

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                         |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                          |
| Core Size                  | 16-Bit                                                                         |
| Speed                      | 30 MIPs                                                                        |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                              |
| Peripherals                | Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT                  |
| Number of I/O              | 20                                                                             |
| Program Memory Size        | 24KB (8K x 24)                                                                 |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | 1K x 8                                                                         |
| RAM Size                   | 1K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 5.5V                                                                    |
| Data Converters            | A/D 6x10b                                                                      |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 44-VQFN Exposed Pad                                                            |
| Supplier Device Package    | 44-QFN (8x8)                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic30f3010t-30i-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## High Performance, 16-Bit Digital Signal Controllers

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

## High-Performance Modified RISC CPU:

- Modified Harvard Architecture
- C Compiler Optimized Instruction Set Architecture with Flexible Addressing modes
- 83 Base Instructions
- 24-bit Wide Instructions, 16-bit Wide Data Path
- 24 Kbytes On-Chip Flash Program Space (8K instruction words)
- 1 Kbyte of On-Chip Data RAM
- 1 Kbyte of Nonvolatile Data EEPROM
- 16 x 16-bit Working Register Array
- Up to 30 MIPs Operation:
  - DC to 40 MHz external clock input
  - 4 MHz-10 MHz oscillator input with PLL active (4x, 8x, 16x)
- 29 Interrupt Sources
  - 3 external interrupt sources
  - 8 user-selectable priority levels for each interrupt source
  - 4 processor trap sources

## **DSP Engine Features:**

- Dual Data Fetch
- Accumulator Write Back for DSP Operations
- · Modulo and Bit-Reversed Addressing modes
- Two, 40-bit Wide Accumulators with Optional saturation Logic
- 17-bit x 17-bit Single-Cycle Hardware Fractional/ Integer Multiplier
- All DSP Instructions Single Cycle
- ±16-bit Single-Cycle Shift

## **Peripheral Features:**

- High-Current Sink/Source I/O Pins: 25 mA/25 mA
- Timer module with Programmable Prescaler:
  - Five 16-bit timers/counters; optionally pair 16-bit timers into 32-bit timer modules
- 16-bit Capture Input Functions
- 16-bit Compare/PWM Output Functions
- 3-Wire SPI modules (supports 4 Frame modes)
- I<sup>2</sup>C<sup>™</sup> module Supports Multi-Master/Slave mode and 7-bit/10-bit Addressing
- 2 UART modules with FIFO Buffers

## Motor Control PWM Module Features:

- 6 PWM Output Channels
  - Complementary or Independent Output modes
  - Edge and Center-Aligned modes
- 3 Duty Cycle Generators
- Dedicated Time Base
- Programmable Output Polarity
- Dead-Time Control for Complementary mode
- Manual Output Control
- Trigger for A/D Conversions

## Quadrature Encoder Interface Module Features:

- Phase A, Phase B and Index Pulse Input
- 16-bit Up/Down Position Counter
- Count Direction Status
- Position Measurement (x2 and x4) mode
- Programmable Digital Noise Filters on Inputs
- Alternate 16-bit Timer/Counter mode
- Interrupt on Position Counter Rollover/Underflow

## **Analog Features:**

- 10-bit Analog-to-Digital Converter (ADC) with 4 Sample and Hold (S&H) Inputs:
  - 1 Msps conversion rate
  - 9 input channels
  - Conversion available during Sleep and Idle
- Programmable Brown-out Reset

## 2.0 CPU ARCHITECTURE OVERVIEW

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

## 2.1 Core Overview

The core has a 24-bit instruction word. The Program Counter (PC) is 23 bits wide with the Least Significant bit (LSb) always clear (see **Section 3.1 "Program Address Space"**), and the Most Significant bit (MSb) is ignored during normal program execution, except for certain specialized instructions. Thus, the PC can address up to 4M instruction words of user program space. An instruction prefetch mechanism is used to help maintain throughput. Program loop constructs, free from loop count management overhead, are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The working register array consists of 16x16-bit registers, each of which can act as data, address or offset registers. One working register (W15) operates as a Software Stack Pointer (SP) for interrupts and calls.

The data space is 64 Kbytes (32K words) and is split into two blocks, referred to as X and Y data memory. Each block has its own independent Address Generation Unit (AGU). Most instructions operate solely through the X memory AGU, which provides the appearance of a single unified data space. The Multiply-Accumulate (MAC) class of dual source DSP instructions operate through both the X and Y AGUs, splitting the data address space into two parts (see **Section 3.2 "Data Address Space"**). The X and Y data space boundary is device specific and cannot be altered by the user. Each data word consists of 2 bytes, and most instructions can address data either as words or bytes.

There are two methods of accessing data stored in program memory:

• The upper 32 Kbytes of data space memory can be mapped into the lower half (user space) of program space at any 16K program word boundary, defined by the 8-bit Program Space Visibility Page (PSVPAG) register. This lets any instruction access program space as if it were data space, with a limitation that the access requires an additional cycle. Moreover, only the lower 16 bits of each instruction word can be accessed using this method.  Linear indirect access of 32K word pages within program space is also possible using any working register, via table read and write instructions.
 Table read and write instructions can be used to access all 24 bits of an instruction word.

Overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. This is primarily intended to remove the loop overhead for DSP algorithms.

The X AGU also supports Bit-Reversed Addressing on destination effective addresses, to greatly simplify input or output data reordering for radix-2 FFT algorithms. Refer to **Section 4.0 "Address Generator Units"** for details on Modulo and Bit-Reversed addressing.

The core supports Inherent (no operand), Relative, Literal, Memory Direct, Register Direct, Register Indirect, Register Offset and Literal Offset Addressing modes. Instructions are associated with predefined addressing modes, depending upon their functional requirements.

For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, 3 operand instructions are supported, allowing C = A + B operations to be executed in a single cycle.

A DSP engine has been included to significantly enhance the core arithmetic capability and throughput. It features a high-speed 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. Data in the accumulator or any working register can be shifted up to 16 bits right or 16 bits left in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC class of instructions can concurrently fetch two data operands from memory, while multiplying two W registers. To enable this concurrent fetching of data operands, the data space has been split for these instructions and linear for all others. This has been achieved in a transparent and flexible manner, by dedicating certain working registers to each address space for the MAC class of instructions.

The core does not support a multi-stage instruction pipeline. However, a single stage instruction prefetch mechanism is used, which accesses and partially decodes instructions a cycle ahead of execution, in order to maximize available execution time. Most instructions execute in a single cycle, with certain exceptions.

The core features a vectored exception processing structure for traps and interrupts, with 62 independent vectors. The exceptions consist of up to 8 traps (of which 4 are reserved) and 54 interrupts. Each interrupt is prioritized based on a user assigned priority between 1 and 7 (1 being the lowest priority and 7 being the highest) in conjunction with a predetermined 'natural order'. Traps have fixed priorities, ranging from 8 to 15.



