

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 21x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	63-UFBGA, WLCSP
Supplier Device Package	63-WLCSP (3.23x4.16)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151ucy6dtr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5 Low-power real-time clock and backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the sub-second, second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are made automatically. The RTC provides two programmable alarms and programmable periodic interrupts with wakeup from Stop and Standby modes.

The programmable wakeup time ranges from 120 µs to 36 hours.

The RTC can be calibrated with an external 512 Hz output, and a digital compensation circuit helps reduce drift due to crystal deviation.

The RTC can also be automatically corrected with a 50/60Hz stable powerline.

The RTC calendar can be updated on the fly down to sub second precision, which enables network system synchronization.

A time stamp can record an external event occurrence, and generates an interrupt.

There are thirty-two 32-bit backup registers provided to store 128 bytes of user application data. They are cleared in case of tamper detection.

Three pins can be used to detect tamper events. A change on one of these pins can reset backup register and generate an interrupt. To prevent false tamper event, like ESD event, these three tamper inputs can be digitally filtered.

3.6 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated AFIO registers. All GPIOs are high current capable. The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to the AHB with a toggling speed of up to 16 MHz.

External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 83 GPIOs can be connected to the 16 external interrupt lines. The 8 other lines are connected to RTC, PVD, USB, comparator events or capacitive sensing acquisition.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{\scriptsize SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. See *Table 61: Temperature sensor calibration values*.

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the V_{DD} value (when no external voltage, VREF+, is available for ADC). The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. See *Table 16: Embedded internal reference voltage calibration values*.

3.11 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

This dual digital Interface supports the following features:

- Two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channels, independent or simultaneous conversions
- DMA capability for each channel (including the underrun interrupt)
- External triggers for conversion
- Input reference voltage V_{REF+}

Eight DAC trigger inputs are used in the STM32L151xC and STM32L152xC devices. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

	F	Pins				_			Pin fun	ctions
UFBGA100	LQFP100	LQFP64	WLCSP63	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I / O Structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
C1	7	2	D5	2	PC13- WKUP2	I/O	FT	PC13	-	WKUP2/ RTC_TAMP1/ RTC_TS/RTC_OUT
D1	8	3	D7	3	PC14- OSC32_IN ⁽⁴⁾	I/O	тс	PC14	-	OSC32_IN
E1	9	4	D6	4	PC15- OSC32_OUT	I/O	тс	PC15	-	OSC32_OUT
F2	10	-	-	-	V _{SS_5}	S	-	V _{SS_5}	-	-
G2	11	-	-	-	V _{DD_5}	S	-	V _{DD_5}	-	-
F1	12	5	F6	5	PH0- OSC_IN ⁽⁵⁾	I/O	тс	PH0	-	OSC_IN
G1	13	6	F7	6	PH1- OSC_OUT ⁽⁵⁾	I/O	тс	PH1	-	OSC_OUT
H2	14	7	E7	7	NRST	I/O	RST	NRST	-	-
H1	15	8	E6	-	PC0	I/O	FT	PC0	LCD_SEG18	ADC_IN10/ COMP1_INP
J2	16	9	E5	-	PC1	I/O	FT	PC1	LCD_SEG19	ADC_IN11/ COMP1_INP
J3	17	10	G7	-	PC2	I/O	FT	PC2	LCD_SEG20	ADC_IN12/ COMP1_INP
К2	18	11	G6	-	PC3	I/O	тс	PC3	LCD_SEG21	ADC_IN13/ COMP1_INP
J1	19	12	F5	8	V _{SSA}	S	-	V _{SSA}	-	-
K1	20	-	-	-	V _{REF-}	S	-	V _{REF-}	-	-
L1	21	-	-	-	V _{REF+}	S	-	V _{REF+}	-	-
M1	22	13	H7	9	V _{DDA}	S	-	V _{DDA}	-	-
L2	23	14	E4	10	PA0-WKUP1	I/O	FT	PA0	TIM2_CH1_ETR/ TIM5_CH1/ USART2_CTS	WKUP1/ RTC_TAMP2/ ADC_IN0/ COMP1_INP

Table 9. STM32L151xC and STM32L152xC pin definitions (continued)

