

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	30
Program Memory Size	24KB (8K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f3011-30i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	11
2.0	CPU Architecture Overview	19
3.0	Memory Organization	27
4.0	Address Generator Units	39
5.0	Interrupts	45
6.0	Flash Program Memory	51
7.0	Data EEPROM Memory	57
8.0	I/O Ports	61
9.0	Timer1 Module	67
10.0	Timer2/3 Module	71
11.0	Timer4/5 Module	
12.0	Input Capture Module	81
13.0	Output Compare Module	85
14.0	Quadrature Encoder Interface (QEI) Module	91
15.0	Motor Control PWM Module	97
16.0	SPI Module	107
17.0	I2C™ Module	
18.0	Universal Asynchronous Receiver Transmitter (UART) Module	
19.0	10-bit High-Speed Analog-to-Digital Converter (ADC) Module	127
20.0	System Integration	139
21.0	Instruction Set Summary	155
22.0	Development Support	165
23.0	Electrical Characteristics	
24.0	Packaging Information	209
Index	(219
	Aicrochip Web Site	
	omer Change Notification Service	
	omer Support	
Read	er Response	226
Produ	uct Identification System	227

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Pin Name	Pin Type	Buffer Type	Description							
OSC1	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.							
OSC2	I/O	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.							
PGD	I/O	ST	In-Circuit Serial Programming data input/output pin.							
PGC	I	ST	In-Circuit Serial Programming clock input pin.							
RB0-RB5	I/O	ST	PORTB is a bidirectional I/O port.							
RC13-RC15	I/O	ST	PORTC is a bidirectional I/O port.							
RD0-RD1	I/O	ST	PORTD is a bidirectional I/O port.							
RE0-RE5, RE8	I/O	ST	PORTE is a bidirectional I/O port.							
RF2-RF3	I/O	ST	PORTF is a bidirectional I/O port.							
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.							
SDI1	I	ST	SPI1 Data In.							
SDO1	0	—	SPI1 Data Out.							
SCL	I/O	ST	Synchronous serial clock input/output for I ² C.							
SDA	I/O	ST	Synchronous serial data input/output for I ² C.							
SOSCO SOSCI	0	ST/CMOS	32 kHz low-power oscillator crystal output. 32 kHz low-power oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.							
T1CK	I	ST	Timer1 external clock input.							
T2CK	I	ST	Timer2 external clock input.							
U1RX	I	ST	UART1 Receive.							
U1TX	0	—	UART1 Transmit.							
U1ARX		ST	UART1 Alternate Receive.							
U1ATX	0		UART1 Alternate Transmit.							
VDD	P	—	Positive supply for logic and I/O pins.							
Vss	P		Ground reference for logic and I/O pins.							
VREF+	I	Analog	Analog Voltage Reference (High) input.							
Vref-	I	Analog								
Legend: CM ST I	= Sc		ible input or outputAnalog =Analog inputr input with CMOS levelsO=OutputP=Power							

TABLE 1-2: dsPIC30F3010 I/O PIN DESCRIPTIONS (CONTINUED)

5.0 INTERRUPTS

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

The dsPIC30F3010/3011 has 29 interrupt sources and 4 processor exceptions (traps), which must be arbitrated based on a priority scheme.

The CPU is responsible for reading the Interrupt Vector Table (IVT) and transferring the address contained in the interrupt vector to the program counter. The interrupt vector is transferred from the program data bus into the program counter through a 24-bit wide multiplexer on the input of the program counter.

The Interrupt Vector Table (IVT) and Alternate Interrupt Vector Table (AIVT) are placed near the beginning of program memory (0x000004). The IVT and AIVT are shown in Figure 5-1.

The interrupt controller is responsible for preprocessing the interrupts and processor exceptions, prior to their being presented to the processor core. The peripheral interrupts and traps are enabled, prioritized and controlled using centralized Special Function Registers (SFR):

- IFS0<15:0>, IFS1<15:0>, IFS2<15:0> All interrupt request flags are maintained in these three registers. The flags are set by their respective peripherals or external signals, and they are cleared via software.
- IEC0<15:0>, IEC1<15:0>, IEC2<15:0> All interrupt enable control bits are maintained in these three registers. These control bits are used to individually enable interrupts from the peripherals or external signals.
- IPC0<15:0>... IPC11<7:0> The user-assignable priority level associated with each of these interrupts is held centrally in these twelve registers.
- IPL<3:0> The current CPU priority level is explicitly stored in the IPL bits. IPL<3> is present in the CORCON register, whereas IPL<2:0> are present in the STATUS Register (SR) in the processor core.

