

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	PWM, WDT
Number of I/O	47
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 2.7V
Data Converters	A/D 14x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc164gm-16f20f-ba

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC164GM Revision	C164GM Revision History: V1.2, 2007-03						
Previous V1.1, 200 V1.0, 200	Version(s): 6-08 5-11						
Page	Subjects (major changes since last revision)						
6	Design steps of the derivatives differentiated.						
52	Power consumption of the derivatives differentiated.						
53	Figure 10 adapted.						
54	Figure 12 adapted.						
64	Packages of the derivatives differentiated.						
65	Thermal resistances of the derivatives differentiated.						
all	"Preliminary" removed						

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Summary of Features

Table 1	XC164GM	Derivative	Synopsis

Derivative ¹⁾	Temp. Range	Program Memory	On-Chip RAM	Interfaces
SAF-XC164GM-16F40F SAF-XC164GM-16F20F	-40 to 85 ¢	128 Kbytes Flash	2 Kbytes DPRAM, 4 Kbytes DSRAM, 2 Kbytes PSRAM	ASC0, ASC1, SSC0, SSC1, CAN0, CAN1
SAF-XC164GM-8F40F SAF-XC164GM-8F20F	-40 to 85 ¢	64 Kbytes Flash	2 Kbytes DPRAM, 2 Kbytes DSRAM, 2 Kbytes PSRAM	ASC0, ASC1, SSC0, SSC1, CAN0, CAN1
SAF-XC164GM-4F40F SAF-XC164GM-4F20F	-40 to 85 ¢	32 Kbytes Flash	2 Kbytes DPRAM, 2 Kbytes PSRAM	ASC0, ASC1, SSC0, SSC1, CAN0, CAN1

 This Data Sheet is valid for: devices starting with and including design step BA for the -16F derivatives, and for devices starting with and including design step AA for -4F/8F derivatives.

General Device Information

2 General Device Information

The XC164GM derivatives are high-performance members of the Infineon XC166 Family of full featured single-chip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 40 million instructions per second) with high peripheral functionality and enhanced IO-capabilities. They also provide clock generation via PLL and various on-chip memory modules such as program Flash, program RAM, and data RAM.

General Device Information

Table 2	Pir	Pin Definitions and Functions (cont'd)						
Sym- bol	Pin Num.	Input Outp.	Function					
Port 5	9-18, 21-24	1	Port 5 is a 14-bit input-only port. The pins of Port 5 also serve as analog input channels for the A/D converter, or they serve as timer inputs:					
P5.0 P5.1 P5.2 P5.3	9 10 11 12		AN0 AN1 AN2 AN3					
P5.4 P5.5 P5.10 P5.11 P5.6 P5.7 P5.12 P5.13	13 14 15 16 17 18 21 22		AN4 AN5 AN10 (T6EUD): GPT2 Timer T6 Ext. Up/Down Ctrl. Inp. AN11 (T5EUD): GPT2 Timer T5 Ext. Up/Down Ctrl. Inp. AN6 AN7 AN12 (T6IN): GPT2 Timer T6 Count/Gate Input AN13 (T5IN): GPT2 Timer T5 Count/Gate Input					
P5.14 P5.15	23 24	• 	AN14 (T4EUD): GPT1 Timer T4 Ext. Up/Down Ctrl. Inp. AN15 (T2EUD): GPT1 Timer T2 Ext. Up/Down Ctrl. Inp.					
TRST	62	1	Test-System Reset Input. For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of RSTIN enables the hardware configuration and activates the XC164GM's debug system. In this case, pin TRST must be driven low once to reset the debug system.					

Table 4XC164GM Interrupt Nodes (cont'd)

