. The Phase B signal is still utilized for the determination of the counter direction, just as in the x4 Measurement mode.

Within the x2 Measurement mode, there are two variations of how the position counter is reset:

- 1. Position counter reset by detection of index pulse, QEIM<2:0> = 100.
- Position counter reset by match with MAXCNT, QEIM<2:0> = 101.

When control bits, QEIM<2:0> = 110 or 111, the x4 Measurement mode is selected and the QEI logic looks at both edges of the Phase A and Phase B input signals. Every edge of both signals causes the position counter to increment or decrement.

Within the x4 Measurement mode, there are two variations of how the position counter is reset:

- 1. Position counter reset by detection of index pulse, QEIM<2:0> = 110.
- Position counter reset by match with MAXCNT, QEIM<2:0> = 111.

The x4 Measurement mode provides for finer resolution data (more position counts) for determining motor position.

14.4 Programmable Digital Noise Filters

The digital noise filter section is responsible for rejecting noise on the incoming quadrature signals. Schmitt Trigger inputs and a three-clock cycle delay filter combine to reject low level noise and large, short duration noise spikes that typically occur in noise prone applications, such as a motor system.

The filter ensures that the filtered output signal is not permitted to change until a stable value has been registered for three consecutive clock cycles.

For the QEA, QEB and INDX pins, the clock divide frequency for the digital filter is programmed by bits, QECK<2:0> (DFLTCON<6:4>), and are derived from the base instruction cycle, TcY.

To enable the filter output for channels, QEA, QEB and INDX, the QEOUT bit must be '1'. The filter network for all channels is disabled on POR and BOR.

14.5 Alternate 16-Bit Timer/Counter

When the QEI module is not configured for the QEI mode, QEIM<2:0> = 001, the module can be configured as a simple 16-bit timer/counter. The setup and control of the auxiliary timer is accomplished through the QEICON SFR register. This timer functions identically to Timer1. The QEA pin is used as the timer clock input.

When configured as a timer, the POSCNT register serves as the Timer Count register and the MAXCNT register serves as the Period register. When a Timer/ Period register match occurs, the QEI interrupt flag will be asserted.

The only exception between the general purpose timers and this timer is the added feature of external up/down input select. When the UPDN pin is asserted high, the timer will increment up. When the UPDN pin is asserted low, the timer will be decremented.

Note:	Changing the operational mode (i.e., from
	QEI to timer or vice versa), will not affect
	the Timer/Position Count register contents.

The UPDN control/status bit (QEICON<11>) can be used to select the count direction state of the Timer register. When UPDN = 1, the timer will count up. When UPDN = 0, the timer will count down.

In addition, control bit, UPDN_SRC (QEICON<0>), determines whether the timer count direction state is based on the logic state written into the UPDN control/ status bit (QEICON<11>), or the QEB pin state. When UPDN_SRC = 1, the timer count direction is controlled from the QEB pin. Likewise, when UPDN_SRC = 0, the timer count direction is controlled by the UPDN bit.

Note: This timer does not support the External Asynchronous Counter mode of operation. If using an external clock source, the clock will automatically be synchronized to the internal instruction cycle.

14.6 QEI Module Operation During CPU Sleep Mode

14.6.1 QEI OPERATION DURING CPU SLEEP MODE

The QEI module will be halted during the CPU Sleep mode.

14.6.2 TIMER OPERATION DURING CPU SLEEP MODE

During CPU Sleep mode, the timer will not operate, because the internal clocks are disabled.

TABLE 15-1: PWM REGISTER MAP⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	R	leset \$	State	
PTCON	01C0	PTEN	—	PTSIDL	—	—	—	—	—		PTO	PS<3:0>		PTCKP	S<1:0>	PTMO	D<1:0>	0000 0	000	0000	0000
PTMR	01C2	PTDIR							PWM Ti	mer Cour	nt Value							0000 0	000	0000	0000
PTPER	01C4	—						P'	WM Time E	Base Peri	iod Regis	ster						0000 0	000 0	0000	0000
SEVTCMP	01C6	SEVTDIR			_			PWN	/ Special E	vent Cor	npare Re	gister		_		-	_	0111 1	111 1	1111	1111
PWMCON1	01C8	—	_	-	-	_	PTMOD3	PTMOD2	PTMOD1	_	PEN3H	PEN2H	PEN1H	—	PEN3L	PEN2L	PEN1L	0000 0	000	1111	1111
PWMCON2	01CA	—		_	_		SEVOF	PS<3:0>				—	_	—	IUE	OSYNC	UDIS	0000 0	000 0	0000	0000
DTCON1	01CC	_	_	_	-	_	-	—	-	DTAP	S<1:0>			Dead-Tim	e A Value			0000 0	000 0	0000	0000
FLTACON	01D0	—	_	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L	FLTAM	_	_	—	—	FAEN3	FAEN2	FAEN1	0000 0	000	0000	0000
OVDCON	01D4	—		POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L			POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L	1111 1	111 (0000	0000
PDC1	01D6							PWM	I Duty Cyc	e 1 Regi	Register							0000 0	000 0	0000	0000
PDC2	01D8							PWN	I Duty Cyc	le 2 Register 01								0000 0	000 0	0000	0000
PDC3	01DA							PWM	1 Duty Cyc	le 3 Register 0000 0000 0000								0000	0000		

