
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151ccu6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.16	Timers	and watchdogs	28
		3.16.1	General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11)	. 28
		3.16.2	Basic timers (TIM6 and TIM7)	
		3.16.3	SysTick timer	. 29
		3.16.4	Independent watchdog (IWDG)	. 29
		3.16.5	Window watchdog (WWDG)	. 29
	3.17	Commu	inication interfaces	29
		3.17.1	I ² C bus	. 29
		3.17.2	Universal synchronous/asynchronous receiver transmitter (USART) .	. 30
		3.17.3	Serial peripheral interface (SPI)	. 30
		3.17.4	Inter-integrated sound (I2S)	. 30
		3.17.5	Universal serial bus (USB)	. 30
	3.18	CRC (c	yclic redundancy check) calculation unit	30
	3.19	Develo	pment support	31
		3.19.1	Serial wire JTAG debug port (SWJ-DP)	. 31
		3.19.2	Embedded Trace Macrocell™	. 31
4	Pin d	escripti	ons	32
_				
E			-	
5	Mem	ory map	oping	51
6			oping	
		rical ch		52
	Elect	rical ch	aracteristics	52 52
	Elect	rical ch Parame	aracteristics	52 52 . 52
	Elect	rical ch Parame 6.1.1	aracteristics	52 52 . 52 . 52
	Elect	rical ch Parame 6.1.1 6.1.2	aracteristics	52 52 52 52 52 52
	Elect	rical ch Parame 6.1.1 6.1.2 6.1.3	aracteristics	52 52 52 52 52 52 52
	Elect	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4	aracteristics	52 . 52 . 52 . 52 . 52 . 52 . 52
	Elect	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	aracteristics	52 52 52 52 52 52 52 52 53
	Elect	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6	aracteristics	52 52 52 52 52 52 52 52 52 53 53
	Elect	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8	aracteristics	52 52 52 52 52 52 52 52 52 53 53 54
	Elect 6.1	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolut	aracteristics	52 52 52 52 52 52 52 52 53 53 54 55
	Elect 6.1	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolut	aracteristics	52 52 52 52 52 52 52 52 53 53 54 55 56
	Elect 6.1	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolut Operati	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme Current consumption measurement re maximum ratings ng conditions	52 52 52 52 52 52 52 52 52 53 54 54 55 56 56
	Elect 6.1	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolut Operati 6.3.1	aracteristics	52 52 52 52 52 52 52 52 52 53 53 54 55 55 56 56 56 57

• **Stop** mode without RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 μ s. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup.

• **Standby** mode with RTC

Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

• Standby mode without RTC

Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode.

	Functionalities depending on the operating power supply range						
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation			
V _{DD} = V _{DDA} = 1.65 to 1.71 V	Not functional	Not functional	Range 2 or Range 3	Degraded speed performance			
$V_{DD} = V_{DDA} = 1.71 \text{ to } 1.8 \text{ V}^{(1)}$	Not functional	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance			
$V_{DD}=V_{DDA}= 1.8 \text{ to } 2.0 \text{ V}^{(1)}$	Conversion time up to 500 Ksps	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance			

Table 3. Functionalities depending on the operating power supply range

power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).

3.3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from Flash memory
- Boot from System memory
- Boot from embedded RAM

The boot loader is located in System memory. It is used to reprogram the Flash memory by using USART1, USART2 or USB. See Application note "STM32 microcontroller system memory boot mode" (AN2606) for details.

3.17.2 Universal synchronous/asynchronous receiver transmitter (USART)

The three USART interfaces are able to communicate at speeds of up to 4 Mbit/s. They support IrDA SIR ENDEC and have LIN Master/Slave capability. The three USARTs provide hardware management of the CTS and RTS signals and are ISO 7816 compliant.

All USART interfaces can be served by the DMA controller.

3.17.3 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

The SPIs can be served by the DMA controller.

3.17.4 Inter-integrated sound (I²S)

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

The I2Ss can be served by the DMA controller.