	F	Pins							Pin fund	ctions
UFBGA100	LQFP100	LQFP64	WLCSP63	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I / O Structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
M2	24	15	G5	11	PA1	I/O	FT	PA1	TIM2_CH2/TIM5_CH2/ USART2_RTS/ LCD_SEG0	ADC_IN1/ COMP1_INP/ OPAMP1_VINP
K3	25	16	H6	12	PA2	I/O	FT	PA2	TIM2_CH3/TIM5_CH3/ TIM9_CH1/USART2_TX /LCD_SEG1	ADC_IN2/ COMP1_INP/ OPAMP1_VINM
L3	26	17	J7	13	PA3	I/O	тс	PA3	TIM2_CH4/TIM5_CH4/ TIM9_CH2/USART2_RX /LCD_SEG2	ADC_IN3/ COMP1_INP/ OPAMP1_VOUT
E3	27	18	-	-	V _{SS_4}	S	-	V _{SS_4}	-	-
H3	28	19	-	-	V _{DD_4}	S	-	V _{DD_4}	-	-
М3	29	20	J6	14	PA4	I/O	тс	PA4	SPI1_NSS/SPI3_NSS/ I2S3_WS/ USART2_CK	ADC_IN4/ DAC_OUT1/ COMP1_INP
K4	30	21	H4	15	PA5	I/O	тс	PA5	TIM2_CH1_ETR/ SPI1_SCK	ADC_IN5/ DAC_OUT2/ COMP1_INP
L4	31	22	G4	16	PA6	I/O	FT	PA6	TIM3_CH1/TIM10_CH1/ SPI1_MISO/LCD_SEG3	ADC_IN6/ COMP1_INP/ OPAMP2_VINP
M4	32	23	J5	17	PA7	I/O	FT	PA7	TIM3_CH2/TIM11_CH1/ SPI1_MOSI/LCD_SEG4	ADC_IN7/ COMP1_INP/ OPAMP2_VINM
K5	33	24	F4	-	PC4	I/O	FT	PC4	LCD_SEG22	ADC_IN14/ COMP1_INP
L5	34	25	J4	-	PC5	I/O	FT	PC5	LCD_SEG23	ADC_IN15/ COMP1_INP
M5	35	26	J3	18	PB0	I/O	тс	PB0	TIM3_CH3/LCD_SEG5	ADC_IN8/ COMP1_INP/ OPAMP2_VOUT/ VLCDRAIL3/ VREF_OUT

Table 9. STM32L151xC and STM32L152xC pin definitions (continued)

DocID022799 Rev 12

STM32L151xC STM32L152xC

Pin descriptions

		Digital alternate function number											
Port	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO11	AFIO14	AFIO15		
name		1			Alte	ernate func	tion	II					
	SYSTEM	TIM2	TIM3/4/5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3	LCD	CPRI	SYSTEN		
PB0	-	-	TIM3_CH3	-	-	-	-	-	SEG5	-	EVEN TOU		
PB1	-	-	TIM3_CH4	-	-	-	-	-	SEG6	-	EVENT OU		
PB2	BOOT1	-	-	-		-	-	-	-	-	EVENT OU		
PB3	JTDO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK I2S3_CK	-	SEG7	-	EVENT OU		
PB4	NJTRST	-	TIM3_CH1	-	-	SPI1_MISO	SPI3_MISO	-	SEG8	-	EVENT OU		
PB5	-	-	TIM3_CH2	-	I2C1_SMBA	SPI1_MOSI	SPI3_MOSI I2S3_SD	-	SEG9	-	EVENT OU		
PB6	-		TIM4_CH1	-	I2C1_SCL	-	-	USART1_TX	-	-	EVENT OU		
PB7	-	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_RX	-	-	EVENT OU		
PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	-	-	SEG16	-	EVENT OUT		
PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	-	-	-	COM3	-	EVENT OUT		
PB10	-	TIM2_CH3	-	-	I2C2_SCL	-	-	USART3_TX	SEG10	-	EVENT OUT		
PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX	SEG11	-	EVENT OUT		
PB12	-	-	-	TIM10_CH1	I2C2_SMBA	SPI2_NSS I2S2_WS	-	USART3_CK	SEG12	-	EVENT OUT		
PB13	-	-	-	TIM9_CH1	-	SPI2_SCK I2S2_CK	-	USART3_CTS	SEG13	-	EVENT OU		
PB14	-	-	-	TIM9_CH2	-	SPI2_MISO	-	USART3_RTS	SEG14	-	EVENT OUT		
PB15	-	-	-	TIM11_CH1	-	SPI2_MOSI I2S2_SD	-	-	SEG15	-	EVENT OUT		
PC0	-	-	-	-	-	-	-	-	SEG18	TIMx_IC1	EVENT OUT		
PC1	-	-	-	-	-	-	-	-	SEG19	TIMx_IC2	EVENT OUT		
PC2	-	-	-	-	-	-	-	-	SEG20	TIMx_IC3	EVENT OUT		
PC3	-	-	-	-	-	-	-	-	SEG21	TIMx_IC4	EVENT OUT		