Legend: — = unimplemented bit, read as '0'

Note 1: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

16.3 Slave Select Synchronization

The SS1 pin allows a Synchronous Slave mode. The SPI must be configured in SPI Slave mode with SS1 pin control enabled (SSEN = 1). When the SS1 pin is low, transmission and reception are enabled and the SD01 pin is driven. When the SS1 pin goes high, the SD01 pin is no longer driven. Also, the SPI module is resynchronized and all counters/control circuitry are reset. Therefore, when the SS1 pin is asserted low again, transmission/reception will begin at the MSb, even if SS1 has been deasserted in the middle of a transmit/receive.

16.4 SPI Operation During CPU Sleep Mode

During Sleep mode, the SPI module is shut down. If the CPU enters Sleep mode while an SPI transaction is in progress, then the transmission and reception is aborted.

The transmitter and receiver will stop in Sleep mode. However, register contents are not affected by entering or exiting Sleep mode.

16.5 SPI Operation During CPU Idle Mode

When the device enters Idle mode, all clock sources remain functional. The SPISIDL bit (SPI1STAT<13>) selects if the SPI module will stop or continue on Idle. If SPISIDL = 0, the module will continue to operate when the CPU enters Idle mode. If SPISIDL = 1, the module will stop when the CPU enters Idle mode.

19.1 ADC Result Buffer

The module contains a 16-word, dual port, read-only buffer, called ADCBUF0...ADCBUFF, to buffer the ADC results. The RAM is 10 bits wide, but is read into different format 16-bit words. The contents of the sixteen ADC Conversion Result Buffer registers, ADCBUF0 through ADCBUFF, cannot be written by user software.

19.2 Conversion Operation

After the ADC module has been configured, the sample acquisition is started by setting the SAMP bit. Various sources, such as a programmable bit, timer time-outs and external events, will terminate acquisition and start a conversion. When the A/D conversion is complete, the result is loaded into ADCBUF0...ADCBUFF, and the A/D Interrupt Flag, ADIF, and the DONE bit are set after the number of samples specified by the SMPI bit.

The following steps should be followed for doing an A/D conversion:

- Configure the ADC module:
 - Configure analog pins, voltage reference and digital I/O
 - Select A/D input channels
 - Select A/D conversion clock
 - Select A/D conversion trigger
 - Turn on A/D module
- Configure A/D interrupt (if required):
 - Clear ADIF bit
- Select A/D interrupt priority
- Start sampling
- Wait the required acquisition time
- Trigger acquisition end; start conversion
- Wait for A/D conversion to complete, by either:
 - Waiting for the A/D interrupt
 - Waiting for the DONE bit to be set
- Read A/D result buffer; clear ADIF if required

19.3 Selecting the Conversion Sequence

Several groups of control bits select the sequence in which the A/D connects inputs to the sample/hold channels, converts channels, writes the buffer memory and generates interrupts. The sequence is controlled by the sampling clocks.

The SIMSAM bit controls the acquire/convert sequence for multiple channels. If the SIMSAM bit is '0', the two or four selected channels are acquired and converted sequentially, with two or four sample clocks. If the SIMSAM bit is '1', two or four selected channels are acquired simultaneously, with one sample clock. The channels are then converted sequentially. Obviously, if there is only 1 channel selected, the SIMSAM bit is not applicable.

The CHPS bits select how many channels are sampled. This can vary from 1, 2 or 4 channels. If the CHPS bits select 1 channel, the CH0 channel will be sampled at the sample clock and converted. The result is stored in the buffer. If the CHPS bits select 2 channels, the CH0 and CH1 channels will be sampled and converted. If the CHPS bits select 4 channels, the CH0, CH1, CH2 and CH3 channels will be sampled and converted.

The SMPI bits select the number of acquisition/ conversion sequences that would be performed before an interrupt occurs. This can vary from 1 sample per interrupt to 16 samples per interrupt.

The user cannot program a combination of CHPS and SMPI bits that specifies more than 16 conversions per interrupt, or 8 conversions per interrupt, depending on the BUFM bit. The BUFM bit, when set, will split the 16-word results buffer (ADCBUF0...ADCBUFF) into two 8-word groups. Writing to the 8-word buffers will be alternated on each interrupt event. Use of the BUFM bit will depend on how much time is available for moving data out of the buffers after the interrupt, as determined by the application.