- INTCON1<15:0>, INTCON2<15:0> Global interrupt control functions are derived from these two registers. INTCON1 contains the control and status flags for the processor exceptions. The INTCON2 register controls the external interrupt request signal behavior and the use of the alternate vector table.
- Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit. User software should ensure the appropriate Interrupt flag bits are clear prior to enabling an interrupt.

All interrupt sources can be user-assigned to one of 7 priority levels, 1 through 7, through the IPCx registers. Each interrupt source is associated with an interrupt vector, as shown in Table 5-1. Levels 7 and 1 represent the highest and lowest maskable priorities, respectively.

Note: Assigning a priority level of 0 to an interrupt source is equivalent to disabling that interrupt.

If the NSTDIS bit (INTCON1<15>) is set, nesting of interrupts is prevented. Thus, if an interrupt is currently being serviced, processing of a new interrupt is prevented, even if the new interrupt is of higher priority than the one currently being serviced.

Note: The IPL bits become read-only whenever the NSTDIS bit has been set to '1'.

Certain interrupts have specialized control bits for features like edge or level triggered interrupts, interrupt-on-change, etc. Control of these features remains within the peripheral module which generates the interrupt.

The DISI instruction can be used to disable the processing of interrupts of priorities 6 and lower for a certain number of instructions, during which the DISI bit (INTCON2<14>) remains set.

When an interrupt is serviced, the PC is loaded with the address stored in the vector location in program memory that corresponds to the interrupt. There are 63 different vectors within the IVT (refer to Figure 5-2). These vectors are contained in locations 0x000004 through 0x0000FE of program memory (refer to Figure 5-2). These locations contain 24-bit addresses, and in order to preserve robustness, an address error trap will take place should the PC attempt to fetch any of these words during normal execution. This prevents execution of random data as a result of accidentally decrementing a PC into vector space, accidentally mapping a data space address into vector space or the PC rolling over to 0x000000 after reaching the end of implemented program memory space. Execution of a GOTO instruction to this vector space will also generate an address error trap.

5.1 Interrupt Priority

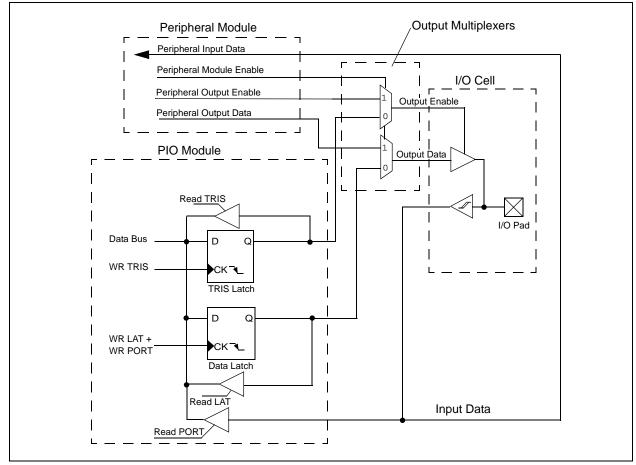
The user-assignable Interrupt Priority (IP<2:0>) bits for each individual interrupt source are located in the 3 LSbs of each nibble, within the IPCx register(s). Bit 3 of each nibble is not used and is read as a '0'. These bits define the priority level assigned to a particular interrupt by the user.

Note:	The user-assignable priority levels start at
	0, as the lowest priority, and Level 7, as
	the highest priority.

Since more than one interrupt request source may be assigned to a specific user-assigned priority level, a means is provided to assign priority within a given level. This method is called "Natural Order Priority".

Natural Order Priority is determined by the position of an interrupt in the vector table, and only affects interrupt operation when multiple interrupts with the same user-assigned priority become pending at the same time.

Table 5-1 lists the interrupt numbers and interrupt sources for the dsPIC DSC devices and their associated vector numbers.


- **Note 1:** The natural order priority scheme has 0 as the highest priority and 53 as the lowest priority.
 - **2:**The natural order priority number is the same as the INT number.

The ability for the user to assign every interrupt to one of seven priority levels implies that the user can assign a very high overall priority level to an interrupt with a low natural order priority. For example, the PWM Fault A Interrupt can be given a priority of 7. The INTO (external interrupt 0) may be assigned to priority Level 1, thus giving it a very low effective priority.