DocID022799 Rev 12

47/136

Do

S

6.1.6 Power supply scheme

Figure 12. Power supply scheme

Symbol	Parameter		Conditions		Тур	Max ⁽¹⁾	Unit
				T_A = -40 °C to 25 °C	8.6	12	
		All peripherals	MSI CIOCK, 65 KHZ $f_{HCLK} = 32 \text{ kHz}$	T _A = 85 °C	19	25	
				T _A = 105 °C	35	47	
		OFF, code		$T_A = -40 \degree C$ to 25 $\degree C$	14	16	
I _{DD (LP} Run)		from RAM,	MSI clock, 65 kHz	T _A = 85 °C	24	29	
		Flash	HOLK CONNE	T _A = 105 °C	40	51	
		OFF, V _{DD}		T_A = -40 °C to 25 °C	26	29	
		from 1.65 V	MSI clock, 131 kHz	T _A = 55 °C	28	31	
	Supply current in	to 3.6 V	f _{HCLK} = 131 kHz	T _A = 85 °C	36	42	μΑ
				T _A = 105 °C	52	64	
	Low-power		MSI clock, 65 kHz f _{HCLK} = 32 kHz	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	20	24	
	Tull mode	All peripherals		T _A = 85 °C	32	37	
				T _A = 105 °C	49	61	
			MSI clock, 65 kHz f _{HCLK} = 65 kHz	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	26	30	
		executed		T _A = 85 °C	38	44	
		from Flash,		T _A = 105 °C	55	67	
		1.65 V to		T_A = -40 °C to 25 °C	41	46	
		3.6 V	MSI clock, 131 kHz	T _A = 55 °C	44	50	-
			f _{HCLK} = 131 kHz	T _A = 85 °C	56	87	
				T _A = 105 °C	73	110	
I _{DD} max (LP Run)	Max allowed current in Low-power run mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200	

Table 21. Current consumption in Low-power run mode

1. Guaranteed by characterization results, unless otherwise specified.

6.3.6 **External clock source characteristics**

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the recommended clock input waveform is shown in Figure 15.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	User external clock source	CSS is on or PLL is used	1	8	32	MHz
^I HSE_ext	frequency	CSS is off, PLL not used	0	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V_{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	-	12	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance		-	2.6	-	pF

Table 27. nigh-speed external user clock characteristics 7	Table 27.	High-speed	external	user cl	ock ch	aracteristics	(1)
--	-----------	------------	----------	---------	--------	---------------	-----

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{OSC_IN}	Oscillator frequency	-	1		24	MHz	
R _F	Feedback resistor	-	-	200	-	kΩ	
с	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	20	-	pF	
I _{HSE}	HSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load	-	-	3	mA	
	HSE oscillator power	C = 20 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.7 (stabilized)	٣٨	
'DD(HSE)	consumption	C = 10 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.46 (stabilized)	mA	
9 _m	Oscillator transconductance	Startup	3.5	-	-	mA /V	
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	ms	

Table 29. HSE oscillator characteristics⁽¹⁾⁽²⁾

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results.

 The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA with the non-standard V_{OL}/V_{OH} specifications given in *Table 44*.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD(Σ)} (see *Table 12*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS(Σ)} (see *Table 12*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 44* are derived from tests performed under the conditions summarized in *Table 14*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾⁽²⁾	Output low level voltage for an I/O pin	I _{IO} = 8 mA	-	0.4	
V _{OH} ⁽²⁾⁽³⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽³⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 4 mA	-	0.45	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	1.65 V < V _{DD} < 3.6 V	V _{DD} -0.45	-	v
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	

Table 44. Output voltage characteristics

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 12* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. Guaranteed by test in production.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 12 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Guaranteed by characterization results.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 19* and *Table 45*, respectively.

Unless otherwise specified, the parameters given in *Table 45* are derived from tests performed under the conditions summarized in *Table 14*.