If the processor can quickly unload a full buffer within the time it takes to acquire and convert one channel, the BUFM bit can be '0' and up to 16 conversions may be done per interrupt. The processor will have one sample and conversion time to move the sixteen conversions.

If the processor cannot unload the buffer within the acquisition and conversion time, the BUFM bit should be '1'. For example, if SMPI<3:0> (ADCON2<5:2>) = 0111, then eight conversions will be loaded into 1/2 of the buffer, following which an interrupt occurs. The next eight conversions will be loaded into the other 1/2 of the buffer. The processor will have the entire time between interrupts to move the eight conversions.

The ALTS bit can be used to alternate the inputs selected during the sampling sequence. The input multiplexer has two sets of sample inputs: MUX A and MUX B. If the ALTS bit is '0', only the MUX A inputs are selected for sampling. If the ALTS bit is '1' and SMPI<3:0> = 0000, on the first sample/convert sequence, the MUX A inputs are selected, and on the next acquire/convert sequence, the MUX B inputs are selected.

The CSCNA bit (ADCON2<10>) will allow the CH0 channel inputs to be alternately scanned across a selected number of analog inputs for the MUX A group. The inputs are selected by the ADCSSL register. If a particular bit in the ADCSSL register is '1', the corresponding input is selected. The inputs are always scanned from lower to higher numbered inputs, starting after each interrupt. If the number of inputs selected is greater than the number of samples taken per interrupt, the higher numbered inputs are unused.

20.2.3 LP OSCILLATOR CONTROL

Enabling the LP oscillator is controlled with two elements:

- The current oscillator group bits, COSC<2:0>
- The LPOSCEN bit (OSCON register)

The LP oscillator is on (even during Sleep mode) if LPOSCEN = 1. The LP oscillator is the device clock if:

- COSC<1:0> = 00 (LP selected as main osc.) and
- LPOSCEN = 1

Keeping the LP oscillator on at all times allows for a fast switch to the 32 kHz system clock for lower power operation. Returning to the faster main oscillator will still require a start-up time.

20.2.4 PHASE LOCKED LOOP (PLL)

The PLL multiplies the clock which is generated by the primary oscillator. The PLL is selectable to have either gains of x4, x8 and x16. Input and output frequency ranges are summarized in Table 20-3.

TABLE 20-3: PLL FREQUENCY RANGE

Fin	PLL Multiplier	Fout
4 MHz-10 MHz	x4	16 MHz-40 MHz
4 MHz-10 MHz	x8	32 MHz-80 MHz
4 MHz-7.5 MHz	x16	64 MHz-120 MHz

The PLL features a lock output, which is asserted when the PLL enters a phase locked state. Should the loop fall out of lock (e.g., due to noise), the lock signal will be rescinded. The state of this signal is reflected in the read-only LOCK bit in the OSCCON register.

20.2.5 FAST RC OSCILLATOR (FRC)

The FRC oscillator is a fast (7.37 MHz +/- 2% nominal) internal RC oscillator. This oscillator is intended to provide reasonable device operating speeds without the use of an external crystal, ceramic resonator or RC network. The FRC oscillator can be used with the PLL to obtain higher clock frequencies.

The dsPIC30F operates from the FRC oscillator whenever the current oscillator selection control bits in the OSCCON register (OSCCON<13:12>) are set to '01'.

The four-bit field specified by TUN<3:0> (OSCTUN<3:0>) allows the user to tune the internal fast RC oscillator (nominal 7.37 MHz). The user can tune the FRC oscillator within a range of +10.5%

(840 kHz) and -12% (960 kHz) in steps of 1.50% around the factory calibrated setting, as shown in Table 20-4.

Note: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.

If OSCCON<14:12> are set to '111' and FPR<4:0> are set to '00101', '00110' or '00111', then a PLL multiplier of 4, 8 or 16 (respectively) is applied

Note: When a 16x PLL is used, the FRC frequency must not be tuned to a frequency greater than 7.5 MHz.

TABLE 20-4: FRC TUNING

TUN<3:0> Bits	FRC Frequency
0111	+10.5%
0110	+9.0%
0101	+7.5%
0100	+6.0%
0011	+4.5%
0010	+3.0%
0001	+1.5%
0000	Center Frequency (oscillator is running at calibrated frequency)
1111	-1.5%
1110	-3.0%
1101	-4.5%
1100	-6.0%
1011	-7.5%
1010	-9.0%
1001	-10.5%
1000	-12.0%

20.2.6 LOW-POWER RC OSCILLATOR (LPRC)

The LPRC oscillator is a component of the Watchdog Timer (WDT) and oscillates at a nominal frequency of 512 kHz. The LPRC oscillator is the clock source for the Power-up Timer (PWRT) circuit, WDT and clock monitor circuits. It may also be used to provide a lowfrequency clock source option for applications where power consumption is critical and timing accuracy is not required.

