

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151cct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. The capacitive sensing acquisition only requires few external components to operate. This acquisition is managed directly by the GPIOs, timers and analog I/O groups (see Section 3.14: System configuration controller and routing interface).

Reliable touch sensing functionality can be quickly and easily implemented using the free STM32L1xx STMTouch touch sensing firmware library.

3.16 Timers and watchdogs

The ultra-low-power STM32L151xC and STM32L152xC devices include seven generalpurpose timers, two basic timers, and two watchdog timers.

Table 7 compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM5	32-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM9	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No
TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 7. Timer feature comparison

3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11)

There are seven synchronizable general-purpose timers embedded in the STM32L151xC and STM32L152xC devices (see *Table 7* for differences).

TIM2, TIM3, TIM4, TIM5

TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures/output compares/PWMs on the largest packages.

TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

DocID022799 Rev 12

3.17.2 Universal synchronous/asynchronous receiver transmitter (USART)

The three USART interfaces are able to communicate at speeds of up to 4 Mbit/s. They support IrDA SIR ENDEC and have LIN Master/Slave capability. The three USARTs provide hardware management of the CTS and RTS signals and are ISO 7816 compliant.

All USART interfaces can be served by the DMA controller.

3.17.3 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

The SPIs can be served by the DMA controller.

3.17.4 Inter-integrated sound (I²S)

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

The I2Ss can be served by the DMA controller.

3.17.5 Universal serial bus (USB)

The STM32L151xC and STM32L152xC devices embed a USB device peripheral compatible with the USB full-speed 12 Mbit/s. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and supports suspend/resume. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

3.18 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

Figure 5. STM32L15xRC LQFP64 pinout

1. This figure shows the package top view.

STM32L151xC STM32L152xC

	1	2	3	4	5	6	7
A	VSS_2	PA15	PC11	(PD2)	(PB5)	80070	(VSS)3
В	(PA11)	VDD 2	PC10	PC12	(PB6)	(PB8)	VDD_3
С	(PA9)	PA13	PA14	(PB3)	(PB7)	(PB9)	(LCD)
D	PC8	PA10	PA12	(PB4)	PC13	PC15	PC14
Е	PC7	PC9	PA8	(PA0)	(PC1)	PC0	NRST
F	PC6	PB15	PB14	(PC4)	VSSA	(PH0)	(PH1)
G	PB13	PB12	(PB2)	(PA6)	(PA1)	PC3	PC2
Н	VDD_1	(PB11)	(PB1)	(PA5)	vss	(PA2)	(VDDA)
J	VSS 1	PB10	(PB0)	PC5	(PA7)	(PA4)	(PA3)
							MS31071V1

Figure 6. STM32L15xUC WLCSP63 ballout

1. This figure shows the package top view.

57

Figure 7. STM32L15xCC UFQFPN48 pinout

1. This figure shows the package top view.

	F	Pins							Pin functions		
UFBGA100	LQFP100	LQFP64	WLCSP63	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I / O Structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions	
L12	51	33	G2	25	PB12	I/O	FT	PB12	TIM10_CH1 /I2C2_SMBA/ SPI2_NSS/I2S2_WS/ USART3_CK/ LCD_SEG12	ADC_IN18/ COMP1_INP/ VLCDRAIL2	
K12	52	34	G1	26	PB13	I/O	FT	PB13	TIM9_CH1/SPI2_SCK/ I2S2_CK/ USART3_CTS/ LCD_SEG13	ADC_IN19/ COMP1_INP	
K11	53	35	F3	27	PB14	I/O	FT	PB14	TIM9_CH2/SPI2_MISO/ USART3_RTS/ LCD_SEG14	ADC_IN20/ COMP1_INP	
K10	54	36	F2	28	PB15	I/O	FT	PB15	TIM11_CH1/SPI2_MOSI /I2S2_SD/LCD_SEG15	ADC_IN21/ COMP1_INP/ RTC_REFIN	
K9	55	-	-	-	PD8	I/O	FT	PD8	USART3_TX/ LCD_SEG28	-	
K8	56	-	-	-	PD9	I/O	FT	PD9	USART3_RX/ LCD_SEG29	-	
J12	57	-	-	-	PD10	I/O	FT	PD10	USART3_CK/ LCD_SEG30	-	
J11	58	-	-	-	PD11	I/O	FT	PD11	USART3_CTS/ LCD_SEG31	-	
J10	59	-	-	-	PD12	I/O	FT	PD12	TIM4_CH1/ USART3_RTS/ LCD_SEG32	-	
H12	60	-	-	-	PD13	I/O	FT	PD13	TIM4_CH2/LCD_SEG33	-	
H11	61	-	-	-	PD14	I/O	FT	PD14	TIM4_CH3/LCD_SEG34	-	
H10	62	-	-	-	PD15	I/O	FT	PD15	TIM4_CH4/LCD_SEG35	-	
E12	63	37	F1	-	PC6	I/O	FT	PC6	TIM3_CH1/I2S2_MCK/ LCD_SEG24	-	