TABLE 5-1:INTERRUPT VECTOR TABLE

Interrupt	Vector	Interrupt Source					
Number	Number						
•	-	Natural Order Priority					
0	8	INT0 – External Interrupt 0					
1	9	IC1 – Input Capture 1					
2	10	OC1 – Output Compare 1					
3	11	T1 – Timer1					
4	12	IC2 – Input Capture 2					
5	13	OC2 – Output Compare 2					
6	14	T2 – Timer2					
7	15	T3 – Timer3					
8	16	SPI1					
9	17	U1RX – UART1 Receiver					
10	18	U1TX – UART1 Transmitter					
11	19	ADC – ADC Convert Done					
12	20	NVM – NVM Write Complete					
13	21	SI2C – I ² C Slave Interrupt					
14	22	MI2C – I ² C Master Interrupt					
15	23	Input Change Interrupt					
16	24	INT1 – External Interrupt 1					
17	25	IC7 – Input Capture 7					
18	26	IC8 – Input Capture 8					
19	27	OC3 – Output Compare 3 ⁽¹⁾					
20	28	OC4 – Output Compare 4 ⁽¹⁾					
21	29	T4 – Timer4					
22	30	T5 – Timer5					
23	31	INT2 – External Interrupt 2					
24	32	U2RX – UART2 Receiver ⁽¹⁾					
25	33	U2TX – UART2 Transmitter ⁽¹⁾					
26	34	Reserved					
27	35	Reserved					
28	36	Reserved					
29	37	Reserved					
30	38	Reserved					
31	39	Reserved					
32	40	Reserved					
33	41	Reserved					
34	42	Reserved					
35	43	Reserved					
36	44	Reserved					
37	45	Reserved					
38	46	Reserved					
39	47	PWM – PWM Period Match					
40	48	QEI – QEI Interrupt					
41	49	Reserved					
42	50	Reserved					
43	51	FLTA – PWM Fault A					
44	52	Reserved					
45-53	53-61	Reserved					
	Lowest	Natural Order Priority					

Note 1: Available on dsPIC30F3011 only

FIGURE 8-2: BLOCK DIAGRAM OF A SHARED PORT STRUCTURE

8.2 Configuring Analog Port Pins

The use of the ADPCFG and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORT register, all pins configured as analog input channel will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins), may cause the input buffer to consume current that exceeds the device specifications.

8.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP.

EXAMPLE 8-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	; Configure PORTB<15:8> ; as inputs
MOV	W0, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

9.0 TIMER1 MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046).

This section describes the 16-bit general purpose Timer1 module and associated operational modes. Figure 9-1 depicts the simplified block diagram of the 16-bit Timer1 module.

Note:	Timer1	is	а	'Type	A'	timer.	Refer	to			
	Sectio	on :	23.	"El	ectric	al					
	Characteristics", for the specifications for										
	a Type A timer.										

The following sections provide a detailed description, including setup and control registers along with associated block diagrams for the operational modes of the timers.

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-time Clock (RTC), or operate as a free-running interval timer/counter. The 16-bit timer has the following modes:

- 16-bit Timer
- 16-bit Synchronous Counter
- 16-bit Asynchronous Counter

Further, the following operational characteristics are supported:

- Timer gate operation
- Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

These operating modes are determined by setting the appropriate bit(s) in the 16-bit SFR, T1CON. Figure 9-1 presents a block diagram of the 16-bit timer module.

16-Bit Timer Mode: In the 16-Bit Timer mode, the timer increments on every instruction cycle up to a match value, preloaded into the Period register, PR1, then resets to '0' and continues to count.

When the CPU goes into the Idle mode, the timer will stop incrementing unless the TSIDL bit (T1CON<13>) = 0. If TSIDL = 1, the timer module logic will resume the incrementing sequence upon termination of the CPU Idle mode.

16-bit Synchronous Counter Mode: In the 16-bit Synchronous Counter mode, the timer increments on the rising edge of the applied external clock signal, which is synchronized with the internal phase clocks. The timer counts up to a match value preloaded in PR1, then resets to '0' and continues.

When the CPU goes into the Idle mode, the timer will stop incrementing, unless the respective TSIDL bit = 0. If TSIDL = 1, the timer module logic will resume the incrementing sequence upon termination of the CPU Idle mode.

16-Bit Asynchronous Counter Mode: In the 16-Bit Asynchronous Counter mode, the timer increments on every rising edge of the applied external clock signal. The timer counts up to a match value preloaded in PR1, then resets to '0' and continues.

When the timer is configured for the Asynchronous mode of operation and the CPU goes into the Idle mode, the timer will stop incrementing if TSIDL = 1.

TABLE 11-1: TIMER4/5 REGISTER MAP⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
TMR4 0114 Timer4 Register													uuuu uuuu uuuu uuuu					
TMR5HLD	0116		Timer5 Holding Register (For 32-bit operations only)											uuuu uuuu uuuu uuuu				
TMR5	0118		Timer5 Register											uuuu uuuu uuuu uuuu				
PR4	011A								Pe	riod Regist	er 4							1111 1111 1111 1111
PR5	011C								Pe	riod Regist	er 5							1111 1111 1111 1111
T4CON	011E	TON	—	TSIDL	—	_	—	—	—	—	TGATE	TCKPS1	TCKPS0	T45	—	TCS	_	0000 0000 0000 0000
T5CON	0120	TON	—	TSIDL	—	—	—	—	—	—	TGATE	TCKPS1	TCKPS0	—	—	TCS	—	0000 0000 0000 0000

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note 1: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

NOTES:

18.5.2 FRAMING ERROR (FERR)

The FERR bit (UxSTA<2>) is set if a '0' is detected instead of a Stop bit. If two Stop bits are selected, both Stop bits must be '1'; otherwise, FERR will be set. The read-only FERR bit is buffered along with the received data; it is cleared on any Reset.