## 7.3 Writing to the Data EEPROM

To write an EEPROM data location, the following sequence must be followed:

- 1. Erase data EEPROM word.
  - a) Select the word, data EEPROM, erase and set WREN bit in the NVMCON register.
  - b) Write the address of word to be erased into the NVMADRU/NVMADR.
  - c) Enable the NVM interrupt (optional).
  - d) Write 0x55 to NVMKEY.
  - e) Write 0xAA to NVMKEY.
  - f) Set the WR bit. This will begin the erase cycle.
  - g) Either poll the NVMIF bit or wait for the NVMIF interrupt.
  - h) The WR bit is cleared when the erase cycle ends.
- 2. Write the data word into the data EEPROM write latches.
- 3. Program 1 data word into the data EEPROM.
  - a) Select the word, data EEPROM, program and set the WREN bit in the NVMCON register.
  - b) Enable the NVM write done interrupt (optional).
  - c) Write 0x55 to NVMKEY.
  - d) Write 0xAA to NVMKEY.
  - e) Set the WR bit. This will begin the program cycle.
  - f) Either poll the NVMIF bit or wait for the NVM interrupt.
  - g) The WR bit is cleared when the write cycle ends.

## EXAMPLE 7-4: DATA EEPROM WORD WRITE

; Point to data memory ; Init pointer MOV #LOW ADDR WORD,W0 #HIGH\_ADDR\_WORD,W1 MOV MOV W1 TBLPAG MOV #LOW(WORD),W2 ; Get data TBLWTL W2 [ W0] ; Write data ; The NVMADR captures last table access address ; Select data EEPROM for 1 word op MOV #0x4004,W0 MOV W0 NVMCON ; Operate key to allow write operation DISI ; Block all interrupts with priority <7 #5 ; for next 5 instructions MOV #0x55,W0 MOV W0 NVMKEY ; Write the 0x55 key MOV #0xAA,W1 MOV W1 NVMKEY ; Write the OxAA key NVMCON, #WR BSET ; Initiate program sequence NOP NOP ; Write cycle will complete in 2mS. CPU is not stalled for the Data Write Cycle ; User can poll WR bit, use NVMIF or Timer IRQ to determine write complete

The write will not initiate if the above sequence is not exactly followed (write 0x55 to NVMKEY, write 0xAA to NVMCON, then set WR bit) for each word. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in NVMCON must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution. The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect the current write cycle. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the Nonvolatile Memory Write Complete Interrupt Flag bit (NVMIF) is set. The user may either enable this interrupt, or poll this bit. NVMIF must be cleared by software.

## 7.3.1 WRITING A WORD OF DATA EEPROM

Once the user has erased the word to be programmed, then a table write instruction is used to write one write latch, as shown in Example 7-4.

## TABLE 8-1: dsPIC30F3011 PORT REGISTER MAP<sup>(1)</sup>

| SFR<br>Name | Addr. | Bit 15  | Bit 14  | Bit 13  | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8  | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Reset State         |
|-------------|-------|---------|---------|---------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------------|
| TRISB       | 02C6  | —       | —       | —       | _      | —      | _      | —     | TRISB8 | TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 | 0000 0001 1111 1111 |
| PORTB       | 02C8  | —       | —       | —       | —      | —      | _      | _     | RB8    | RB7    | RB6    | RB5    | RB4    | RB3    | RB2    | RB1    | RB0    | 0000 0000 0000 0000 |
| LATB        | 02CA  | —       | —       | —       | —      | —      | _      | _     | LATB8  | LATB7  | LATB6  | LATB5  | LATB4  | LATB3  | LATB2  | LATB1  | LATB0  | 0000 0000 0000 0000 |
| TRISC       | 02CC  | TRISC15 | TRISC14 | TRISC13 | -      |        | -      | _     | _      | —      | -      | _      | —      | _      | —      | _      | _      | 1110 0000 0000 0000 |
| PORTC       | 02CE  | RC15    | RC14    | RC13    | —      | —      | _      | _     | —      | —      | -      | —      | —      | —      | —      | —      | —      | 0000 0000 0000 0000 |
| LATC        | 02D0  | LATC15  | LATC14  | LATC13  | -      | _      | -      | _     | —      | —      | _      | —      | —      | —      | —      | _      | —      | 0000 0000 0000 0000 |
| TRISD       | 02D2  | -       | _       |         | -      |        | -      | _     | _      | —      | -      | _      | —      | TRISD3 | TRISD2 | TRISD1 | TRISD0 | 0000 0000 0000 1111 |
| PORTD       | 02D4  | _       | —       | —       | —      | —      | _      | _     | —      | —      |        | —      | —      | RD3    | RD2    | RD1    | RD0    | 0000 0000 0000 0000 |
| LATD        | 02D6  | _       | —       |         | -      | _      | -      | _     | —      | —      | _      | —      | —      | LATD3  | LATD2  | LATD1  | LATD0  | 0000 0000 0000 0000 |
| TRISE       | 02D8  | -       | _       |         | -      |        | -      | _     | TRISE8 | —      | -      | TRISE5 | TRISE4 | TRISE3 | TRISE2 | TRISE1 | TRISE0 | 0000 0001 0011 1111 |
| PORTE       | 02DA  | _       | —       | —       | —      | —      | _      | _     | RE8    | —      | -      | RE5    | RE4    | RE3    | RE2    | RE1    | RE0    | 0000 0000 0000 0000 |
| LATE        | 02DC  | _       | —       | —       | _      | —      | —      | _     | LATE8  | —      | -      | LATE5  | LATE4  | LATE3  | LATE2  | LATE1  | LATE0  | 0000 0000 0000 0000 |
| TRISF       | 02DE  | —       | —       | —       | —      | —      | —      | —     | —      | —      | TRISF6 | TRISF5 | TRISF4 | TRISF3 | TRISF2 | TRISF1 | TRISF0 | 0000 0000 0111 1111 |
| PORTF       | 02E0  | _       | _       | —       | —      | —      | _      | _     | —      | _      | RF6    | RF5    | RF4    | RF3    | RF2    | RF1    | RF0    | 0000 0000 0000 0000 |
| LATF        | 02E2  | —       | —       | —       | —      | —      | _      | —     | —      | _      | LATF6  | LATF5  | LATF4  | LATF3  | LATF2  | LATF1  | LATF0  | 0000 0000 0000 0000 |

**Legend:** — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields. Not all peripherals, and therefore their bit positions, are available on this device.

## TABLE 11-1: TIMER4/5 REGISTER MAP<sup>(1)</sup>

| SFR Name | Addr. | Bit 15 | Bit 14                                               | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7       | Bit 6 | Bit 5  | Bit 4  | Bit 3               | Bit 2 | Bit 1 | Bit 0 | Reset State         |
|----------|-------|--------|------------------------------------------------------|--------|--------|--------|--------|-------|-------|-------------|-------|--------|--------|---------------------|-------|-------|-------|---------------------|
| TMR4     | 0114  |        |                                                      |        |        |        |        |       | Ti    | mer4 Regis  | ter   |        |        |                     |       |       |       | uuuu uuuu uuuu uuuu |
| TMR5HLD  | 0116  |        | Timer5 Holding Register (For 32-bit operations only) |        |        |        |        |       |       |             |       |        |        | uuuu uuuu uuuu uuuu |       |       |       |                     |
| TMR5     | 0118  |        | Timer5 Register                                      |        |        |        |        |       |       |             |       |        |        | uuuu uuuu uuuu uuuu |       |       |       |                     |
| PR4      | 011A  |        |                                                      |        |        |        |        |       | Pe    | riod Regist | er 4  |        |        |                     |       |       |       | 1111 1111 1111 1111 |
| PR5      | 011C  |        |                                                      |        |        |        | _      | -     | Pe    | riod Regist | er 5  | _      | -      | _                   | _     |       | _     | 1111 1111 1111 1111 |
| T4CON    | 011E  | TON    | —                                                    | TSIDL  |        | _      | —      | _     | —     | —           | TGATE | TCKPS1 | TCKPS0 | T45                 | _     | TCS   | —     | 0000 0000 0000 0000 |
| T5CON    | 0120  | TON    | -                                                    | TSIDL  | —      | —      | —      | _     | -     | —           | TGATE | TCKPS1 | TCKPS0 | —                   | —     | TCS   | —     | 0000 0000 0000 0000 |

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note 1: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

NOTES:

## 14.1 Quadrature Encoder Interface Logic

A typical incremental (a.k.a. optical) encoder has three outputs: Phase A, Phase B and an index pulse. These signals are useful and often required in position and speed control of ACIM and SR motors.