Table 9. STM32L151xC and STM32L152xC pin definitions (continued)

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.6 V (for the 1.65 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

Symbol	Parameter		Conditions		Тур	Max ⁽¹⁾	Unit
				T_A = -40 °C to 25 °C	8.6	12	
		A.11	MSI clock, 65 kHz	T _A = 85 °C	19	25	
		All peripherals		T _A = 105 °C	35	47	
		OFF, code		$T_A = -40 \degree C$ to 25 $\degree C$	14	16	
		from RAM,	MSI clock, 65 kHz	T _A = 85 °C	24	29	
		Flash	HOLK COMP	T _A = 105 °C	40	51	
		OFF, V _{DD}		T_A = -40 °C to 25 °C	26	29	
		from 1.65 V	MSI clock, 131 kHz	T _A = 55 °C	28	31	
I _{DD (I P}	Supply current in Low-power run mode	10 3.6 V	f _{HCLK} = 131 kHz	T _A = 85 °C	36	42	Αų
				T _A = 105 °C	52	64	
Run)		All	MSI clock, 65 kHz f _{HCLK} = 32 kHz	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	20	24	
				T _A = 85 °C	32	37	
				T _A = 105 °C	49	61	
		peripherals	MSI clock, 65 kHz f _{HCLK} = 65 kHz	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	26	30	
		executed		T _A = 85 °C	38	44	
		from Flash,		T _A = 105 °C	55	67	
		1.65 V to		T_A = -40 °C to 25 °C	41	46	
		3.6 V	MSI clock, 131 kHz	T _A = 55 °C	44	50	-
			f _{HCLK} = 131 kHz	T _A = 85 °C	56	87	
				T _A = 105 °C	73	110	
I _{DD} max (LP Run)	Max allowed current in Low-power run mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200	

Table 21. Current consumption in Low-power run mode

1. Guaranteed by characterization results, unless otherwise specified.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table	41.	Electrical	sensitivities
IUNIC	_	LICCUITCUI	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105$ °C conforming to JESD78A	II level A

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $-5 \mu A/+0 \mu A$ range), or other functional failure (for example reset occurrence oscillator frequency deviation, LCD levels).

The test results are given in the Table 42.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
I _{INJ}	Injected current on all 5 V tolerant (FT) pins	-5 ⁽¹⁾	NA	
	Injected current on BOOT0	-0	NA	mA
	Injected current on any other pin	-5 ⁽¹⁾	+5	

Table 42. I/O current injection susceptibility

1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA with the non-standard V_{OL}/V_{OH} specifications given in *Table 44*.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD(Σ)} (see *Table 12*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS(Σ)} (see *Table 12*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 44* are derived from tests performed under the conditions summarized in *Table 14*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾⁽²⁾	Output low level voltage for an I/O pin	I _{IO} = 8 mA	-	0.4	
V _{OH} ⁽²⁾⁽³⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽³⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 4 mA	-	0.45	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	1.65 V < V _{DD} < 3.6 V	V _{DD} -0.45	-	v
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	

Table 44. Output voltage characteristics

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 12* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. Guaranteed by test in production.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 12 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Guaranteed by characterization results.

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 46*)

Unless otherwise specified, the parameters given in *Table 46* are derived from tests performed under the conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	-	-	0.3 V _{DD}	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	0.39V _{DD} +0.59	-	-	V
V _{OL(NRST)} ⁽¹⁾	NRST output low	I _{OL} = 2 mA 2.7 V < V _{DD} < 3.6 V	-	-	0.4	v
	level voltage	I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V	-	-	0.4	
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽³⁾	NRST input not filtered pulse	-	350	-	-	ns

Table 46. NRST pin characteristics

1. Guaranteed by design.

2. With a minimum of 200 mV.

3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%.

Figure 21. I²C bus AC waveforms and measurement circuit

- 1. R_S = series protection resistor.
- 2. R_P = external pull-up resistor.
- 3. V_{DD_12C} is the I2C bus power supply.
- 4. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

f (kHz)	I2C_CCR value
	R_P = 4.7 k Ω
400	0x801B
300	0x8024
200	0x8035
100	0x00A0
50	0x0140
20	0x0320

Table 49. SCL frequency (f_{PCLK1} = 32 MHz, $V_{DD} = V_{DD_{12C}} = 3.3 V$)⁽¹⁾⁽²⁾

1. R_P = External pull-up resistance, f_{SCL} = I^2C speed.

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external components used to design the application.