18.5.3 PARITY ERROR (PERR)

The PERR bit (UxSTA<3>) is set if the parity of the received word is incorrect. This error bit is applicable only if a Parity mode (odd or even) is selected. The read-only PERR bit is buffered along with the received data bytes; it is cleared on any Reset.

18.5.4 IDLE STATUS

When the receiver is active (i.e., between the initial detection of the Start bit and the completion of the Stop bit), the RIDLE bit (UxSTA<4>) is '0'. Between the completion of the Stop bit and detection of the next Start bit, the RIDLE bit is '1', indicating that the UART is Idle.

18.5.5 RECEIVE BREAK

The receiver will count and expect a certain number of bit times based on the values programmed in the PDSEL (UxMODE<2:1>) and STSEL (UxMODE<0>) bits.

If the break is longer than 13 bit times, the reception is considered complete after the number of bit times specified by PDSEL and STSEL. The URXDA bit is set, FERR is set, zeros are loaded into the receive FIFO, interrupts are generated, if appropriate and the RIDLE bit is set.

When the module receives a long Break signal and the receiver has detected the Start bit, the data bits and the invalid Stop bit (which sets the FERR), the receiver must wait for a valid Stop bit before looking for the next Start bit. It cannot assume that the Break condition on the line is the next Start bit.

Break is regarded as a character containing all 0's, with the FERR bit set. The Break character is loaded into the buffer. No further reception can occur until a Stop bit is received. Note that RIDLE goes high when the Stop bit has not been received yet.

18.6 Address Detect Mode

Setting the ADDEN bit (UxSTA<5>) enables the Address Detect mode, in which a 9th bit (URX8) value of '1' identifies the received word as an address rather than data. This mode is only applicable for 9-bit data communication. The URXISEL control bit does not have any impact on interrupt generation in this mode, since an interrupt (if enabled) will be generated every time the received word has the 9th bit set.

18.7 Loopback Mode

Setting the LPBACK bit enables this special mode in which the UxTX pin is internally connected to the UxRX pin. When configured for the Loopback mode, the UxRX pin is disconnected from the internal UART receive logic. However, the UxTX pin still functions as in a normal operation.

To select this mode:

- a) Configure UART for desired mode of operation.
- b) Set LPBACK = 1 to enable Loopback mode.
- c) Enable transmission as defined in **Section 18.3** "**Transmitting Data**".

18.8 Baud Rate Generator

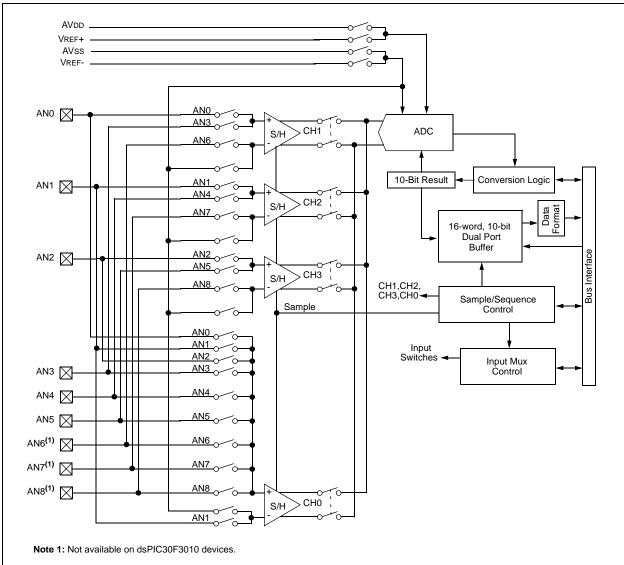
The UART has a 16-bit Baud Rate Generator to allow maximum flexibility in baud rate generation. The Baud Rate Generator register (UxBRG) is readable and writable. The baud rate is computed as follows:

- BRG = 16-bit value held in UxBRG register (0 through 65535)
- FCY = Instruction Clock Rate (1/Tcy)

The baud rate is given by Equation 18-1.

EQUATION 18-1: BAUD RATE

Baud Rate = FCY / (16*(BRG+1))


Therefore, maximum baud rate possible is

FCY / 16 (if BRG = 0),

and the minimum baud rate possible is

FCY / (16 * 65536).