OSPEEDRx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit			
	f	Maximum frequency ⁽³⁾	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	400	kH7			
00	'max(IO)out	Maximum nequency	C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	400				
00	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	625	ne			
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	625				
	f	Maximum fraguanay ⁽³⁾	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	2				
01	Imax(IO)out	Maximum nequency.	C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	1	IVITIZ			
01	t _{f(IO)out} t _{r(IO)out}	Output rise and fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	125	20			
			C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	250				
	E	Maximum fraguanay ⁽³⁾	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	10	– MHz			
10	rmax(IO)out	Maximum nequency.	C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	2				
10	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	25	-			
10	t _{r(IO)out}		C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	125	115			
	E	Maximum fraguanov ⁽³⁾	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	50				
11	rmax(IO)out		C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	8				
11	t _{f(IO)out}	Output rise and fall time	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5				
	t _{r(IO)out}		C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	30	1			
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	8	-	ns			

Table 45	. I/O	AC	characteristics ⁽¹⁾
----------	-------	----	--------------------------------

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L151xx, STM32L152xx and STM32L162xx reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. The maximum frequency is defined in *Figure 19*.

Figure 22. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		Direct channels 2.4 V ≤V _{DDA} ≤3.6 V	0.25	-	-		
		Multiplexed channels 2.4 V ≤V _{DDA} ≤3.6 V	0.56	-	-		
t _S ⁽⁵⁾	Sampling time	Direct channels 1.8 V ≤V _{DDA} ⊴2.4 V	0.56	-	-	μs	
		Multiplexed channels 1.8 V ≤V _{DDA} ≤2.4 V	1	-	-		
		-	4	-	384	1/f _{ADC}	
	Total conversion time	f _{ADC} = 16 MHz	1	-	24.75	μs	
t _{CONV}	(including sampling time)	-	4 to 384 (s (successiv	4 to 384 (sampling phase) +12 (successive approximation)			
C _{ADC}	Internal sample and hold	Direct channels	-	16	-	ъĘ	
	capacitor	Multiplexed channels	-	10	-	pr	
f	External trigger frequency	12-bit conversions	-	-	Tconv+1	1/f _{ADC}	
'TRIG	Regular sequencer	6/8/10-bit conversions	-	-	Tconv	1/f _{ADC}	
f	External trigger frequency	12-bit conversions	-	-	Tconv+2	1/f _{ADC}	
'TRIG	Injected sequencer	6/8/10-bit conversions	-	-	Tconv+1	1/f _{ADC}	
R _{AIN} ⁽⁶⁾	Signal source impedance		-	-	50	kΩ	
t	Injection trigger conversion	f _{ADC} = 16 MHz	219	-	281	ns	
lat	latency	-	3.5	-	4.5	1/f _{ADC}	
t	Regular trigger conversion	f _{ADC} = 16 MHz	156	-	219	ns	
Чаtr	latency	-	2.5	-	3.5	1/f _{ADC}	
t _{STAB}	Power-up time	-	-	-	3.5	μs	

Table 56. ADC characteristics (continued)

1. The Vref+ input can be grounded if neither the ADC nor the DAC are used (this allows to shut down an external voltage reference).

2. The current consumption through VREF is composed of two parameters:

- one constant (max 300 µA)

- one variable (max 400 μA), only during sampling time + 2 first conversion pulses

So, peak consumption is 300+400 = 700 μA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 μA at 1Msps

 V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pin descriptions for further details.

4. V_{SSA} or V_{REF-} must be tied to ground.

5. Minimum sampling time is reached for an external input impedance limited to a value as defined in *Table 58: Maximum source impedance RAIN max*.

6. External impedance has another high value limitation when using short sampling time as defined in *Table 58: Maximum source impedance RAIN max*.