The two channels, Phase A (QEA) and Phase B (QEB), have a unique relationship. If Phase A leads Phase B, then the direction (of the motor) is deemed positive or forward. If Phase A lags Phase B, then the direction (of the motor) is deemed negative or reverse.

A third channel, termed index pulse, occurs once per revolution and is used as a reference to establish an absolute position. The index pulse coincides with Phase A and Phase B, both low.

## 14.2 16-Bit Up/Down Position Counter Mode

The 16-bit up/down counter counts up or down on every count pulse, which is generated by the difference of the Phase A and Phase B input signals. The counter acts as an integrator, whose count value is proportional to position. The direction of the count is determined by the UPDN signal, which is generated by the Quadrature Encoder Interface logic.

### 14.2.1 POSITION COUNTER ERROR CHECKING

Position count error checking in the QEI is provided for and indicated by the CNTERR bit (QEICON<15>). The error checking only applies when the position counter is configured for Reset on the Index Pulse modes (QEIM<2:0> = 110 or 100). In these modes, the contents of the POSCNT register are compared with the values (0xFFFF or MAXCNT + 1, depending on direction). If these values are detected, an error condition is generated by setting the CNTERR bit and a QEI count error interrupt is generated. The QEI count error interrupt can be disabled by setting the CEID bit (DFLTCON<8>). The position counter continues to count encoder edges after an error has been detected. The POSCNT register continues to count up/down until a natural rollover/underflow. No interrupt is generated for the natural rollover/underflow event. The CNTERR bit is a read/write bit and reset in software by the user.

## 14.2.2 POSITION COUNTER RESET

The Position Counter Reset Enable bit, POSRES (QEI<2>), controls whether the position counter is reset when the index pulse is detected. This bit is only applicable when QEIM<2:0> = 100 or 110.

If the POSRES bit is set to '1', then the position counter is reset when the index pulse is detected. If the POSRES bit is set to '0', then the position counter is not reset when the index pulse is detected. The position counter will continue counting up or down, and will be reset on the rollover or underflow condition.

When selecting the INDX signal to reset the Position Counter (POSCNT), the user has to specify the states on QEA and QEB input pins. These states have to be matched in order for a Reset to occur. These states are selected by the IMV<1:0> bits in the DFLTCON register.

The IMV<1:0> (Index Match Value) bits allow the user to specify the state of the QEA and QEB input pins during an index pulse when the POSCNT register is to be reset.

In x4 Quadrature Count mode:

- IMV1 = Required state of Phase B input signal for match on index pulse
- IMV0 = Required state of Phase A input signal for match on index pulse

In x2 Quadrature Count mode:

- IMV1 = Selects phase input signal for index state match (0 = Phase A, 1 = Phase B)
- IMV0 = Required state of the selected phase input signal for match on index pulse

The interrupt is still generated on the detection of the index pulse and not on the position counter overflow/ underflow.

## 14.2.3 COUNT DIRECTION STATUS

As mentioned in the previous section, the QEI logic generates an UPDN signal based upon the relationship between Phase A and Phase B. In addition to the output pin, the state of this internal UPDN signal is supplied to a SFR bit, UPDN (QEICON<11>), as a read-only bit.

Note: QEI pins are multiplexed with analog inputs. The user must insure that all QEI associated pins are set as digital inputs in the ADPCFG register.

## TABLE 14-1: QEI REGISTER MAP<sup>(1)</sup>

| SFR<br>Name | Addr. | Bit 15    | Bit 14              | Bit 13    | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8    | Bit 7    | Bit 6  | Bit 5  | Bit 4   | Bit 3   | Bit 2               | Bit 1 | Bit 0    | Reset State         |
|-------------|-------|-----------|---------------------|-----------|--------|--------|--------|-------|----------|----------|--------|--------|---------|---------|---------------------|-------|----------|---------------------|
| QEICON      | 0122  | CNTERR    | —                   | QEISIDL   | INDX   | UPDN   | QEIM2  | QEIM1 | QEIM0    | SWPAB    | _      | TQGATE | TQCKPS1 | TQCKPS0 | POSRES              | TQCS  | UPDN_SRC | 0000 0000 0000 0000 |
| DFLTCON     | 0124  | —         | _                   | _         | _      | —      | IMV1   | IMV0  | CEID     | QEOUT    | QECK2  | QECK1  | QECK0   | —       | _                   | —     | -        | 0000 0000 0000 0000 |
| POSCNT      | 0126  |           |                     |           |        |        |        |       | Position | Counter< | <15:0> |        |         |         |                     |       |          | 0000 0000 0000 0000 |
| MAXCNT      | 0128  |           | Maximun Count<15:0> |           |        |        |        |       |          |          |        |        |         |         | 1111 1111 1111 1111 |       |          |                     |
| ADPCFG      | 02A8  | —         | —                   | —         | —      | —      | —      | —     | PCFG8    | PCFG7    | PCFG6  | PCFG5  | PCFG4   | PCFG3   | PCFG2               | PCFG1 | PCFG0    | 0000 0000 0000 0000 |
| Lonondi     |       | implement | مما امناء برمم      | al ee (o) |        |        |        |       |          |          |        |        |         |         |                     |       |          |                     |

**Legend:** — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

NOTES:

## TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)

| 63         H1C         FIC         F         (master of the state Left through Carry I         1         1         C, NZ           64         ELC         f, master         WREG = Robits Left through Carry Ws         1         1         C, NZ           64         ELC         KLAC         f, master         f, master         f, and the fit through Carry Ws         1         1         NZ           64         ELS         KLAC         f, and the fit through Carry Ws         1         1         NZ           65         ERC         T, master         f, and the fit through Carry Ws         1         1         NZ           66         FROC         T, master         f, and the fight through Carry Ms         1         1         NZ           70         SEC         K, wead         Wd a Robate Right through Carry M         1         1         NZ           71         SEC         K, wead         Wd a Robate Right through Carry Ms         1         1         NZ           72         SEC         Acc, #811+4, Moc         Store Roundebar         1         1         NZ           73         SET         SET         Acc, #811+4, Moc         Store Roundebar         1         1         NCAZ           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Base<br>Instr<br># | Assembly<br>Mnemonic |        | Assembly Syntax | Description                           | # of<br>words | # of<br>cycle<br>s | Status Flags<br>Affected |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|--------|-----------------|---------------------------------------|---------------|--------------------|--------------------------|
| HIC         FLC         WREG         Rotace Lift Horough Carry I         1         1         C/AZ           64         RL3C         6         1         Fabrate Left Nocary Ws         1         1         NZ           64         RL3C         C         1         Fabrate Left No Carry I         1         1         NZ           65         RC         1         RUSC         X, WES         Rotate Left No Carry I         1         1         NZ           65         RC         1         RUSC         NR, W4         Relate Left No Carry I         1         1         NZ           66         RC         1         RUSC         NR, W4         WREG = Rotate Right Hough Carry I         1         1         NZ           67         SAC         NR, W4         WREG = Rotate Right No Carry I         1         1         NZ           68         ZE         SE         NR, W4         Store Rotate Right No Carry I         1         1         NZ           69         RETA         Acc, H3114 (M3         Store Rotate Right No Carry I         1         1         None           71         Stra         Acc, H3114 (M3         Store Rotate Right Noc Carry I         1         1         None<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63                 | RLC                  | RLC    | f               | f = Rotate Left through Carry f       | 1             | 1                  | C,N,Z                    |
| BLC         NL W         Wd         Foats Left Wrough Carry W         1         1         CNZ           64         RLMC         £         (mobile Left (No Carry) f)         1         1         NZ           74         RLMC         £         (mobile Left (No Carry) f)         1         1         NZ           865         RRC         F         (ms a) Ad         WREG = Roats Right frough Carry f         1         1         CAZ           866         RRC         F         (ms a) Ad         WREG = Roats Right frough Carry f         1         1         CAZ           867         RRC         f         Relate Right frough Carry f         1         1         NZ           868         RRC         RRC         f         Roats Right frough Carry f         1         1         NZ           867         RAC         SCC         ACC, REJ114 (A) AdO         Store Roats Right frough Carry f         1         1         None           888         GE         SE         NR         NR         Store Roats Right frough Carry f         1         1         None           89774         SEC         RAC, RES, RES         Store Roats Right frough Carry f         1         1         None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                      | RLC    | f,WREG          | WREG = Rotate Left through Carry f    | 1             | 1                  | C,N,Z                    |
| 64         RLNC         RLNC         f = Note: Left (No Carry) f         1         1         N.Z.           RLNC         Warkin         Wide Rotate Laft (No Carry) f         1         1         N.Z.           RLNC         Warkin         Wide Rotate Laft (No Carry) f         1         1         N.Z.           RLNC         Warkin         Wide Rotate Laft (No Carry) f         1         1         N.Z.           RLNC         Warkin         Wide Rotate Right (No Carry) f         1         1         N.Z.           RLNC         F.WR32         WiREG = Rotate Right (No Carry) f         1         1         N.Z.           RLNC         F.WR32         WiREG = Rotate Right (No Carry) f         1         1         N.Z.           RLNC         F.WR32         WiREG = Rotate Right (No Carry) f         1         1         N.Z.           RLNC         F.WR32         WiREG = Rotate Right (No Carry) f         1         1         N.Z.           RLND         SRC         Acc., #SI 14 4, War         Store Rounded Accumulator         1         1         None           RLN         Ware         Store Rounded Accumulator by Sill6         1         1         None           RUN         Ware         Store Rounded Accumula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                      | RLC    | Ws,Wd           | Wd = Rotate Left through Carry Ws     | 1             | 1                  | C,N,Z                    |
| Number         Fuma         WREG = Rotate Left (No Carry) /fs         1         1         N.Z           65         RSC         E         f = Rotate Right Through Carry 1         1         1         CAZ           66         RSC         f, WREG         WREG = Rotate Right Through Carry 1         1         1         CAZ           66         RSC         f, WREG         Factor Right Through Carry 1         1         1         CAZ           66         RSC         f, WREG         Factor Right Through Carry 16         1         1         NZ           66         RSC         ZERC         f, RREG         WREG = Rotate Right (No Carry) 1         1         1         NZ           67         RSC         ZERC         K.R.R.WA         WG E Color Right (No Carry) 1         1         1         NZ           68         SZ         RSC         Acc., #S11C4, WRG         Store Rounded Accumulator         1         1         None           68         SZ         RSC         Acc., #S11C4, WRG         Store Rounded Accumulator         1         1         None           5877M         MRS         WRS         WRS         WRS         1         1         None           5877M         MRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64                 | RLNC                 | RLNC   | f               | f = Rotate Left (No Carry) f          | 1             | 1                  | N,Z                      |
| Ball         Ball         Value         Wed = Roatie Right through Carry (f         1         N.Z           65         BRC         E         f         Roatie Right through Carry (f         1         1         CAZ           86         F         I. MRAG         WREG = Roatie Right through Carry (f)         1         1         CAZ           86         RENC         F         F         Feature Right for Carry (f)         1         1         N.Z           87         Sence         F         F         Feature Right for Carry (f)         1         1         N.Z           87         Sence         Acc., #S11c4, Mdo         Store Acountalistor         1         1         None           88         BE         BE         BE         BE         Store Acountalistor         1         1         None           88         BE         BE         BE         BE         BE         None         1         1         None           80         BE         BE         BE         BE         BE         None         1         1         None           80         BE         BE         SE         None         1         1         None         1         1 </td <td></td> <td></td> <td>RLNC</td> <td>f,WREG</td> <td>WREG = Rotate Left (No Carry) f</td> <td>1</td> <td>1</td> <td>N,Z</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                      | RLNC   | f,WREG          | WREG = Rotate Left (No Carry) f       | 1             | 1                  | N,Z                      |
| BSC         RC         f         Image         f         Image         Image <thimage< th=""> <thimage< th=""></thimage<></thimage<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                      | RLNC   | Ws,Wd           | Wd = Rotate Left (No Carry) Ws        | 1             | 1                  | N,Z                      |
| REC         f, wasio         WREG = Route Right through Carry f         1         1         C.A.Z           66         RENC         F.R.C         f = Route Right through Carry Ws         1         1         1         N.Z           67         RENC         f, wasid         Wd = Route Right (No Carry) Ws         1         1         N.Z           67         SAC         SAC         Acc, #SLit4, Wdo         Store Route Right (No Carry) Ws         1         1         N.Z           68         SE         SE         Wa, Md         Wd = Route Right (No Carry) Ws         1         1         None           68         SE         SE         Wa, Md         Wd = Route Right (No Carry) Ws         1         1         None           68         SE         SE         Wa, Md         Store Rounded Accumulator         1         1         None           69         SETM         f         MEC         SofFFFF         1         1         None           70         SFTAC         Acc, HS1it6         Arithmelic Shift Accumulator by Shif6         1         1         C.AO/VZ           71         SL         SL         f         Acc, HS1it6         Arithmelic Shift Mob by Mis         1         1         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65                 | RRC                  | RRC    | f               | f = Rotate Right through Carry f      | 1             | 1                  | C,N,Z                    |