Source of Interrupt or PEC	Control	Vector	Trap
Service Request	Register	Location ¹⁾	Number
GPT2 CAPREL Register	GPT12E_CRIC	xx'009C _H	27 _H / 39 _D
A/D Conversion Complete	ADC_CIC	xx'00A0 _H	28 _H / 40 _D
A/D Overrun Error	ADC_EIC	xx'00A4 _H	29 _H / 41 _D
ASC0 Transmit	ASC0_TIC	xx'00A8 _H	2A _H / 42 _D
ASC0 Transmit Buffer	ASC0_TBIC	xx'011C _H	47 _H / 71 _D
ASC0 Receive	ASC0_RIC	xx'00AC _H	2B _H / 43 _D
ASC0 Error	ASC0_EIC	xx'00B0 _H	2C _H / 44 _D
ASC0 Autobaud	ASC0_ABIC	xx'017C _H	5F _H / 95 _D
SSC0 Transmit	SSC0_TIC	xx'00B4 _H	2D _H / 45 _D
SSC0 Receive	SSC0_RIC	xx'00B8 _H	2E _H / 46 _D
SSC0 Error	SSC0_EIC	xx'00BC _H	2F _H / 47 _D
PLL/OWD	PLLIC	xx'010C _H	43 _H / 67 _D
ASC1 Transmit	ASC1_TIC	xx'0120 _H	48 _H / 72 _D
ASC1 Transmit Buffer	ASC1_TBIC	xx'0178 _H	5E _H / 94 _D
ASC1 Receive	ASC1_RIC	xx'0124 _H	49 _H / 73 _D
ASC1 Error	ASC1_EIC	xx'0128 _H	4A _H / 74 _D
ASC1 Autobaud	ASC1_ABIC	xx'0108 _H	42 _H / 66 _D
End of PEC Subchannel	EOPIC	xx'0130 _H	4C _H / 76 _D
SSC1 Transmit	SSC1_TIC	xx'0144 _H	51 _H / 81 _D
SSC1 Receive	SSC1_RIC	xx'0148 _H	52 _H / 82 _D
SSC1 Error	SSC1_EIC	xx'014C _H	53 _H / 83 _D
CAN0	CAN_0IC	xx'0150 _H	54 _H / 84 _D
CAN1	CAN_1IC	xx'0154 _H	55 _H / 85 _D
CAN2	CAN_2IC	xx'0158 _H	56 _H / 86 _D
CAN3	CAN_3IC	xx'015C _H	57 _H / 87 _D
CAN4	CAN_4IC	xx'0164 _H	59 _H / 89 _D
CAN5	CAN_5IC	xx'0168 _H	5A _H / 90 _D
CAN6	CAN_6IC	xx'016C _H	5B _H / 91 _D
CAN7	CAN_7IC	xx'0170 _H	5C _H / 92 _D
RTC	RTC_IC	xx'0174 _H	5D _H / 93 _D

Table 4XC164GM Interrupt Nodes (cont'd)

Source of Interrupt or PEC	Control	Vector	Trap
Service Request	Register	Location ¹⁾	Number
GPT2 CAPREL Register	GPT12E_CRIC	xx'009C _H	27 _H / 39 _D
A/D Conversion Complete	ADC_CIC	xx'00A0 _H	28 _H / 40 _D
A/D Overrun Error	ADC_EIC	xx'00A4 _H	29 _H / 41 _D
ASC0 Transmit	ASC0_TIC	xx'00A8 _H	2A _H / 42 _D
ASC0 Transmit Buffer	ASC0_TBIC	xx'011C _H	47 _H / 71 _D
ASC0 Receive	ASC0_RIC	xx'00AC _H	2B _H / 43 _D
ASC0 Error	ASC0_EIC	xx'00B0 _H	2C _H / 44 _D
ASC0 Autobaud	ASC0_ABIC	xx'017C _H	5F _H / 95 _D
SSC0 Transmit	SSC0_TIC	xx'00B4 _H	2D _H / 45 _D
SSC0 Receive	SSC0_RIC	xx'00B8 _H	2E _H / 46 _D
SSC0 Error	SSC0_EIC	xx'00BC _H	2F _H / 47 _D
PLL/OWD	PLLIC	xx'010C _H	43 _H / 67 _D
ASC1 Transmit	ASC1_TIC	xx'0120 _H	48 _H / 72 _D
ASC1 Transmit Buffer	ASC1_TBIC	xx'0178 _H	5E _H / 94 _D
ASC1 Receive	ASC1_RIC	xx'0124 _H	49 _H / 73 _D
ASC1 Error	ASC1_EIC	xx'0128 _H	4A _H / 74 _D
ASC1 Autobaud	ASC1_ABIC	xx'0108 _H	42 _H / 66 _D
End of PEC Subchannel	EOPIC	xx'0130 _H	4C _H / 76 _D
SSC1 Transmit	SSC1_TIC	xx'0144 _H	51 _H / 81 _D
SSC1 Receive	SSC1_RIC	xx'0148 _H	52 _H / 82 _D
SSC1 Error	SSC1_EIC	xx'014C _H	53 _H / 83 _D
CAN0	CAN_0IC	xx'0150 _H	54 _H / 84 _D
CAN1	CAN_1IC	xx'0154 _H	55 _H / 85 _D
CAN2	CAN_2IC	xx'0158 _H	56 _H / 86 _D
CAN3	CAN_3IC	xx'015C _H	57 _H / 87 _D
CAN4	CAN_4IC	xx'0164 _H	59 _H / 89 _D
CAN5	CAN_5IC	xx'0168 _H	5A _H / 90 _D
CAN6	CAN_6IC	xx'016C _H	5B _H / 91 _D
CAN7	CAN_7IC	xx'0170 _H	5C _H / 92 _D
RTC	RTC_IC	xx'0174 _H	5D _H / 93 _D