With a full 16-bit Baud Rate Generator, at 30 MIPs operation, the minimum baud rate achievable is 28.5 bps.

FIGURE 19-1: 10-BIT HIGH-SPEED ADC FUNCTIONAL BLOCK DIAGRAM

19.4 Programming the Start of Conversion Trigger

The conversion trigger will terminate acquisition and start the requested conversions.

The SSRC<2:0> bits select the source of the conversion trigger.

The SSRC bits provide for up to five alternate sources of conversion trigger.

When SSRC<2:0> = 000, the conversion trigger is under software control. Clearing the SAMP bit will cause the conversion trigger.

When SSRC<2:0> = 111 (Auto-Start mode), the conversion trigger is under A/D clock control. The SAMC bits select the number of A/D clocks between the start of acquisition and the start of conversion. This provides the fastest conversion rates on multiple channels. The SAMC bits must always be at least one clock cycle.

Other trigger sources can come from timer modules, motor control PWM module or external interrupts.

Note: To operate the A/D at the maximum specified conversion speed, the autoconvert trigger option should be selected (SSRC = 111) and the auto-sample time bits should be set to 1 TAD (SAMC = 00001). This configuration will give a total conversion period (sample + convert) of 13 TAD.

The use of any other conversion trigger will result in additional TAD cycles to synchronize the external event to the A/D.

19.5 Aborting a Conversion

Clearing the ADON bit during a conversion will abort the current conversion and stop the sampling sequencing. The ADCBUF will not be updated with the partially completed A/D conversion sample. That is, the ADCBUF will continue to contain the value of the last completed conversion (or the last value written to the ADCBUF register).

If the clearing of the ADON bit coincides with an auto-start, the clearing has a higher priority.

After the A/D conversion is aborted, a 2 TAD wait is required before the next sampling may be started by setting the SAMP bit.

If sequential sampling is specified, the A/D will continue at the next sample pulse which corresponds with the next channel converted. If simultaneous sampling is specified, the A/D will continue with the next multi-channel group conversion sequence.

19.6 Selecting the A/D Conversion Clock

The A/D conversion requires 12 TAD. The source of the A/D conversion clock is software selected using a 6-bit counter. There are 64 possible options for TAD.

EQUATION 19-1: A/D CONVERSION CLOCK

$$TAD = TCY \bullet (0.5 \bullet (ADCS < 5:0 > + 1))$$
$$ADCS < 5:0 > = 2 \quad \frac{TAD}{TCY} - 1$$

The internal RC oscillator is selected by setting the ADRC bit.

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 83.33 nsec (for VDD = 5V). Refer to **Section 23.0 "Electrical Characteristics"** for minimum TAD under other operating conditions.

Example 19-1 shows a sample calculation for the ADCS<5:0> bits, assuming a device operating speed of 30 MIPS.

EXAMPLE 19-1: A/D CONVERSION CLOCK CALCULATION

TAD = 154 nsec
TCY = 33 nsec (30 MIPS)
ADCS<5:0> = 2
$$\frac{TAD}{TCY} - 1$$

= 2 $\cdot \frac{154 \text{ nsec}}{33 \text{ nsec}} - 1$
= 8.33
Therefore,
Set ADCS<5:0> = 9
Actual TAD = $\frac{TCY}{2}$ (ADCS<5:0> + 1)
= $\frac{33 \text{ nsec}}{2}$ (9 + 1)
= 165 nsec