| Image: Figure |                    |                      | RRC    | f,WREG          | WREG = Rotate Right through Carry f   | 1             | 1                  | C,N,Z                    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      | RRC    | Ws,Wd           | Wd = Rotate Right through Carry Ws    | 1             | 1                  | C,N,Z                    |
| $ \begin{array}{ c                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66                 | RRNC                 | RRNC   | f               | f = Rotate Right (No Carry) f         | 1             | 1                  | N,Z                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      | RRNC   | f,WREG          | WREG = Rotate Right (No Carry) f      | 1             | 1                  | N,Z                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                      | RRNC   | Ws,Wd           | Wd = Rotate Right (No Carry) Ws       | 1             | 1                  | N,Z                      |
| SAC.R         Acc., HS1it 4, Ndo         Store Rounded Accumulator         1         1         None           68         SE         Ma, Mad         Wnd = Sign-Extended Ws         1         1         C.N.Z           69         SETM         SETM         MREG         WREG         WREG = 0xFFFF         1         1         None           70         SFTAC         Acc., WI         Acc., accc., acc., accc., acc., acc., accc., acc., acc., acc., acc., acc.,                                                                                                                                                                                                                                                                                    | 67                 | SAC                  | SAC    | Acc,#Slit4,Wdo  | Store Accumulator                     | 1             | 1                  | None                     |
| 68         SE         Ws, Wnd         Wnd = Sign-Extended Ws         1         1         C,NZ           69         SETM         £ ETM         £         f = 0.KFFF         1         1         None           70         SETM         WREG         0.KFFF         1         1         None           70         SETAC         λcc, Wn         Arithmetic Shift Accumulator by (Wn)         1         1         None           71         SL         STAC         λcc, Wn         Arithmetic Shift Accumulator by Slife         1         1         C,NOVZ           71         SL         SL         f = Left Shift f         1         1         C,NOVZ           SL         f, wREG         WREG = Left Shift f         1         1         C,NOVZ           SL         f, wREG         WREG = Left Shift Wb by Wns         1         1         N.Z           SL         wb, hn, wnd         Wnd = Left Shift Wb by Wns         1         1         N.Z           SL         wb, wid         Wnd = Left Shift Wb by Wns         1         1         N.Z           SL         wb, wid         Wnd = Left Shift Wb by Wns         1         1         N.Z           SUB         f, wREG <t< td=""><td></td><td></td><td>SAC.R</td><td>Acc,#Slit4,Wdo</td><td>Store Rounded Accumulator</td><td>1</td><td>1</td><td>None</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                      | SAC.R  | Acc,#Slit4,Wdo  | Store Rounded Accumulator             | 1             | 1                  | None                     |
| 69         SETM         SETM $f = 0.0FFFF$ 1         1         None           70         SETM         WREG         WREG = 0.0FFFF         1         1         None           70         SETA         SETA         Acc, Wn         Arithmetic Shift Accumulator by (Wn)         1         1         0.0A OB.0AB.<br>SAS.85, SAB           71         SETA         Acc, W1         Arithmetic Shift Accumulator by Shife         1         1         0.AOB.0AB.<br>SAS.85, SAB           71         SETA         Acc, HS11t6         Arithmetic Shift Accumulator by Shife         1         1         C.NOVZ           SETA         Mc, MA         WREG = Left Shift MS         1         1         C.NOVZ           SE         Mc, MA         Wd = Left Shift MS         1         1         N.NOVZ           SE         Mc, Max         Wnd = Left Shift Mb by Mits         1         1         N.Z           SE         Mc, Max         Wrd = Left Shift Mb by Mits         1         1         N.Z           72         SUB         f, WREG         Wrd = Left Shift Wb by Mits         1         1         C.DC.N.OVZ           SUB         f, WREG         Wrd = Wb - Mits         1         1         C.DC.N.OVZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68                 | SE                   | SE     | Ws,Wnd          | Wnd = Sign-Extended Ws                | 1             | 1                  | C,N,Z                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69                 | SETM                 | SETM   | f               | f = 0xFFFF                            | 1             | 1                  | None                     |
| SETM         Ws         Ws = 0xFFF         1         1         None           70         SFTAC         Acc., Wn         Arithmetic Shift Accumulator by (Wn)         1         1         0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                      | SETM   | WREG            | WREG = 0xFFFF                         | 1             | 1                  | None                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                      | SETM   | Ws              | Ws = 0xFFFF                           | 1             | 1                  | None                     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                 | SFTAC                | SFTAC  | Acc,Wn          | Arithmetic Shift Accumulator by (Wn)  | 1             | 1                  | OA,OB,OAB,<br>SA,SB,SAB  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                      | SFTAC  | Acc,#Slit6      | Arithmetic Shift Accumulator by Slit6 | 1             | 1                  | OA,OB,OAB,<br>SA,SB,SAB  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71                 | SL                   | SL     | f               | f = Left Shift f                      | 1             | 1                  | C,N,OV,Z                 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      | SL     | f,WREG          | WREG = Left Shift f                   | 1             | 1                  | C,N,OV,Z                 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      | SL     | Ws,Wd           | Wd = Left Shift Ws                    | 1             | 1                  | C,N,OV,Z                 |
| SL         Wb, #lit5, Wnd         Wnd = Left Shift Wb by lit5         1         1         N,Z           72         SUB         SUB         Acc         Subtract Accumulators         1         1         0A,OB,OAB,<br>SA,SB,SAB           74         SUB         f         f         f         f         f         1         1         0A,OB,OAB,<br>SA,SB,SAB           74         SUB         f, WREG         WREG = f - WREG         1         1         1         C,DC,N,OV,Z           SUB         #lit10, Wn         Wn = Wn - lit10         1         1         C,DC,N,OV,Z           SUB         Wb, Ws, Wd         Wd = Wb - Ws         1         1         C,DC,N,OV,Z           SUB         Wb, #lit5, Wd         Wd = Wb - Ws         1         1         C,DC,N,OV,Z           SUB         SUBB         f         f         f         N,OV,Z         NOV,Z           SUB         Mb, Ws, Wd         Wd = Wb - Ws         1         1         C,DC,N,OV,Z           SUBB         #lit10, Wn         Wn = Wn - lit10 - (C)         1         1         C,DC,N,OV,Z           SUBB         Wb, #lit5, Wd         Wd = Wb - Ws - (C)         1         1         C,DC,N,OV,Z           SUBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                      | SL     | Wb,Wns,Wnd      | Wnd = Left Shift Wb by Wns            | 1             | 1                  | N,Z                      |
| 72         SUB         SUB         Acc         Subtract Accumulators         1         1         0A,0B,0AB, SA,SB,SAB           SUB         f         f=f-WREG         I         1         C,DC,N,0V,Z           SUB         f,WREG         WREG=f-WREG         1         1         C,DC,N,0V,Z           SUB         #1it10,Wn         Wn = Wn - Wn         1         1         C,DC,N,0V,Z           SUB         Wb,Ws,Wd         Wd = Wb - Ws         1         1         C,DC,N,0V,Z           SUB         Wb,Hit5,Wd         Wd = Wb - Ws         1         1         C,DC,N,0V,Z           SUB         Wb,Hit5,Wd         Wd = Wb - Ws         1         1         C,DC,N,0V,Z           SUB         SUBB         f         f=f-WREG         1         1         C,DC,N,0V,Z           SUBB         SUBB         f.WREG         WREG = f-WREG-(C)         1         1         C,DC,N,0V,Z           SUBB         #1it10,Wn         Wn = Wn = Int10-(C)         1         1         C,DC,N,0V,Z           SUBB         Wb,Ws,Wd         Wd = Wb - Ws-(C)         1         1         C,DC,N,0V,Z           SUBB         Wb,Ws,Wd         Wd = Wb - Int5-(C)         1         1         C,DC,N,0V,Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                      | SL     | Wb,#lit5,Wnd    | Wnd = Left Shift Wb by lit5           | 1             | 1                  | N,Z                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72                 | SUB                  | SUB    | Acc             | Subtract Accumulators                 | 1             | 1                  | OA,OB,OAB,<br>SA,SB,SAB  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      | SUB    | f               | f = f – WREG                          | 1             | 1                  | C,DC,N,OV,Z              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      | SUB    | f,WREG          | WREG = f – WREG                       | 1             | 1                  | C,DC,N,OV,Z              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      | SUB    | #lit10,Wn       | Wn = Wn - lit10                       | 1             | 1                  | C,DC,N,OV,Z              |