register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.

count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD). Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can additionally be used to clock the CAPCOM2 timers, and to cause a reload from the CAPREL register.

The CAPREL register may capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared after the capture procedure. This allows the XC164GM to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of GPT1 timer T3's inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

3.13 Watchdog Timer

The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can be disabled until the EINIT instruction has been executed (compatible mode), or it can be disabled and enabled at any time by executing instructions DISWDT and ENWDT (enhanced mode). Thus, the chip's start-up procedure is always monitored. The software has to be designed to restart the Watchdog Timer before it overflows. If, due to hardware or software related failures, the software fails to do so, the Watchdog Timer overflows and generates an internal hardware reset.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 2/4/128/256. The high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the high byte of the Watchdog Timer is reloaded and the low byte is cleared. Thus, time intervals between 13 Rs and 419 ms can be monitored (@ 40 MHz).

The default Watchdog Timer interval after reset is 3.28 ms (@ 40 MHz).

3.14 Clock Generation

The Clock Generation Unit uses a programmable on-chip PLL with multiple prescalers to generate the clock signals for the XC164GM with high flexibility. The master clock f_{MC} is the reference clock signal, and is used for TwinCAN and is output to the external system. The CPU clock f_{CPU} and the system clock f_{SYS} are derived from the master clock either directly (1:1) or via a 2:1 prescaler ($f_{SYS} = f_{CPU} = f_{MC} / 2$). See also Section 4.4.1.

The on-chip oscillator can drive an external crystal or accepts an external clock signal. The oscillator clock frequency can be multiplied by the on-chip PLL (by a programmable factor) or can be divided by a programmable prescaler factor.

If the bypass mode is used (direct drive or prescaler) the PLL can deliver an independent clock to monitor the clock signal generated by the on-chip oscillator. This PLL clock is independent from the XTAL1 clock. When the expected oscillator clock transitions are missing the Oscillator Watchdog (OWD) activates the PLL Unlock/OWD interrupt node and supplies the CPU with an emergency clock, the PLL clock signal. Under these circumstances the PLL will oscillate with its basic frequency.

The oscillator watchdog can be disabled by switching the PLL off. This reduces power consumption, but also no interrupt request will be generated in case of a missing oscillator clock.

3.16 **Power Management**

The XC164GM provides several means to control the power it consumes either at a given time or averaged over a certain timespan. Three mechanisms can be used (partly in parallel):

• **Power Saving Modes** switch the XC164GM into a special operating mode (control via instructions).

Idle Mode stops the CPU while the peripherals can continue to operate.

Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may optionally continue running). Sleep Mode can be terminated by external interrupt signals.

• Clock Generation Management controls the distribution and the frequency of internal and external clock signals. While the clock signals for currently inactive parts of logic are disabled automatically, the user can reduce the XC164GM's CPU clock frequency which drastically reduces the consumed power.

External circuitry can be controlled via the programmable frequency output FOUT.

• **Peripheral Management** permits temporary disabling of peripheral modules (control via register SYSCON3). Each peripheral can separately be disabled/enabled.

The on-chip RTC supports intermittent operation of the XC164GM by generating cyclic wake-up signals. This offers full performance to quickly react on action requests while the intermittent sleep phases greatly reduce the average power consumption of the system.

Operating Conditions

The following operating conditions must not be exceeded to ensure correct operation of the XC164GM. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Parameter	Symbol	Limit Values		Unit	Notes	
		Min.	Max.			
Digital supply voltage for the core	V _{DDI}	2.35	2.7	V	Active mode, $f_{CPU} = f_{CPUmax}^{1}$	
Digital supply voltage for IO pads	V _{DDP}	4.4	5.5	V	Active mode ²⁾³⁾	
Supply Voltage Difference	'V _{DD}	-0.5	-	V	V _{DDP} - V _{DDI} ⁴⁾	
Digital ground voltage	V _{ss}	0		V	Reference voltage	
Overload current	I _{ov}	-5	5	mA	Per IO pin ⁵⁾⁶⁾	
		-2	5	mA	Per analog input pin ⁵⁾⁶⁾	
Overload current coupling	K _{OVA}	-	1.0 u10 ⁻⁴	_	I _{OV} > 0	
factor for analog inputs ⁷		-	1.5 u10 ⁻³	_	I _{OV} < 0	
Overload current coupling	K _{OVD}	-	5.0 u10 ⁻³	-	I _{OV} > 0	
factor for digital I/O pins ⁽⁾		-	1.0 u10 ⁻²	-	I _{OV} < 0	
Absolute sum of overload currents	βl ov∣	-	50	mA	6)	
External Load Capacitance	CL	-	50	pF	Pin drivers in default mode ⁸⁾	
Ambient temperature	T _A	0	70	¢	SAB-XC164	
		-40	85	¢	SAF-XC164	
		-40	125	¢	SAK-XC164	

Table 10 Operating Condition Parameters

1) f_{CPUmax} = 40 MHz for devices marked ... 40F, f_{CPUmax} = 20 MHz for devices marked ... 20F.

2) External circuitry must guarantee low-level at the RSTIN pin at least until both power supply voltages have reached the operating range.

³⁾ The specified voltage range is allowed for operation. The range limits may be reached under extreme operating conditions. However, specified parameters, such as leakage currents, refer to the standard operating voltage range of V_{DDP} = 4.75 V to 5.25 V.

⁴⁾ This limitation must be fulfilled under all operating conditions including power-ramp-up, power-ramp-down, and power-save modes.

4.2 DC Parameters

These parameters are static or average values, which may be exceeded during switching transitions (e.g. output current).

y) ¹⁾
y

Parameter	Symbol		Limit	Values	Unit	Test Condition
			Min.	Max.		
Input low voltage TTL (all except XTAL1)	V _{IL}	SR	-0.5	0.2 uV _{DDP} - 0.1	V	-
Input low voltage XTAL1 ²⁾	V _{ILC}	SR	-0.5	0.3 uV _{DDI}	V	-
Input low voltage (Special Threshold)	V _{ILS}	SR	-0.5	0.45 u V _{DDP}	V	3)
Input high voltage TTL (all except XTAL1)	V _{IH}	SR	0.2 uV _{DDP} + 0.9	V _{DDP} + 0.5	V	-
Input high voltage XTAL1 ²⁾	V _{IHC}	SR	0.7 uV _{DDI}	V _{DDI} + 0.5	V	-
Input high voltage (Special Threshold)	V _{IHS}	SR	0.8 uV _{DDP} - 0.2	V _{DDP} + 0.5	V	3)
Input Hysteresis (Special Threshold)	HYS		0.04 u V _{DDP}	-	V	V_{DDP} in [V], Series resis- tance = 0 : ³⁾
Output low voltage	V _{OL}	CC	-	1.0	V	I _{OL} dI _{OLmax} ⁴⁾
			-	0.45	V	I _{OL} dI _{OLnom} ⁴⁾⁵⁾
Output high voltage ⁶⁾	V _{OH}	CC	V _{DDP} - 1.0	-	V	I _{OH} t I _{OHmax} ⁴⁾
			V _{DDP} - 0.45	-	V	I _{OH} t I _{OHnom} ⁴⁾⁵⁾
Input leakage current (Port 5) ⁷⁾	I _{OZ1}	CC	_	r300	nA	0 V < V _{IN} < V _{DDP} , T _A d125 ¢
				r200	nA	$0 V < V_{IN} < V_{DDP},$ $T_A d85 \ C^{12)}$
Input leakage current (all other ⁸⁾) ⁷⁾	I _{OZ2}	CC	-	r500	nA	0.45 V < V _{IN} < V _{DDP}
Configuration pull-up	I _{CPUH} ¹⁰⁾		-	-10	FA	V _{IN} = V _{IHmin}
current ⁹⁾	I _{CPUL} ¹¹⁾		-100	-	FA	V _{IN} = V _{ILmax}

Figure 10 Supply/Idle Current as a Function of Operating Frequency

Figure 11 Sleep and Power Down Supply Current due to RTC and Oscillator Running, as a Function of Oscillator Frequency

Figure 12 Sleep and Power Down Leakage Supply Current as a Function of Temperature

4.3 Analog/Digital Converter Parameters

These parameters describe how the optimum ADC performance can be reached.