Electrical characteristics

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2	4	
EO	Offset error	$2.4 \text{ V} \leq \text{V}_{\text{DDA}} \leq 3.6 \text{ V}$	-	1	2	
EG	Gain error	2.4 V ≤V _{REF+} ≤ 3.6 V fado = 8 MHz, Rain = 50 Ω	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	1.7	3	
ENOB	Effective number of bits		9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio	2.4 V \leq V _{DDA} \leq 3.6 V V _{DDA} = V _{REF+} f _{ADC} = 16 MHz, R _{AIN} = 50 Ω T _A = -40 to 105 °C F _{input} =10kHz	57.5	62	-	
SNR	Signal-to-noise ratio		57.5	62	-	dB
THD	Total harmonic distortion		-	-70	-65	
ENOB	Effective number of bits	$\begin{array}{l} -1.8 \ V \leq V_{DDA} \leq 2.4 \ V \\ V_{DDA} = V_{REF+} \\ f_{ADC} = 8 \ MHz \ or \ 4 \ MHz, \ R_{AIN} = 50 \ \Omega \\ T_{A} = -40 \ to \ 105 \ ^{\circ} C \\ \hline \end{array}$	9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio		57.5	62	-	
SNR	Signal-to-noise ratio		57.5	62	-	dB
THD	Total harmonic distortion	l input - 10KHz	-	-70	-65	
ET	Total unadjusted error		-	4	6.5	
EO	Offset error	$2.4 \text{ V} \leq V_{DDA} \leq 3.6 \text{ V}$	-	2	4	
EG	Gain error	1.8 V ≤V _{REF+} ≤ 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω	-	4	6	LSB
ED	Differential linearity error	$T_A = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	1.5	3	
ET	Total unadjusted error		-	2	3	
EO	Offset error	1.8 V \leq V _{DDA} \leq 2.4 V 1.8 V \leq V _{REF+} \leq 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω T _A = -40 to 105 °C	-	1	1.5	
EG	Gain error		-	1.5	2	LSB
ED	Differential linearity error		-	1	2	
EL	Integral linearity error		-	1	1.5	

Table 5	7. ADC	accurac	$y^{(1)(2)}$
---------	--------	---------	--------------

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.12 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
dOffset/dT ⁽¹⁾	Offset error temperature coefficient (code 0x800)	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0 \text{ to } 50 ^{\circ}\text{C}$ DAC output buffer OFF	-20	-10	0	
		$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0 \text{ to } 50 ^{\circ}\text{C}$ DAC output buffer ON	0	20	50	μv/ C
Gain ⁽¹⁾	Gain error ⁽⁷⁾	$C_{L} \le 50 \text{ pF}, R_{L} \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	+0.1 / -0.2%	+0.2 / -0.5%	%
		No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF	-	+0 / -0.2%	+0 / -0.4%	
dGain/dT ⁽¹⁾	Gain error temperature coefficient	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0 \text{ to } 50 ^{\circ}\text{C}$ DAC output buffer OFF	-10	-2	0	u\//°C
		$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0 \text{ to } 50 ^{\circ}\text{C}$ DAC output buffer ON	-40	-8	0	μνιο
TU⊏(1)	Total unadjusted error	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	12	30	ISB
TUE		No R _L , C _L ≤50 pF DAC output buffer OFF	-	8	12	LOD
t _{SETTLING}	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till DAC_OUT reaches final value ±1LSB	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	7	12	μs
Update rate	Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$	-	-	1	Msps
t _{wakeup}	Wakeup time from off state (setting the ENx bit in the DAC Control register) ⁽⁸⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	9	15	μs
PSRR+	V _{DDA} supply rejection ratio (static DC measurement)	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$	-	-60	-35	dB

Table 59	. DAC	characteristics	(continued)
----------	-------	-----------------	-------------

1. Data based on characterization results.

2. Connected between DAC_OUT and $\mathsf{V}_{\mathsf{SSA}}.$

3. Difference between two consecutive codes - 1 LSB.

DocID022799 Rev 12

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity

7.7 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
ΘJA	Thermal resistance junction-ambient UFBGA100 - 7 x 7 mm	59	
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	43	
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	46	°C/M
	Thermal resistance junction-ambient WLCSP63 - 0.400 mm pitch	49	C/W
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	55	
	Thermal resistance junction-ambient UFQFPN48 - 7 x 7 mm / 0.5 mm pitch	33	