| SUB         Wb, #lit5, Wd         Wd = Wb - lit5         1         1         C,DC,N,OV,Z           73         SUBB         SUBB         f         f = f - WREG - (C)         1         1         C,DC,N,OV,Z           73         SUBB         SUBB         f         MREG         WREG = f - WREG - (C)         1         1         C,DC,N,OV,Z           SUBB         # lit10, Wn         Wn = Wn - lit10 - (C)         1         1         C,DC,N,OV,Z           SUBB         Wb, Ws, Wd         Wd = Wb - Ws - (C)         1         1         C,DC,N,OV,Z           SUBB         Wb, Ws, Wd         Wd = Wb - Ws - (C)         1         1         C,DC,N,OV,Z           74         SUBR         f, WREG         WREG = MREG - f         1         1         C,DC,N,OV,Z           74         SUBR         f, WREG         WREG         WREG = WREG - f         1         1         C,DC,N,OV,Z           75         SUBR         f, WREG         WREG         WREG = WREG - f - (C)         1         1         C,DC,N,OV,Z           76         SUBR         f, WREG         WREG         WREG = WREG - f - (C)         1         1         C,DC,N,OV,Z           76         SUBR         f, WD, Ws, Wd         Wd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                      | SUB    | Wb,Ws,Wd        | Wd = Wb – Ws                          | 1             | 1                  | C,DC,N,OV,Z              |
| T3         SUBB         SUBB         f         f = f - WREG - ( $\overline{C}$ )         1         1         C,DC,N,OV,Z           SUBB         f,WREG         WREG = f - WREG - ( $\overline{C}$ )         1         1         C,DC,N,OV,Z           SUBB         #1it10,Wn         Wn = Wn - lit10 - ( $\overline{C}$ )         1         1         C,DC,N,OV,Z           SUBB         Wb,Ws,Wd         Wd = Wb - Ws - ( $\overline{C}$ )         1         1         C,DC,N,OV,Z           T4         SUBR         Wb,#1it5,Wd         Wd = Wb - Ws - ( $\overline{C}$ )         1         1         C,DC,N,OV,Z           T4         SUBR         SUBR         f         f         WREG         1         1         C,DC,N,OV,Z           T4         SUBR         SUBR         f         f         WREG         1         1         C,DC,N,OV,Z           T4         SUBR         SUBR         f         f         WREG         WREG = 1         1         1         C,DC,N,OV,Z           T5         SUBR         SUBR         f         f         WREG         WREG = f - ( $\overline{C}$ )         1         1         C,DC,N,OV,Z           T5         SUBR         SUBR         f         sub, Wa, Wd         Wd = Ws - Wb - ( $\overline{C}$ )         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                      | SUB    | Wb,#lit5,Wd     | Wd = Wb - lit5                        | 1             | 1                  | C,DC,N,OV,Z              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73                 | SUBB                 | SUBB   | f               | $f = f - WREG - (\overline{C})$       | 1             | 1                  | C,DC,N,OV,Z              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      | SUBB   | f,WREG          | WREG = $f - WREG - (\overline{C})$    | 1             | 1                  | C,DC,N,OV,Z              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      | SUBB   | #lit10,Wn       | $Wn = Wn - lit10 - (\overline{C})$    | 1             | 1                  | C,DC,N,OV,Z              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      | SUBB   | Wb,Ws,Wd        | $Wd = Wb - Ws - (\overline{C})$       | 1             | 1                  | C,DC,N,OV,Z              |
| 74SUBRSUBRff = WREG - f11C,DC,N,OV,ZSUBRf,WREGWREG = WREG - f11C,DC,N,OV,ZSUBRWb,Ws,WdWd = Ws - Wb11C,DC,N,OV,ZSUBRWb,#1it5,WdWd = lit5 - Wb11C,DC,N,OV,Z75SUBRSUBRff = WREGf - WREG - f - (C)11C,DC,N,OV,Z75SUBRSUBBRfff = WREG - f - (C)11C,DC,N,OV,Z76SUBRWb,Ws,WdWd = Ws - Wb - (C)11C,DC,N,OV,Z76SWAPSWAP .bWnWn = Nibble Swap Wn11None77TBLRDHTBLRDHWs,WdRead Prog<23:16> to Wd<7:0>12None79TELWTHTBLRDLWs,WdWrite Ws<7:0> to Prog<23:16>12None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                      | SUBB   | Wb,#lit5,Wd     | $Wd = Wb - lit5 - (\overline{C})$     | 1             | 1                  | C,DC,N,OV,Z              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74                 | SUBR                 | SUBR   | f               | f = WREG - f                          | 1             | 1                  | C,DC,N,OV,Z              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      | SUBR   | f,WREG          | WREG = WREG – f                       | 1             | 1                  | C,DC,N,OV,Z              |
| SUBRWb, #lit5, WdWd = lit5 - Wb11C,DC,N,OV,Z75SUBBR $f$ $f = WREG - f - (\overline{C})$ 11C,DC,N,OV,ZSUBBR $f$ , WREGWREG = WREG - f - (\overline{C})11C,DC,N,OV,ZSUBBRWb, Ws, WdWd = Ws - Wb - (\overline{C})11C,DC,N,OV,ZSUBBRWb, #lit5, WdWd = Ws - Wb - (\overline{C})11C,DC,N,OV,Z76SWAPSWAP.bWnWn = Nibble Swap Wn11None77TBLRDHTBLRDHWs, WdRead Prog<23:16> to Wd<7:0>12None78TBLRDLTBLRDLWs, WdWrite Ws<7:0> to Prog<23:16>12None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                      | SUBR   | Wb,Ws,Wd        | Wd = Ws - Wb                          | 1             | 1                  | C,DC,N,OV,Z              |
| 75SUBBRSUBBRff = WREG - f - ( $\overline{C}$ )11C,DC,N,OV,ZSUBBR $f$ , WREGWREG = WREG - f - ( $\overline{C}$ )11C,DC,N,OV,ZSUBBRWb, Ws, WdWd = Ws - Wb - ( $\overline{C}$ )11C,DC,N,OV,ZSUBBRWb, #lit5, WdWd = Ws - Wb - ( $\overline{C}$ )11C,DC,N,OV,Z76SWAPSWAP.bWnWn = Nibble Swap Wn11None77TBLRDHTBLRDHWs, WdRead Prog<23:16> to Wd<7:0>12None78TBLRDLTBLRDLWs, WdWrite Ws<7:0> to Prog<23:16>12None79TBLWTHTBLWTHWs, WdWrite Ws<7:0> to Prog<23:16>12None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                      | SUBR   | Wb,#lit5,Wd     | Wd = lit5 – Wb                        | 1             | 1                  | C,DC,N,OV,Z              |
| SUBBRf,WREGWREG = WREG - f - ( $\overline{C}$ )11C,DC,N,OV,ZSUBBRWb,Ws,WdWd = Ws - Wb - ( $\overline{C}$ )11C,DC,N,OV,ZSUBBRWb,#lit5,WdWd = lit5 - Wb - ( $\overline{C}$ )111C,DC,N,OV,Z76SWAPSWAP.bWnWn = Nibble Swap Wn11None77TBLRDHTBLRDHWs,WdRead Prog<23:16> to Wd<7:0>12None78TBLRDLTBLRDLWs,WdRead Prog<15:0> to Wd12None79TBLWTHTBLWTHWs,WdWrite Ws<7:0> to Prog<23:16>12None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75                 | SUBBR                | SUBBR  | f               | $f = WREG - f - (\overline{C})$       | 1             | 1                  | C,DC,N,OV,Z              |
| SUBBR Wb, Ws, WdWd = Ws - Wb - ( $\overline{C}$ )11C,DC,N,OV,ZSUBBR Wb, #lit5, WdWd = lit5 - Wb - ( $\overline{C}$ )11C,DC,N,OV,Z76SWAPSWAP.bWnWn = Nibble Swap Wn11None77TBLRDHTBLRDHWs, WdRead Prog<23:16> to Wd<7:0>12None78TBLRDLTBLRDLWs, WdRead Prog<15:0> to Wd12None79TBLWTHTBLWTHWs, WdWrite Ws<7:0> to Prog<23:16>12None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                      | SUBBR  | f,WREG          | WREG = WREG - f - $(\overline{C})$    | 1             | 1                  | C,DC,N,OV,Z              |
| SUBBR         Wb,#lit5,Wd         Wd = lit5 - Wb - (C)         1         1         C,DC,N,OV,Z           76         SWAP         SWAP.b         Wn         Wn = Nibble Swap Wn         1         1         None           76         SWAP         SWAP.b         Wn         Wn = Nibble Swap Wn         1         1         None           77         TBLRDH         TBLRDH         Ws,Wd         Read Prog<23:16> to Wd<7:0>         1         2         None           78         TBLRDL         TBLRDL         Ws,Wd         Read Prog<15:0> to Wd         1         2         None           79         TBLWTH         TBLWTH         Ws,Wd         Write Ws<7:0> to Prog<23:16>         1         2         None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                      | SUBBR  | Wb,Ws,Wd        | $Wd = Ws - Wb - (\overline{C})$       | 1             | 1                  | C,DC,N,OV,Z              |
| 76         SWAP         SWAP.b         Wn         Wn = Nibble Swap Wn         1         1         None           77         TBLRDH         TBLRDH         Ws, Wd         Read Prog<23:16> to Wd<7:0>         1         2         None           78         TBLRDL         TBLRDL         Ws, Wd         Read Prog<15:0> to Wd         1         2         None           79         TBLWTH         TBLWTH         Ws, Wd         Write Ws<7:0> to Prog<23:16>         1         2         None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                      | SUBBR  | Wb,#lit5,Wd     | $Wd = lit5 - Wb - (\overline{C})$     | 1             | 1                  | C,DC,N,OV,Z              |
| SWAP         Wn         Wn = Byte Swap Wn         1         1         None           77         TBLRDH         TBLRDH         Ws, Wd         Read Prog<23:16> to Wd<7:0>         1         2         None           78         TBLRDL         TBLRDL         Ws, Wd         Read Prog<15:0> to Wd         1         2         None           79         TBLWTH         TBLWTH         Ws, Wd         Write Ws<7:0> to Prog<23:16>         1         2         None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76                 | SWAP                 | SWAP.b | Wn              | Wn = Nibble Swap Wn                   | 1             | 1                  | None                     |
| 77     TBLRDH     TBLRDH     Ws, Wd     Read Prog<23:16> to Wd<7:0>     1     2     None       78     TBLRDL     TBLRDL     Ws, Wd     Read Prog<15:0> to Wd     1     2     None       79     TBLWTH     TBLWTH     Ws, Wd     Write Ws<7:0> to Prog<23:16>     1     2     None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                      | SWAP   | Wn              | Wn = Byte Swap Wn                     | 1             | 1                  | None                     |
| 78     TBLRDL     TBLRDL     Ws, Wd     Read Prog<15:0> to Wd     1     2     None       79     TBLWTH     TBLWTH     Ws, Wd     Write Ws<7:0> to Prog<23:16>     1     2     None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77                 | TBLRDH               | TBLRDH | Ws,Wd           | Read Prog<23:16> to Wd<7:0>           | 1             | 2                  | None                     |
| 79     TBLWTH     TBLWTH     Ws.Wd     Write Ws<7:0> to Prog<23:16>     1     2     None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 78                 | TBLRDL               | TBLRDL | Ws,Wd           | Read Prog<15:0> to Wd                 | 1             | 2                  | None                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79                 | TBLWTH               | TBLWTH | Ws,Wd           | Write Ws<7:0> to Prog<23:16>          | 1             | 2                  | None                     |