3.17.5 Universal serial bus (USB)

The STM32L151xC and STM32L152xC devices embed a USB device peripheral compatible with the USB full-speed 12 Mbit/s. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and supports suspend/resume. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

3.18 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

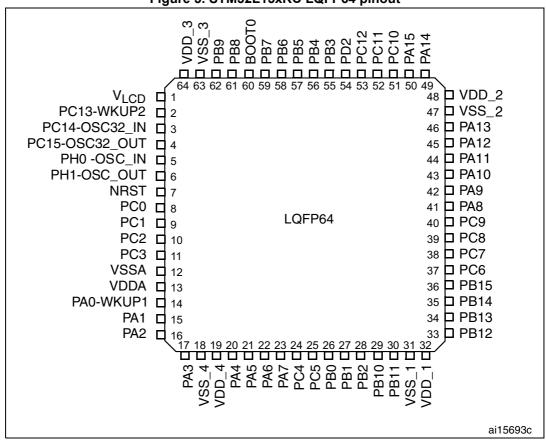


Figure 5. STM32L15xRC LQFP64 pinout

1. This figure shows the package top view.

Table 9. STM32L151xC and STM32L152xC pin definitions (continued) Pins Pin functions							•			
	F	rins							Pin fun	ctions
UFBGA100	LQFP100	LQFP64	WLCSP63	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I / O Structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
C1	7	2	D5	2	PC13- WKUP2	I/O	FT	PC13	-	WKUP2/ RTC_TAMP1/ RTC_TS/RTC_OUT
D1	8	3	D7	3	PC14- OSC32_IN ⁽⁴⁾	I/O	тс	PC14	-	OSC32_IN
E1	9	4	D6	4	PC15- OSC32_OUT	I/O	тс	PC15	-	OSC32_OUT
F2	10	-	-	-	V _{SS_5}	S	-	V _{SS_5}	-	-
G2	11	-	-	-	V_{DD_5}	S	-	V _{DD_5}	-	-
F1	12	5	F6	5	PH0- OSC_IN ⁽⁵⁾	I/O	тс	PH0	-	OSC_IN
G1	13	6	F7	6	PH1- OSC_OUT ⁽⁵⁾	I/O	тс	PH1	-	OSC_OUT
H2	14	7	E7	7	NRST	I/O	RST	NRST	-	-
H1	15	8	E6	-	PC0	I/O	FT	PC0	LCD_SEG18	ADC_IN10/ COMP1_INP
J2	16	9	E5	-	PC1	I/O	FT	PC1	LCD_SEG19	ADC_IN11/ COMP1_INP
J3	17	10	G7	-	PC2	I/O	FT	PC2	LCD_SEG20	ADC_IN12/ COMP1_INP
K2	18	11	G6	-	PC3	I/O	тс	PC3	LCD_SEG21	ADC_IN13/ COMP1_INP
J1	19	12	F5	8	V _{SSA}	S	-	V _{SSA}	-	-
K1	20	-	-	-	V _{REF-}	S	-	V _{REF-}	-	-
L1	21	-	-	-	V _{REF+}	S	-	V _{REF+}	-	-
M1	22	13	H7	9	V _{DDA}	S	-	V _{DDA}	-	-
L2	23	14	E4	10	PA0-WKUP1	I/O	FT	PA0	TIM2_CH1_ETR/ TIM5_CH1/ USART2_CTS	WKUP1/ RTC_TAMP2/ ADC_IN0/ COMP1_INP

Table 9. STM32L151xC and STM32L152xC pin definitions (continued)