TABLE 20-1: OSCILLATOR OPERATING MODES

Oscillator Mode	Description
XTL	200 kHz-4 MHz crystal on OSC1:OSC2.
хт	4 MHz-10 MHz crystal on OSC1:OSC2.
XT w/PLL 4x	4 MHz-10 MHz crystal on OSC1:OSC2, 4x PLL enabled.
XT w/PLL 8x	4 MHz-10 MHz crystal on OSC1:OSC2, 8x PLL enabled.
XT w/PLL 16x	4 MHz-10 MHz crystal on OSC1:OSC2, 16x PLL enabled ⁽¹⁾ .
LP	32 kHz crystal on SOSCO:SOSCI ⁽²⁾ .
HS	10 MHz-25 MHz crystal.
HS/2 w/PLL 4x	10 MHz-25 MHz crystal, divide by 2, 4x PLL enabled.
HS/2 w/PLL 8x	10 MHz-25MHz crystal, divide by 2, 8x PLL enabled.
HS/2 w/PLL 16x	10 MHz-25MHz crystal, divide by 2, 16x PLL enabled ⁽¹⁾ .
HS/3 w/PLL 4x	10 MHz-25 MHz crystal, divide by 3, 4x PLL enabled.
HS/3 w/PLL 8x	10 MHz-25MHz crystal, divide by 3, 8x PLL enabled.
HS/3 w/PLL 16x	10 MHz-25MHz crystal, divide by 3, 16x PLL enabled ⁽¹⁾ .
EC	External clock input (0-40 MHz).
ECIO	External clock input (0-40 MHz), OSC2 pin is I/O.
EC w/PLL 4x	External clock input (4-10 MHz), OSC2 pin is I/O, 4x PLL enabled ⁽¹⁾ .
EC w/PLL 8x	External clock input (4-10 MHz), OSC2 pin is I/O, 8x PLL enabled ⁽¹⁾ .
EC w/PLL 16x	External clock input (4-10 MHz), OSC2 pin is I/O, 16x PLL enabled ⁽¹⁾ .
ERC	External RC oscillator, OSC2 pin is Fosc/4 output ⁽³⁾ .
ERCIO	External RC oscillator, OSC2 pin is I/O ⁽³⁾ .
FRC	8 MHz internal RC oscillator.
FRC w/PLL 4x	7.37 MHz Internal RC oscillator, 4x PLL enabled.
FRC w/PLL 8x	7.37 MHz Internal RC oscillator, 8x PLL enabled.
FRC w/PLL 16x	7.37 MHz Internal RC oscillator, 16x PLL enabled.
LPRC	512 kHz internal RC oscillator.

Note 1: dsPIC30F maximum operating frequency of 120 MHz must be met.

2: LP oscillator can be conveniently shared as system clock, as well as real-time clock for Timer1.

3: Requires external R and C. Frequency operation up to 4 MHz.

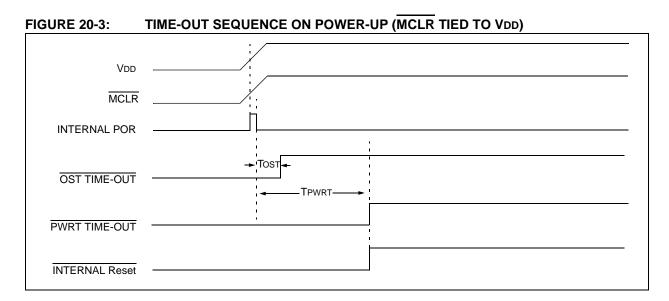


FIGURE 20-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

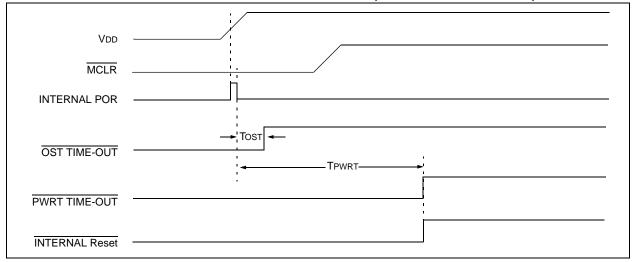
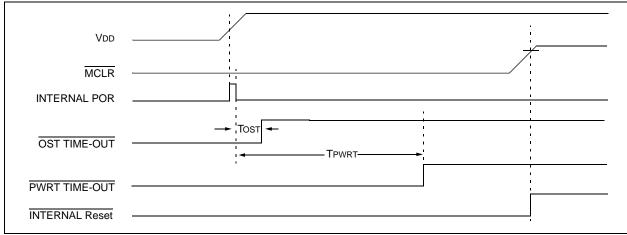



FIGURE 20-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

Field	Description								
Wb	Base W register ∈ {W0W15}								
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }								
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }								
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)								
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4*W4,W5*W5,W6*W6,W7*W7}								
Wm*Wn Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4*W5,W4*W6,W4*W7,W5*W6,W5*W7,W6*W7}									
Wn	One of 16 working registers ∈ {W0W15}								
Wnd	One of 16 destination working registers ∈ {W0W15}								
Wns	One of 16 source working registers ∈ {W0W15}								
WREG	W0 (working register used in File register instructions)								
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }								
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }								
Wx	X data space Prefetch Address register for DSP instructions ∈ {[W8]+=6, [W8]+=4, [W8]+=2, [W8], [W8]-=6, [W8]-=4, [W8]-=2, [W9]+=6, [W9]+=4, [W9]+=2, [W9], [W9]-=6, [W9]-=4, [W9]-=2, [W9+W12],none}								
Wxd	X data space Prefetch Destination register for DSP instructions ∈ {W4W7}								
$ \begin{array}{c} \mathbb{W}_{Y} \\ \mathbb{W}_{Y} \\ \in \{[\mathbb{W}10] + =6, [\mathbb{W}10] + =4, [\mathbb{W}10] + =2, [\mathbb{W}10], [\mathbb{W}10] - =6, [\mathbb{W}10] - =4, [\mathbb{W}10] - =2, \\ [\mathbb{W}11] + =6, [\mathbb{W}11] + =4, [\mathbb{W}11] + =2, [\mathbb{W}11], [\mathbb{W}11] - =6, [\mathbb{W}11] - =4, [\mathbb{W}11] - =2, \\ [\mathbb{W}11 + \mathbb{W}12], \text{ none} \} \end{array} $									
Wyd	Y data space Prefetch Destination register for DSP instructions ∈ {W4W7}								