The LPRC oscillator is always enabled at a Power-on Reset, because it is the clock source for the PWRT. After the PWRT expires, the LPRC oscillator will remain ON if one of the following is true:

- The Fail-Safe Clock Monitor is enabled
- The WDT is enabled
- The LPRC oscillator is selected as the system clock via the COSC<1:0> control bits in the OSCCON register

23.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC30F electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

For detailed information about the dsPIC30F architecture and core, refer to the "dsPIC30F Family Reference Manual" (DS70046).

Absolute maximum ratings for the dsPIC30F family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	-65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR) (Note 1)	-0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +5.5V
Voltage on MCLR with respect to Vss	0V to +13.25V
Maximum current out of Vss pin	
Maximum current into VDD pin (Note 2)	
Input clamp current, IIK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by all ports	
Maximum current sourced by all ports (Note 2)	
Note 1. Voltage epikes below Ves at the \overline{MOLP} (VPD pin, inducing surrants greater t	han 90 mA may say sa latah ya

Note 1: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.

2: Maximum allowable current is a function of device maximum power dissipation. See Table 23-2.

[†]NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 23-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHAR	ACTERIST	ICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$								
Param No.	Symbol	Character	istic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
BO10	VBOR	BOR Voltage on VDD Transition	BORV = 11 ⁽³⁾		—		V	Not in operating range			
		High-to-Low ⁽²⁾	BORV = 10	2.6	—	2.71	V				
			BORV = 01	4.1	—	4.4	V				
			BORV = 00	4.58	—	4.73	V				
BO15	VBHYS			_	5	_	mV				

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized but not tested in manufacturing.

3: '11' values not in usable operating range.

TABLE 23-11: DC CHARACTERISTICS: PROGRAM AND EEPROM

DC CHA	RACTERIS	STICS	Standa (unless Operati	rd Oper s otherw ing temp	ating Co vise state perature	anditions: 2.5V to 5.5V ad) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Тур ⁽¹⁾	Max	Units	Conditions				
		Data EEPROM Memory ⁽²⁾								
D120	ED	Byte Endurance	100K	1M	—	E/W	$-40^{\circ}C \leq TA \leq +85^{\circ}C$			
D121	Vdrw	VDD for Read/Write	Vmin	_	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage			
D122	TDEW	Erase/Write Cycle Time	0.8	2	2.6	ms	RTSP			
D123	TRETD	Characteristic Retention	40	100	—	Year	Provided no other specifications are violated			
D124	IDEW	IDD During Programming		10	30	mA	Row Erase			
		Program Flash Memory ⁽²⁾								
D130	Eр	Cell Endurance	10K	100K	_	E/W	$-40^{\circ}C \leq TA \leq +85^{\circ}C$			
D131	Vpr	VDD for Read	VMIN	—	5.5	V	VMIN = Minimum operating voltage			
D132	Veb	VDD for Bulk Erase	4.5	—	5.5	V				
D133	VPEW	VDD for Erase/Write	3.0	—	5.5	V				
D134	TPEW	Erase/Write Cycle Time	0.8	2	2.6	ms	RTSP			
D135	TRETD	Characteristic Retention	40	100	—	Year	Provided no other specifications are violated			
D137	IPEW	IDD During Programming	—	10	30	mA	Row Erase			
D138	IEB	IDD During Programming	—	10	30	mA	Bulk Erase			

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated.

2: These parameters are characterized but not tested in manufacturing.

FIGURE 23-17: SPI MODULE MASTER MODE (CKE =1) TIMING CHARACTERISTICS

TABLE 23-33: SPI MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHA	RACTERIST	ICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions				
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	—		ns					
SP11	TscH	SCKx Output High Time ⁽²⁾	TCY/2	_	_	ns					
SP20	TscF	SCKx Output Fall Time ⁽³⁾	—	—	_	ns	See parameter DO32				
SP21	TscR	SCKx Output Rise Time ⁽³⁾	_	—		ns	See parameter DO31				
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	—	_	ns	See parameter DO32				
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	—		ns	See parameter DO31				
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	—	30	ns					
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns					
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_		ns					
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20		_	ns					

Note 1: These parameters are characterized but not tested in manufacturing.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in master mode must not violate this specification.

3: Assumes 50 pF load on all SPI pins.

FIGURE 23-25: 10-BIT HIGH-SPEED ADC TIMING CHARACTERISTICS (CHPS = 01, SIMSAM = 0, ASAM = 1, SSRC = 111, SAMC = 00001)

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	40		
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.980	-	2.095
Tip to Seating Plane	L	.115	-	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	-	.070
Lower Lead Width	b	.014	-	.023
Overall Row Spacing §	eB	-	-	.700

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B