6.1.6 Power supply scheme

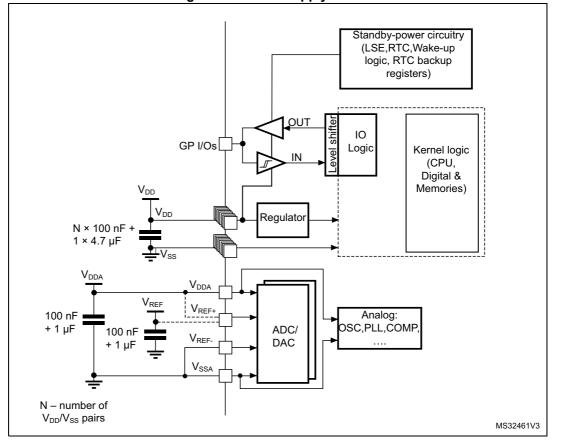


Figure 12. Power supply scheme

5. To guarantee less than 1% VREF_OUT deviation.

6.3.4 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in *Figure 14: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to the Dhrystone 2.1 code, unless otherwise specified. The current consumption values are derived from tests performed under ambient temperature $T_A = 25$ °C and V_{DD} supply voltage conditions summarized in *Table 14: General operating conditions*, unless otherwise specified.

The MCU is placed under the following conditions:

- All I/O pins are configured in analog input mode
- All peripherals are disabled except when explicitly mentioned.
- The Flash memory access time, 64-bit access and prefetch is adjusted depending on f_{HCLK} frequency and voltage range to provide the best CPU performance.
- When the peripherals are enabled $f_{APB1} = f_{APB2} = f_{AHB}$.
- When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or HSE = 16 MHz (if HSE bypass mode is used).
- The HSE user clock applied to OSCI_IN input follows the characteristic specified in *Table 27: High-speed external user clock characteristics*.
- For maximum current consumption $V_{DD} = V_{DDA} = 3.6$ V is applied to all supply pins.
- For typical current consumption V_{DD} = V_{DDA} = 3.0 V is applied to all supply pins if not specified otherwise.

Symbol	Parameter	Condit	tions	Тур	Max ⁽¹⁾	Unit
			T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.905	-	
		RTC clocked by LSI (no	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.15	1.9	
		independent watchdog)	T _A = 55 °C	1.5	2.2	
			T _A = 85 °C	1.75	4	
I _{DD}	Supply current in		T _A = 105 °C	2.1	8.3 ⁽²⁾	
(Standby with RTC)	Standby mode with RTC enabled		T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.98	-	
		RTC clocked by LSE external quartz (no independent watchdog) ⁽³⁾	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.3	-	μA
			T _A = 55 °C	1.7	-	
			T _A = 85 °C	2.05	-	
			T _A = 105 °C	2.45	-	
		Independent watchdog and LSI enabled	$T_A = -40 \ ^\circ C \text{ to } 25 \ ^\circ C$	1	1.7	
I _{DD}	Supply current in		$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	0.29	0.6	
(Standby)	Standby mode (RTC disabled)	Independent watchdog	T _A = 55 °C	0.345	0.9	
		and LSI OFF	T _A = 85 °C	0.575	2.75	
			T _A = 105 °C	1.45	7 ⁽²⁾	
I _{DD} (WU from Standby)	Supply current during wakeup time from Standby mode	-	T _A = -40 °C to 25 °C	1	-	mA

Table 24. Typical and maximum current co	onsumptions in Standby mode
--	-----------------------------

1. Guaranteed by characterization results, unless otherwise specified.

2. Guaranteed by test in production.

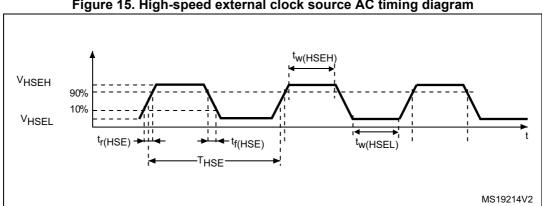
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

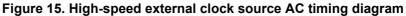
On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

6.3.6 **External clock source characteristics**


High-speed external user clock generated from an external source


In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the recommended clock input waveform is shown in Figure 15.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	User external clock source	CSS is on or PLL is used	1	8	32	MHz
f _{HSE_ext}	frequency	CSS is off, PLL not used	0	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	v
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	-	12	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time		-	-	20	113
C _{in(HSE)}	OSC_IN input capacitance		-	2.6	-	pF

Table 27. High-speed external user clock characteristics ⁽¹⁾	Table 27	. Hiah-speed	external u	user clock	characteristics ⁽¹⁾
---	----------	--------------	------------	------------	--------------------------------