TABLE 21-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

TABLE 21-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of words	# of cycle s	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = Iit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE, Expr	Branch if Greater than or Equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
		BRA	GT,Expr	Branch if Greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
		BRA	LE,Expr	Branch if Less than or Equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
		BRA	LT,Expr	Branch if Less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN,Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV,Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA,Expr	Branch if Accumulator A Overflow	1	1 (2)	None
		BRA	OB,Expr	Branch if Accumulator B Overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA,Expr	Branch if Accumulator A Saturated	1	1 (2)	None
		BRA	SB,Expr	Branch if Accumulator B Saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None

TABLE 23-14: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.5 TO 5.5 V)

AC CHA	RACTERI	STICS	Standard Operating Conditions: 2.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characterist	ic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
OS50	Fplli	PLL Input Frequency	Range ⁽²⁾	4	_	10	MHz	EC with 4x PLL		
			-	4	—	10	MHz	EC with 8x PLL		
				4	_	7.5 ⁽⁴⁾	MHz	EC with 16x PLL		
				4	—	10	MHz	XT with 4x PLL		
				4	_	10	MHz	XT with 8x PLL		
				4	—	7.5 ⁽⁴⁾	MHz	XT with 16x PLL		
				5 (3)	—	10	MHz	HS/2 with 4x PLL		
				5 ⁽³⁾	—	10	MHz	HS/2 with 8x PLL		
				5 ⁽³⁾	—	7.5 ⁽⁴⁾	MHz	HS/2 with 16x PLL		
				4	—	8.33 ⁽³⁾	MHz	HS/3 with 4x PLL		
				4	_	8.33 ⁽³⁾	MHz	HS/3 with 8x PLL		
				4	—	7.5 ⁽⁴⁾	MHz	HS/3 with 16x PLL		
OS51	Fsys	On-Chip PLL Output	(2)	16	_	120	MHz	EC, XT, HS/2, HS/3 modes with PLL		
OS52	TLOC	PLL Start-up Time (Ic	ock time)	_	20	50	μS			

 $\label{eq:Note 1: These parameters are characterized but not tested in manufacturing.$

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: Limited by oscillator frequency range.

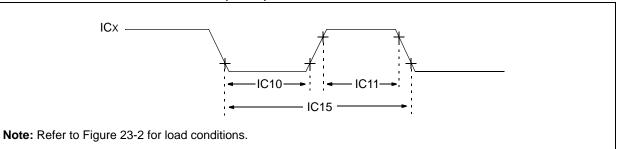
4: Limited by device operating frequency range.

TABLE 23-15: PLL JITTER

AC CHA	RACTERISTICS							
Param No.	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
OS61	x4 PLL	_	0.251	0.413	%	$\text{-40°C} \leq \text{TA} \leq \text{+85°C}$	VDD = 3.0 to 3.6V	
		—	0.251	0.413	%	$-40^{\circ}C \le TA \le +125^{\circ}C$	VDD = 3.0 to 3.6V	
		—	0.256	0.47	%	$\textbf{-40^{\circ}C} \leq \textbf{TA} \leq \textbf{+85^{\circ}C}$	VDD = 4.5 to 5.5V	
		—	0.256	0.47	%	$\text{-40°C} \leq \text{TA} \leq \text{+125°C}$	VDD = 4.5 to 5.5V	
	x8 PLL	—	0.355	0.584	%	$\textbf{-40^{\circ}C} \leq \textbf{TA} \leq \textbf{+85^{\circ}C}$	VDD = 3.0 to 3.6V	
		—	0.355	0.584	%	$\textbf{-40^{\circ}C} \leq \textbf{TA} \leq \textbf{+125^{\circ}C}$	VDD = 3.0 to 3.6V	
		—	0.362	0.664	%	$\textbf{-40^{\circ}C} \leq \textbf{TA} \leq \textbf{+85^{\circ}C}$	VDD = 4.5 to 5.5V	
		—	0.362	0.664	%	$-40^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 4.5 to 5.5V	
	x16 PLL	—	0.67	0.92	%	$\textbf{-40^{\circ}C} \leq \textbf{TA} \leq \textbf{+85^{\circ}C}$	VDD = 3.0 to 3.6V	
		_	0.632	0.956	%	$\textbf{-40^{\circ}C} \leq \textbf{TA} \leq \textbf{+85^{\circ}C}$	VDD = 4.5 to 5.5V	
		_	0.632	0.956	%	$-40^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 4.5 to 5.5V	

Note 1: These parameters are characterized but not tested in manufacturing.