Table 73. Thermal characteristics

Date	Revision	Changes
		Updated Section 3.15: Touch sensing.
		Added V _{DD} = 1.71 to 1.8 V operating power supply range in <i>Table 4:</i> <i>Functionalities depending on the working mode (from Run/active down to standby)</i>
		Renamed "I/O Level" to "I/O structure" in <i>Table 9: STM32L15xxC pin definitions</i> , added the I/O structure for PC14, PC15, PC3, PH0, PH1, PA3, PA4, PA5, PB0, PE7, PE8, PE9, PE10, NRST and BOOT0
		Updated Table 10: Voltage characteristics added row
		Updated <i>Table 11: Current characteristics</i> replaced with the one inside STM32L15xxBxxA datasheet.
		Updated <i>Table 13: General operating conditions</i> , footnote and added row.
		Updated Table 15: Embedded internal reference voltage calibration values and moved inside Section 6.3.3: Embedded internal reference voltage
		Updated Section 6.3.4: Supply current characteristics.
		Updated Table 19: Current consumption in Run mode, code with data processing running from Flash.
		Updated Table 22: Current consumption in Run mode, code with data processing running from RAM.
		Created Section 6.3.5: Wakeup time from low-power mode
		Updated Table 38: High-speed external user clock characteristics.
12-Nov-2013	5	Moved Figure 12: High-speed external clock source AC timing diagram after Table 38: High-speed external user clock characteristics.
		Updated Table 40: HSE oscillator characteristics.
		Updated Section 6.3.12: Electrical sensitivity characteristics (title).
		Updated Section 6.3.13: I/O current injection characteristics.
		Updated <i>Table 61: I/O current injection susceptibility</i> and added footnote.
		Updated Table 63: I/O static characteristics
		Updated Section 6.3.15: NRST pin characteristics.
		Updated Table 77: ADC characteristics.
		Added footnote ⁽⁵⁾ and ⁽⁰⁾ in <i>Table 77: ADC characteristics</i>
		Updated THD values and added 4 more rows ENOB, SINAD, SNR, THD in <i>Table 78: ADC accuracy</i>
		Updated "SDA data hold time" and "SDA and SCL rise time" values and added "Pulse width of spikes that are suppressed by the analog filter" row in <i>Table 68: I²C characteristics</i>
		Updated direct channels VDDA range in <i>Table 79:</i> R_{AIN} max for $f_{ADC} = 16$ MHz
		Moved Table 82: Temperature sensor calibration values and moved inside Section 6.3.23: Temperature sensor characteristics
		Updated I _{DD} (WU from Standby) unit in <i>Table 31: Typical and maximum current consumptions in Standby mode</i> .
		Updated Table 67: LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data
		Updated Chapter 8: Part numbering (title).

Date	Revision	Changes
		depending on the operating power supply range.
		Updated I _{ini} pin in <i>Table 11: Current characteristics</i> .
		Added Input Voltage in <i>Table 13: General operating conditions</i> .
09-Dec-2013	6	Updated Input leakage current conditions in <i>Table 63: I/O static characteristics</i>
		Removed minimum value for f _S in <i>Table 77: ADC characteristics</i> .
		Removed Fi _{nput} for ENOB,SINAD,SNR,THD in <i>Table 78: ADC accuracy</i> .
		Added tolerance for TS_CAL1 and TS_CAL2 in <i>Table 82: Temperature sensor calibration values</i> .
		Updated Section 3.7: Memories, Table 33: Peripheral current
		consumption : updated Flash value, Table 61: I/O current injection
		Table 66: NRST pin characteristics. Chapter 2.2: Ultra-low-power
		<i>device continuum</i> . removed figures "Power supply and reference
		decoupling (V_{REF+} not connected to V_{DDA}) and "Power supply and
12 Mar 2014	7	reference decoupling(V _{REF+} connected to V _{DDA}). Updated <i>Table 19:</i>
13-Mar-2014		form Flash
		Updated Section 6.3.1: General operating conditions.
		Updated Table 80: DAC characteristics
		Added marking for LQFP48/UFQFPN48 packages
		Updated Table 66: NRST pin characteristics
		Updated Table 63: I/O static characteristics
		Updated I _{IO} in <i>Table 12: Current characteristics</i> .
		Updated conditions in <i>Table 44: Output voltage characteristics</i> .
16-May-2014	8	Removed note 4 in Table 62: Temperature sensor characteristics
	Ū	Updated the conditions in <i>Table 26: Low-power mode wakeup timings</i> .
		Removed ambiguity of "ambient temperature" in the electrical
		Undeted Section 2.17: Communication interfaces putting I2S
	14 9	characteristics inside.
		Updated DMIPS features in cover page and Section 2: Description.
		Updated max temperature at 105°C instead of 85°C in the whole
		datasheet.
13-Oct-2014		Updated current consumption in <i>Table 20: Current consumption in Sleep mode</i> .
		Updated <i>Table 25: Peripheral current consumption</i> with new measured current values
		Updated Table 58: Maximum source impedance RAIN max adding
		note 2.
		Updated Section 7: Package information with new package device
06-Mar-2015	10	marking.