1. Guaranteed by design.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

				Max vs.	frequenc	y range	
Symbol	Parameter	Conditions	Monitored frequency band	4 MHz voltage range 3	16 MHz voltage range 2	32 MHz voltage range 1	Unit
	$V_{DD} = 3.3 V,$ $T_A = 25 °C,$ SEMI Peak level QEP100 package	0.1 to 30 MHz	3	-6	-5		
6			30 to 130 MHz	18	4	-7	dBµV
S _{EMI}	reak level	LQFP100 package compliant with IEC	130 MHz to 1GHz	15	5	-7	
			SAE EMI Level	2.5	2	1	-

Table 39. EMI characteristics

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1. standard.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \text{ °C}$, conforming to JESD22-A114	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \text{ °C}$, conforming to ANSI/ESD STM5.3.1.	C4	500	V

Table 40. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA with the non-standard V_{OL}/V_{OH} specifications given in *Table 44*.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD(Σ)} (see *Table 12*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS(Σ)} (see *Table 12*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 44* are derived from tests performed under the conditions summarized in *Table 14*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾⁽²⁾	Output low level voltage for an I/O pin	I _{IO} = 8 mA 2.7 V < V _{DD} < 3.6 V	-	0.4	
V _{OH} ⁽²⁾⁽³⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽³⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 4 mA	-	0.45	v
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	1.65 V < V _{DD} < 3.6 V	V _{DD} -0.45	-	v
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA 2.7 V < V _{DD} < 3.6 V	-	1.3	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	

Table 44. Output voltage characteristics

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 12* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. Guaranteed by test in production.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 12 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Guaranteed by characterization results.

6.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 56* are guaranteed by design.

Symbol	Parameter		Conditions		Min	Max	Unit	
				V _{REF+} = V _{DDA}		16		
			2.4 V ≤V _{DDA} ≤3.6 V	V _{REF+} < V _{DDA} V _{REF+} > 2.4 V		8		
f _{ADC}	ADC clock frequency	Voltage range 1 & 2		V _{REF+} < V _{DDA} V _{REF+} ≤2.4 V	0.480	0.480	4	MHz
			1.8 V ≤V _{DDA} ≤2.4 V	V _{REF+} = V _{DDA}		8		
			1.0 V ≤V _{DDA} ≤2.4 V	V _{REF+} < V _{DDA}		4		
			Voltage range 3			4		

Table 55. ADC clock frequence	:v
-------------------------------	----

Table 56. ADC characteristics

					1		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V_{DDA}	Power supply	-	- 1.8 - 3.6				
V _{REF+}	Positive reference voltage	-	1.8 ⁽¹⁾	-	V _{DDA}	V	
V _{REF-}	Negative reference voltage	-	-	V _{SSA}	-		
I _{VDDA}	Current on the V _{DDA} input pin	-	-	1000 1450			
I _{VREF} ⁽²⁾	Current on the V _{REF} input pin	Peak	-	400	700	μA	
		Average	-	400	450		
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 ⁽⁴⁾	-	V _{REF+}	V	
f _S	12-bit sampling rate	Direct channels	-	-	1	Mana	
		Multiplexed channels	-	-	0.76	Msps	
	10-bit sampling rate	Direct channels	-	-	1.07	Mana	
		Multiplexed channels	-	-	0.8	Msps	
	0 hit compliant acts	Direct channels	-	-	1.23	Mana	
	8-bit sampling rate	Multiplexed channels	-	-	0.89	Msps	
	6 bit compling rate	Direct channels	-	-	1.45	D.4 mm	
	6-bit sampling rate	Multiplexed channels	-	-	1	- Msps	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _S ⁽⁵⁾	Sampling time	Direct channels 2.4 V ≤V _{DDA} ≤3.6 V	0.25	-	-	μs
		Multiplexed channels 2.4 V ⊴V _{DDA} ≤3.6 V	0.56	-	-	
		Direct channels 1.8 V ⊴V _{DDA} ⊴2.4 V	0.56	-	-	
		Multiplexed channels 1.8 V ⊴V _{DDA} ⊴2.4 V	1	-	-	
		-	4	-	384	1/f _{ADC}
	Total conversion time (including sampling time)	f _{ADC} = 16 MHz	1	-	24.75	μs
t _{CONV}		-	4 to 384 (s (successiv	1/f _{ADC}		
C	Internal sample and hold capacitor	Direct channels	-	- 16	-	pF
C _{ADC}		Multiplexed channels	-		-	
£	External trigger frequency Regular sequencer	12-bit conversions	-	-	Tconv+1	1/f _{ADC}
f _{TRIG}		6/8/10-bit conversions	-	-	Tconv	1/f _{ADC}
£	External trigger frequency Injected sequencer	12-bit conversions	-	-	Tconv+2	1/f _{ADC}
f _{TRIG}		6/8/10-bit conversions	-	-	Tconv+1	1/f _{ADC}
R _{AIN} ⁽⁶⁾	Signal source impedance		-	-	50	kΩ
t _{lat}	Injection trigger conversion latency	f _{ADC} = 16 MHz	219	-	281	ns
		-	3.5	-	4.5	1/f _{ADC}
+	Regular trigger conversion	f _{ADC} = 16 MHz	156	-	219	ns
t _{latr}	latency	-	2.5	-	3.5	1/f _{ADC}
t _{STAB}	Power-up time	-	-	-	3.5	μs