Clock Oscillator Mode	Fosc (MHz) ⁽¹⁾	Τ CY (μsec)⁽²⁾	MIPS ⁽³⁾ w/o PLL	MIPS ⁽³⁾ w PLL x4	MIPS ⁽³⁾ w PLL x8	MIPS ⁽³⁾ w PLL x16
EC	0.200	20.0	0.05	_	_	—
	4	1.0	1.0	4.0	8.0	16.0
	10	0.4	2.5	10.0	20.0	—
	25	0.16	6.25	_	_	—
XT	4	1.0	1.0	4.0	8.0	16.0
	10	0.4	2.5	10.0	20.0	—


TABLE 23-16: INTERNAL CLOCK TIMING EXAMPLES

Note 1: Assumption: Oscillator Postscaler is divide by 1.

2: Instruction Execution Cycle Time: TCY = 1/MIPS.

3: Instruction Execution Frequency: MIPS = (Fosc * PLLx)/4 since there are 4 Q clocks per instruction cycle.

FIGURE 23-9: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

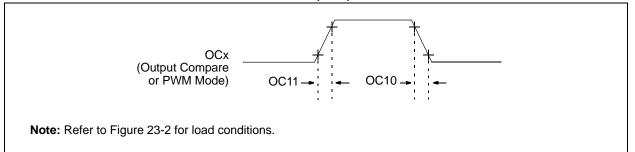


TABLE 23-26: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No. Symbol Character			ristic ⁽¹⁾	stic ⁽¹⁾ Min Max Units				
IC10	IC10 TccL ICx Input Low Time		No prescaler	0.5 TCY + 20		ns		
			With prescaler	10	_	ns		
IC11	IC11 TccH ICx Input High Time		No prescaler	0.5 TCY + 20	_	ns		
			With prescaler	10	_	ns		
IC15	TccP	ICx Input Period		(2 Tcy + 40)/N		ns	N = prescale value (1, 4, 16)	

Note 1: These parameters are characterized but not tested in manufacturing.

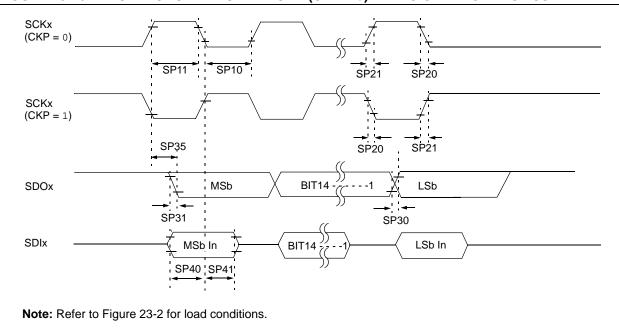

FIGURE 23-10: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 23-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

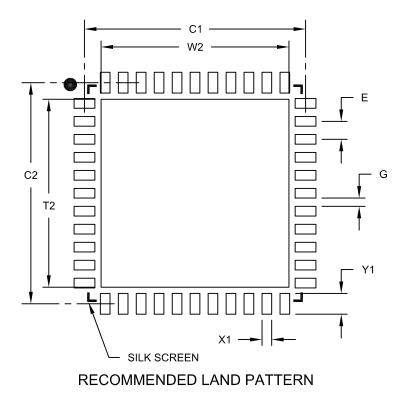
AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions	
OC10	TccF	OCx Output Fall Time	—	—	—	ns	See parameter DO32	
OC11	TccR	OCx Output Rise Time	—	—		ns	See parameter DO31	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 23-16: SPI MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 23-32: SPI MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 5.5V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol Characteristic ⁽¹⁾		Min	Тур	Max	Units	Conditions	
SP10	TscL	SCKX Output Low Time ⁽²⁾	Tcy/2	—	_	ns		
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2	_		ns		
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	—	_	ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time ⁽³⁾	_	—	_	ns	See parameter DO31	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	—	_	ns	See parameter DO32	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	—	_	ns	See parameter DO31	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	—	30	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—		ns		


Note 1: These parameters are characterized but not tested in manufacturing.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

3: Assumes 50 pF load on all SPI pins.

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensio	MIN	NOM	MAX		
Contact Pitch	E				
Optional Center Pad Width	W2		6.80		
Optional Center Pad Length	T2			6.80	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44) X1				0.35	
Contact Pad Length (X44) Y1				0.80	
Distance Between Pads	0.25				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A