Electrical characteristics

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2	4	
EO	Offset error	2.4 V ≤V _{DDA} ≤ 3.6 V	-	1	2	
EG	Gain error	2.4 V ≤V _{REF+} ≤ 3.6 V fado = 8 MHz, Rain = 50 Ω	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	1.7	3	
ENOB	Effective number of bits		9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio	−2.4 V ≤ V _{DDA} ≤ 3.6 V V _{DDA} = V _{REF+} f _{ADC} = 16 MHz, R _{AIN} = 50 Ω	57.5	62	-	
SNR	Signal-to-noise ratio	$T_A = -40$ to 105 ° C	57.5	62	-	dB
THD	Total harmonic distortion	Finput=10KHZ	-	-70	-65	
ENOB	Effective number of bits	1.8 V ≤V _{DDA} ≤ 2.4 V V _{DDA} = V _{REF+} f_{ADC} = 8 MHz or 4 MHz, R _{AIN} = 50 Ω	9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio		57.5	62	-	
SNR	Signal-to-noise ratio	$T_A = -40$ to 105 °C	57.5	62	-	dB
THD	Total harmonic distortion	Finput-IOKI IZ	-	-70	-65	
ET	Total unadjusted error		-	4	6.5	
EO	Offset error	$2.4 \text{ V} \leq V_{DDA} \leq 3.6 \text{ V}$	-	2	4	
EG	Gain error	1.8 V ≤V _{REF+} ≤ 2.4 V fado = 4 MHz. Rain = 50 Ω	-	4	6	LSB
ED	Differential linearity error	$T_{A} = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	1.5	3	
ET	Total unadjusted error		-	2	3	
EO	Offset error	1.8 V ≤V _{DDA} ≤ 2.4 V	-	1	1.5	
EG	Gain error	1.8 V \leq V _{REF+} \leq 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω	-	1.5	2	LSB
ED	Differential linearity error	$T_{A} = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	1	1.5	

Table 5	7. ADC	accurac	y ⁽¹⁾⁽²⁾
---------	--------	---------	---------------------

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.12 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
dOffeet/dT(1)	Offset error temperature	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0 \text{ to } 50 ^{\circ}\text{C}$ DAC output buffer OFF	-20	-10	0	uV/°C	
uonsettur	coefficient (code 0x800)	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0 \text{ to } 50 ^{\circ}\text{C}$ DAC output buffer ON	0	20	50	μv/ C	
Coin ⁽¹⁾	Cain amor(7)	$C_{L} \le 50 \text{ pF}, R_{L} \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	+0.1 / -0.2%	+0.2 / -0.5%		
Gain	Gain error**	No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF	-	+0 / -0.2%	Max Un 0 μV 50 μV +0.2 / -0.5% 9 +0 / -0.4% 9 0 μV 0 12 12 μ 12 μ 12 μ 15 μ	%	
Gain error temperature		$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0 \text{ to } 50 ^{\circ}\text{C}$ DAC output buffer OFF	-10	-2	0	u\//°C	
aGain/d1(')	coefficient	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0 \text{ to } 50 ^{\circ}\text{C}$ DAC output buffer ON	-40	-8	0	μvi o	
TU⊏(1)	Total unadjusted error	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	12	30	ISB	
TUE		No R _L , C _L ≤50 pF DAC output buffer OFF	-	8	12	LOD	
t _{SETTLING}	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till DAC_OUT reaches final value ±1LSB	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	7	12	μs	
Update rate	Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$	-	-	1	Msps	
t _{wakeup}	Wakeup time from off state (setting the ENx bit in the DAC Control register) ⁽⁸⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	9	15	μs	
PSRR+	V _{DDA} supply rejection ratio (static DC measurement)	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$	-	-60	-35	dB	

Table 59	. DAC	characteristics	(continued)
----------	-------	-----------------	-------------

1. Data based on characterization results.

2. Connected between DAC_OUT and $\mathsf{V}_{\mathsf{SSA}}.$

3. Difference between two consecutive codes - 1 LSB.

DocID022799 Rev 12

- 4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
- 5. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.
- 6. Difference between the value measured at Code (0x001) and the ideal value.
- 7. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and ($V_{DDA} 0.2$) V when buffer is ON.
- 8. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.19 Operational amplifier characteristics