Table 56. ADC characteristics (continued)

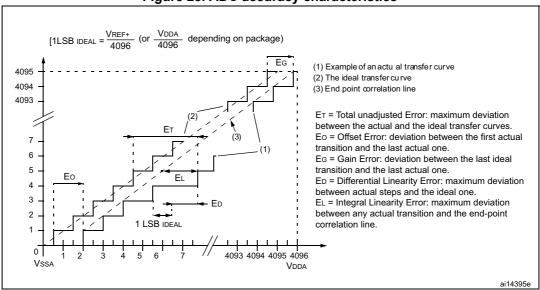
1. The Vref+ input can be grounded if neither the ADC nor the DAC are used (this allows to shut down an external voltage reference).

2. The current consumption through VREF is composed of two parameters:

- one constant (max 300 µA)

- one variable (max 400 μA), only during sampling time + 2 first conversion pulses

So, peak consumption is 300+400 = 700 μA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 μA at 1Msps


 V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pin descriptions for further details.

4. V_{SSA} or V_{REF-} must be tied to ground.

5. Minimum sampling time is reached for an external input impedance limited to a value as defined in *Table 58: Maximum source impedance RAIN max*.

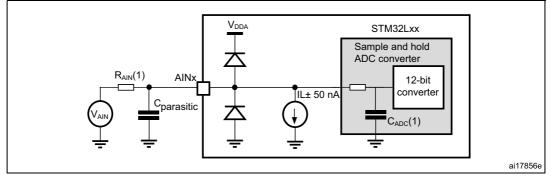
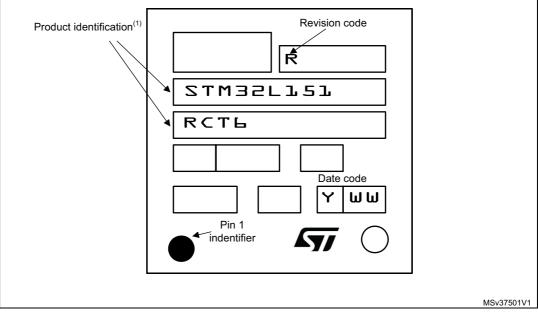

6. External impedance has another high value limitation when using short sampling time as defined in *Table 58: Maximum source impedance RAIN max*.