Parameter	Symbol		Limit	Values	Unit	Test
			Min.	Min. Max.		Condition
Analog reference supply	V _{AREF}	SR	4.5	V _{DDP} + 0.1	V	1)
Analog reference ground	V _{AGND}	SR	V _{SS} - 0.1	V _{SS} + 0.1	V	-
Analog input voltage range	V _{AIN}	SR	V _{AGND}	V _{AREF}	V	2)
Basic clock frequency	f _{BC}		0.5	20	MHz	3)
Conversion time for 10-bit	t _{C10P}	CC	52 ut _{BC} +	$t_{\rm S}$ + 6 $ut_{\rm SYS}$	_	Post-calibr. on
result ⁴⁾	t _{C10}	CC	40 ut _{BC} +	t_{s} + 6 ut_{sys}	-	Post-calibr. off
Conversion time for 8-bit	t _{C8P}	CC	44 ut _{BC} +	t_{s} + 6 ut_{sys}	-	Post-calibr. on
result ⁴⁾	t _{C8}	СС	32 ut _{BC} +	t_{S} + 6 ut_{SYS}	-	Post-calibr. off
Calibration time after reset	t _{CAL}	CC	484	11,696	t _{BC}	5)
Total unadjusted error	TUE	CC	_	r2	LSB	1)
Total capacitance of an analog input	C _{AINT}	CC	-	15	pF	6)
Switched capacitance of an analog input	C _{AINS}	CC	_	10	pF	6)
Resistance of the analog input path	R _{AIN}	CC	_	2	k :	6)
Total capacitance of the reference input	C _{AREFT}	CC	_	20	pF	6)
Switched capacitance of the reference input	CAREFS	CC	_	15	pF	6)
Resistance of the reference input path	R _{AREF}	СС	_	1	k :	6)

Table 14A/D Converter Characteristics (Operating Conditions apply)

1) TUE is tested at $V_{AREF} = V_{DDP} + 0.1 V$, $V_{AGND} = 0 V$. It is verified by design for all other voltages within the defined voltage range.

If the analog reference supply voltage drops below 4.5 V (i.e. V_{AREF} t 4.0 V) or exceeds the power supply voltage by up to 0.2 V (i.e. $V_{AREF} = V_{DDP} + 0.2$ V) the maximum TUE is increased to r3 LSB. This range is not subject to production test.

The specified TUE is guaranteed only, if the absolute sum of input overload currents on Port 5 pins (see I_{OV} specification) does not exceed 10 mA, and if V_{AREF} and V_{AGND} remain stable during the respective period of time. During the reset calibration sequence the maximum TUE may be r4 LSB.

- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- 3) The limit values for f_{BC} must not be exceeded when selecting the peripheral frequency and the ADCTC setting.
- 4) This parameter includes the sample time t_s, the time for determining the digital result and the time to load the result register with the conversion result (t_{SYS} = 1/f_{SYS}). Values for the basic clock t_{BC} depend on programming and can be taken from Table 15.

When the post-calibration is switched off, the conversion time is reduced by 12 ut_{BC} .

- 5) The actual duration of the reset calibration depends on the noise on the reference signal. Conversions executed during the reset calibration increase the calibration time. The TUE for those conversions may be increased.
- 6) Not subject to production test verified by design/characterization. The given parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) reduced values can be used for calculations. At room temperature and nominal supply voltage the following typical values can be used:

 $C_{AINTtyp} = 12 \text{ pF}, C_{AINStyp} = 7 \text{ pF}, R_{AINtyp} = 1.5 \text{ k}$; $C_{AREFTtyp} = 15 \text{ pF}, C_{AREFStyp} = 13 \text{ pF}, R_{AREFtyp} = 0.7 \text{ k}$;

Figure 13 Equivalent Circuitry for Analog Inputs

Different frequency bands can be selected for the VCO, so the operation of the PLL can be adjusted to a wide range of input and output frequencies:

Table 16	VCO Bands for PLL Operation ¹⁾
----------	---

PLLCON.PLLVB	VCO Frequency Range	Base Frequency Range
00	100 150 MHz	20 80 MHz
01	150 200 MHz	40 130 MHz
10	200 250 MHz	60 180 MHz
11	Reserved	<u>.</u>

1) Not subject to production test - verified by design/characterization.