Symbol	Parameter		Condition ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
CMIR	Common mode inpu	ut range	-	0	-	V _{DD}		
M		Maximum calibration range	-	-	-	±15		
VOFFSET	input onset voltage	After offset calibration	-	-	-	±1.5	IIIV	
	Input offset voltage	Normal mode	-	-	-	±40	µV/°C	
OFFSET	drift	Low-power mode	-	-	-	±80		
I _{IB} Input current bias	Dedicated input		-	-	1			
	General purpose input	75 °C	-	-	10	nA		
		Normal mode	-	-	-	500		
LOAD	Drive current	Low-power mode	-	-	-	100	μΑ	
		Normal mode	No load,	-	100	220	20	
IDD Consumption	Low-power mode	quiescent mode	-	30	60	μΑ		
	Common mode	Normal mode	-	-	-85	-	dD	
	rejection ration	Low-power mode	-	-	-90	-	uD	

Table 60. Operational amplifier characteristics

6.3.20 Temperature sensor characteristics

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 $^{\circ}C \pm 5 ^{\circ}C$ V _{DDA} = 3 V ± 10 mV	0x1FF8 00FA - 0x1FF8 00FB
TS_CAL2	TS ADC raw data acquired at temperature of 110 $^\circ$ C \pm 5 $^\circ$ C V _{DDA} = 3 V \pm 10 mV	0x1FF8 00FE - 0x1FF8 00FF

Table 61. Temperature sensor calibration values

Table 62. Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	£	±2	°C
Avg_Slope ⁽¹⁾	Average slope	1.48	1.61	1.75	mV/°C
V ₁₁₀	Voltage at 110°C ±5°C ⁽²⁾	612	626.8	641.5	mV
I _{DDA(TEMP)} ⁽³⁾	Current consumption	-	3.4	6	μA
t _{START} ⁽³⁾	Startup time	-	-	10	
T _{S_temp} ⁽³⁾	ADC sampling time when reading the temperature	4	_	_	μs

1. Guaranteed by characterization results.

2. Measured at V_{DD} = 3 V \pm 10 mV. V110 ADC conversion result is stored in the TS_CAL2 byte.

3. Guaranteed by design.

6.3.21 Comparator

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V_{DDA}	Analog supply voltage	-	1.65		3.6	V
R _{400K}	R _{400K} value	-	-	400	-	kO
R _{10K}	R _{10K} value	-	-	10	-	N22
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V
t _{START}	Comparator startup time	-	-	7	10	110
td	Propagation delay ⁽²⁾	-	-	3	10	μο
Voffset	Comparator offset	-	-	ŧ	±10	mV
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$V_{DDA} = 3.6 V$ $V_{IN+} = 0 V$ $V_{IN-} = V_{REFINT}$ $T_{A} = 25 ° C$	0	1.5	10	mV/1000 h
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA

Table 63. Comparator 1 characteristics

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity

mil		millimeters	limeters		inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
E	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

Table 69. UFQFPN48 – ultra thin fine pitch quad flat pack no-lead 7 × 7 mm,0.5 mm pitch package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 42. UFQFPN48 recommended footprint

1. Dimensions are in millimeters.

7.7 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient UFBGA100 - 7 x 7 mm	59	
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	43	
Θ _{JA}	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	46	°C/M
	Thermal resistance junction-ambient WLCSP63 - 0.400 mm pitch	49	C/W
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	55	
	Thermal resistance junction-ambient UFQFPN48 - 7 x 7 mm / 0.5 mm pitch	33	

Table 73. Thermal characteristics

Date	Revision	Changes
20-Aug-2015	11	Updated <i>Table 17: Embedded internal reference voltage</i> temperature coefficient at 100ppm/°C and table footnote 3: "guaranteed by design" changed by "guaranteed by characterization results". Updated <i>Table 64: Comparator 2 characteristics</i> new maximum threshold voltage temperature coefficient at 100ppm/°C.
10-Mar-2016	12	Updated cover page putting eight SPIs in the peripheral communication interface list. Updated <i>Table 2: Ultra-low-power STM32L151xC and STM32L152xC</i> <i>device features and peripheral counts</i> SPI and I2S lines. Updated <i>Table 40: ESD absolute maximum ratings</i> CDM class. Updated all the notes, removing 'not tested in production'. Updated thermal resistance for UFQFPN48 to value of 33 °C/W. Updated <i>Table 11: Voltage characteristics</i> adding note about V _{REF-} pin. Updated <i>Table 5: Functionalities depending on the working mode (from</i> <i>Run/active down to standby)</i> LSI and LSE functionalities putting "Y" in Standby mode. Removed note 1 below <i>Figure 2: Clock tree</i> .

Table 75. Document revision history (continued)