Figure 28. ADC accuracy characteristics



- 1. Refer to Table 58: Maximum source impedance RAIN max for the value of R_{AIN} and Table 56: ADC characteristics for the value of C_{ADC} .
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 37. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity

7.3 LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package information

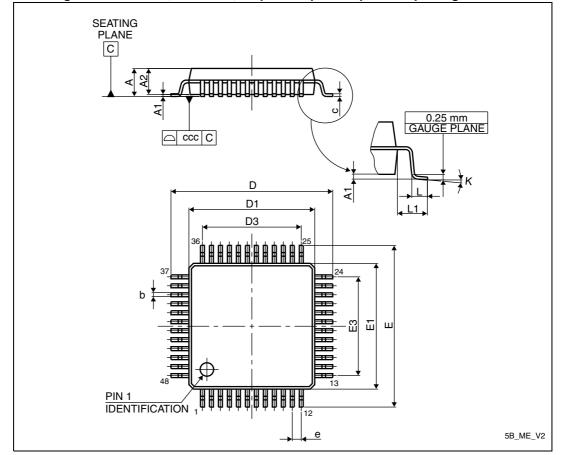
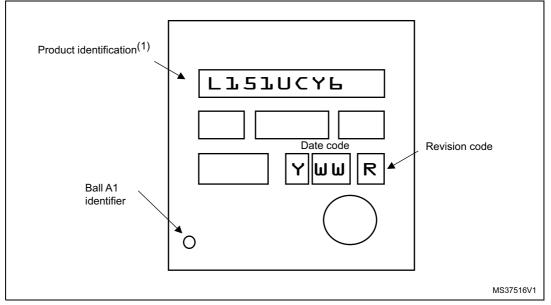


Figure 38. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline

1. Drawing is not to scale.



DocID022799 Rev 12

Marking of engineering samples

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity

9 Revision History

Date	Revision	Changes	
21-Feb-2012	1	Initial release.	
12-Oct-2012	2	Added WLCSP63 package. Updated <i>Figure 1: Ultra-low-power STM32L162xC block diagram.</i> Changed maximum number of touch sensing channels to 34, and updated <i>Table 2: Ultralow power STM32L15xxC device features and</i> <i>peripheral counts.</i> Added <i>Table 4: Functionalities depending on the working mode (from</i> <i>Run/active down to standby)</i> , and <i>Table 3: ange depending on</i> <i>dynamic voltage scaling.</i> Updated <i>Section 3.10: ADC (analog-to-digital converter)</i> to add <i>Section 3.10.1: Temperature sensor</i> and <i>Section 3.10.2: Internal</i> <i>voltage reference (VREFINT).</i> Updated <i>Figure 3: STM32L162VC LQFP100 pinout.</i> <i>Table 10: STM32L15xxC pin definitions:</i> updated name of reference manual in footnote 5. Changed I2C1_SMBAI into I2C1_SMBA in <i>Table 10: STM32L15xxC</i> <i>pin definitions.</i> Modified PB10/11/12 for AFIO4 alternate function, and replaced LBAR by NADV for AFIO12 in <i>Table 10: Alternate function input/output.</i> Removed caution note below <i>Figure 8: Power supply scheme.</i> Added <i>Note 2</i> in <i>Table 15: Embedded reset and power control block</i> <i>characteristics.</i> Updated <i>Table 22: Typical and maximum current consumptions in Stop</i> <i>mode</i> and added <i>Note 6.</i> Updated <i>Table 23: Typical and maximum</i> <i>current consumptions in Standby mode.</i> Updated t _{WUSTOP} in <i>Table : .</i> Updated <i>Table 26: Peripheral current consumption.</i> Updated <i>Table 60: SPI characteristics,</i> added <i>Note 1</i> and <i>Note 3</i> , and applied <i>Note 2</i> to t _{r(SCK)} , t _{R(SCK)} , t _{w(SCKL)} , t _{su(MI)} , t _{su(SI)} , t _{h(MI)} , and t _{h(SI)} . Added <i>Table 61: I2S characteristics, Figure 29: I2S slave timing</i> <i>diagram (Philips protocol)(1)</i> and <i>Figure 30: I2S master timing diagram</i> <i>(Philips protocol)(1).</i> Updated <i>Table 72: Temperature sensor characteristics.</i> Added <i>Figure 40: Thermal resistance.</i>	

Table 75. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID022799 Rev 12