| Base<br>Instr<br># | Assembly<br>Mnemonic |        | Assembly Syntax | Description            | # of<br>words | # of<br>cycle<br>s | Status Flags<br>Affected |
|--------------------|----------------------|--------|-----------------|------------------------|---------------|--------------------|--------------------------|
| 80                 | TBLWTL               | TBLWTL | Ws,Wd           | Write Ws to Prog<15:0> | 1             | 2                  | None                     |
| 81                 | ULNK                 | ULNK   |                 | Unlink Frame Pointer   | 1             | 1                  | None                     |
| 82                 | XOR                  | XOR    | f               | f = f .XOR. WREG       | 1             | 1                  | N,Z                      |
|                    |                      | XOR    | f,WREG          | WREG = f .XOR. WREG    | 1             | 1                  | N,Z                      |
|                    |                      | XOR    | #lit10,Wn       | Wd = lit10 .XOR. Wd    | 1             | 1                  | N,Z                      |
|                    |                      | XOR    | Wb,Ws,Wd        | Wd = Wb .XOR. Ws       | 1             | 1                  | N,Z                      |
|                    |                      | XOR    | Wb,#lit5,Wd     | Wd = Wb .XOR. lit5     | 1             | 1                  | N,Z                      |
| 83                 | ZE                   | ZE     | Ws,Wnd          | Wnd = Zero-Extend Ws   | 1             | 1                  | C,Z,N                    |

## TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)

## 22.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit<sup>™</sup> 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit<sup>™</sup> 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

## 22.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

## 22.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM<sup>™</sup> and dsPICDEM<sup>™</sup> demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ<sup>®</sup> security ICs, CAN, IrDA<sup>®</sup>, PowerSmart battery management, SEEVAL<sup>®</sup> evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

## 23.1 DC Characteristics

### TABLE 23-1: OPERATING MIPS VS. VOLTAGE

| Vop Benge | Tomp Dongo     | Max MIPS         |                  |  |  |  |  |  |
|-----------|----------------|------------------|------------------|--|--|--|--|--|
| VDD Range | Temp Range     | dsPIC30F301X-30I | dsPIC30F301X-20E |  |  |  |  |  |
| 4.5-5.5V  | -40°C to 85°C  | 30               | —                |  |  |  |  |  |
| 4.5-5.5V  | -40°C to 125°C | —                | 20               |  |  |  |  |  |
| 3.0-3.6V  | -40°C to 85°C  | 20               | —                |  |  |  |  |  |
| 3.0-3.6V  | -40°C to 125°C | —                | 15               |  |  |  |  |  |
| 2.5-3.0V  | -40°C to 85°C  | 10               | —                |  |  |  |  |  |

### TABLE 23-2: THERMAL OPERATING CONDITIONS

| Rating                                                                                                                                                                                                                                                                                                           | Symbol | Min | Тур         | Max  | Unit |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-------------|------|------|
| dsPIC30F301X-30I                                                                                                                                                                                                                                                                                                 |        |     |             |      |      |
| Operating Junction Temperature Range                                                                                                                                                                                                                                                                             | TJ     | -40 | —           | +125 | °C   |
| Operating Ambient Temperature Range                                                                                                                                                                                                                                                                              | TA     | -40 | —           | +85  | °C   |
| dsPIC30F301X-20E                                                                                                                                                                                                                                                                                                 |        |     |             |      |      |
| Operating Junction Temperature Range                                                                                                                                                                                                                                                                             | TJ     | -40 | —           | +150 | °C   |
| Operating Ambient Temperature Range                                                                                                                                                                                                                                                                              | TA     | -40 | —           | +125 | °C   |
| $ \begin{array}{l} \mbox{Power Dissipation:} \\ \mbox{Internal chip power dissipation:} \\ P_{INT} = V_{DD} \times (I_{DD} - \sum \ I_{OH}) \\ \mbox{I/O Pin power dissipation:} \\ P_{I/O} = \sum \left( \left\{ \ V_{DD} - V_{OH} \right\} \times I_{OH} \right) + \sum \ (V_{OL} \times I_{OL}) \end{array} $ | PD     |     | Pint + Pi/c | )    | W    |
| Maximum Allowed Power Dissipation                                                                                                                                                                                                                                                                                | PDMAX  | (   | TJ — TA)/θJ | A    | W    |

### TABLE 23-3: THERMAL PACKAGING CHARACTERISTICS

| Characteristic                                           | Symbol | Тур | Max | Unit | Notes |
|----------------------------------------------------------|--------|-----|-----|------|-------|
| Package Thermal Resistance, 28-pin SPDIP (SP)            | θJA    | 42  | —   | °C/W | 1     |
| Package Thermal Resistance, 28-pin SOIC (SO)             | θJA    | 49  | —   | °C/W | 1     |
| Package Thermal Resistance, 40-pin PDIP (P)              | θJA    | 37  | —   | °C/W | 1     |
| Package Thermal Resistance, 44-pin TQFP (PT, 10x10x1 mm) | θJA    | 45  | —   | °C/W | 1     |
| Package Thermal Resistance, 44-pin QFN (ML)              | θJA    | 28  | —   | °C/W | 1     |

**Note 1:** Junction to ambient thermal resistance, Theta-ja ( $\theta$ JA) numbers are achieved by package simulations.

## TABLE 23-23: TIMER2 AND TIMER4 EXTERNAL CLOCK TIMING REQUIREMENTS

| АС СНА       | AC CHARACTERISTICS |                                          |                              |                  | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |     |         |       |                               |  |  |  |  |
|--------------|--------------------|------------------------------------------|------------------------------|------------------|-------------------------------------------------------|-----|---------|-------|-------------------------------|--|--|--|--|
| Param<br>No. | Symbol             | Characte                                 | eristic                      |                  | Min                                                   | Тур | Max     | Units | Conditions                    |  |  |  |  |
| TB10         | TtxH               | TxCK High Time                           | Synchronous,<br>no prescaler |                  | 0.5 TCY + 20                                          |     |         | ns    | Must also meet parameter TB15 |  |  |  |  |
|              |                    |                                          | Synchronous, with prescaler  |                  | 10                                                    |     |         | ns    |                               |  |  |  |  |
| TB11         | TtxL               | TxCK Low Time                            | Synchro<br>no prese          | onous,<br>caler  | 0.5 TCY + 20                                          |     |         | ns    | Must also meet parameter TB15 |  |  |  |  |
|              |                    |                                          | Synchro<br>with pre          | onous,<br>scaler | 10                                                    |     |         | ns    |                               |  |  |  |  |
| TB15         | TtxP               | TxCK Input<br>Period                     | Synchro<br>no prese          | onous,<br>caler  | Tcy + 10                                              | _   | _       | ns    | N = prescale<br>value         |  |  |  |  |
|              |                    |                                          | Synchronous, with prescaler  |                  | Greater of:<br>20 ns or<br>(TCY + 40)/N               |     |         |       | (1, 8, 64, 256)               |  |  |  |  |
| TB20         | TCKEXTMRL          | Delay from Externa<br>Edge to Timer Incr | al TxCK C<br>ement           | Clock            | 0.5 TCY                                               | _   | 1.5 TCY | _     |                               |  |  |  |  |

## TABLE 23-24: TIMER3 AND TIMER5 EXTERNAL CLOCK TIMING REQUIREMENTS

|                                    |           |                                           |                             | Standard Operating Conditions: 2.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |                                         |            |     |       |                               |  |  |
|------------------------------------|-----------|-------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------|-----|-------|-------------------------------|--|--|
| Param<br>No. Symbol Characteristic |           |                                           |                             |                                                                                                                                                                                                      | Min                                     | Тур        | Мах | Units | Conditions                    |  |  |
| TC10                               | TtxH      | TxCK High Time                            | Synchronous                 |                                                                                                                                                                                                      | 0.5 TCY + 20                            | _          |     | ns    | Must also meet parameter TC15 |  |  |
| TC11                               | TtxL      | TxCK Low Time                             | Synchro                     | nous                                                                                                                                                                                                 | 0.5 TCY + 20                            | Ι          | —   | ns    | Must also meet parameter TC15 |  |  |
| TC15                               | TtxP      | TxCK Input Period                         | Synchro<br>no preso         | nous,<br>caler                                                                                                                                                                                       | Tcy + 10                                |            | —   | ns    | N = prescale<br>value         |  |  |
|                                    |           |                                           | Synchronous, with prescaler |                                                                                                                                                                                                      | Greater of:<br>20 ns or<br>(TCY + 40)/N |            |     |       | (1, 8, 64, 256)               |  |  |
| TC20                               | TCKEXTMRL | Delay from Externa<br>Edge to Timer Incre | lock                        | 0.5 TCY                                                                                                                                                                                              |                                         | 1.5<br>Tcy | _   |       |                               |  |  |



### FIGURE 23-18: SPI MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

## FIGURE 23-20: I<sup>2</sup>C<sup>™</sup> BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)









## FIGURE 23-24: 10-BIT HIGH-SPEED ADC TIMING CHARACTERISTICS

## 28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging









|                          | Units    | MILLIMETERS |           |      |  |  |
|--------------------------|----------|-------------|-----------|------|--|--|
| Dimensio                 | n Limits | MIN         | NOM       | MAX  |  |  |
| Number of Pins           | Ν        |             | 28        |      |  |  |
| Pitch                    | е        | 1.27 BSC    |           |      |  |  |
| Overall Height           | А        | Ι           | —         | 2.65 |  |  |
| Molded Package Thickness | A2       | 2.05        | —         | Ι    |  |  |
| Standoff §               | A1       | 0.10        | —         | 0.30 |  |  |
| Overall Width            | Е        | 10.30 BSC   |           |      |  |  |
| Molded Package Width     | E1       | 7.50 BSC    |           |      |  |  |
| Overall Length           | D        |             | 17.90 BSC |      |  |  |
| Chamfer (optional)       | h        | 0.25        | _         | 0.75 |  |  |
| Foot Length              | L        | 0.40        | —         | 1.27 |  |  |
| Footprint                | L1       |             | 1.40 REF  |      |  |  |
| Foot Angle Top           | φ        | 0°          | _         | 8°   |  |  |
| Lead Thickness           | С        | 0.18        | —         | 0.33 |  |  |
| Lead Width               | b        | 0.31        | _         | 0.51 |  |  |
| Mold Draft Angle Top     | α        | α 5° – 15°  |           |      |  |  |
| Mold Draft Angle Bottom  | β        | 5°          | _         | 15°  |  |  |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

NOTES: