

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 25x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151vch6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L151xC and STM32L152xC ultra-low-power ARM[®] Cortex[®]-M3 based microcontroller product line with a Flash memory of 256 Kbytes.

The ultra-low-power STM32L151xC and STM32L152xC family includes devices in 6 different package types: from 48 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L151xC and STM32L152xC microcontroller family suitable for a wide range of applications:

- Medical and handheld equipment
- Application control and user interface
- PC peripherals, gaming, GPS and sport equipment
- Alarm systems, wired and wireless sensors, video intercom
- Utility metering

This STM32L151xC and STM32L152xC datasheet should be read in conjunction with the STM32L1xxxx reference manual (RM0038). The application note "Getting started with STM32L1xxxx hardware development" (AN3216) gives a hardware implementation overview. Both documents are available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M3 core please refer to the ARM[®] Cortex[®]-M3 technical reference manual, available from the www.arm.com website. *Figure 1* shows the general block diagram of the device family.

• **Stop** mode without RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 μ s. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup.

• **Standby** mode with RTC

Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

• Standby mode without RTC

Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode.

	Functionalities depending on the operating power supply range						
Operating power supply range	DAC and ADC operation USB		Dynamic voltage scaling range	I/O operation			
V _{DD} = V _{DDA} = 1.65 to 1.71 V	Not functional	Not functional	Range 2 or Range 3	Degraded speed performance			
$V_{DD} = V_{DDA} = 1.71 \text{ to } 1.8 \text{ V}^{(1)}$	Not functional	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance			
$V_{DD}=V_{DDA}= 1.8 \text{ to } 2.0 \text{ V}^{(1)}$	Conversion time up to 500 Ksps	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance			

Table 3. Functionalities depending on the operating power supply range

	Functionaliti	Functionalities depending on the operating power supply range							
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation					
$V_{DD} = V_{DDA} = 2.0$ to 2.4 V	Conversion time up to 500 Ksps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation					
$V_{DD} = V_{DDA} = 2.4$ to 3.6 V	Conversion time up to 1 Msps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation					

Table 3. Functionalities depending on the operating power supply range (continued)

 CPU frequency changes from initial to final must respect "F_{CPU} initial < 4*F_{CPU} final" to limit V_{CORE} drop due to current consumption peak when frequency increases. It must also respect 5 μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, the user can switch from 4.2 MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz.

2. Should be USB compliant from I/O voltage standpoint, the minimum $\rm V_{DD}$ is 3.0 V.

Table 4. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
2.1MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws)	Range 3

		standby)	Low-	, Low-		Stop	5	Standby
lps	Run/Active	Sleep	power power Wal		Wakeup capability		Wakeup capability	
ADC	Y	Y						
DAC	Y	Y	Y	Y	Y			
Tempsensor	Y	Y	Y	Y	Y			
OP amp	Y	Y	Y	Y	Y			
Comparators	Y	Y	Y	Y	Y	Y		
16-bit and 32-bit Timers	Y	Y	Y	Y				
IWDG	Y	Y	Y	Y	Y	Y	Y	Y
WWDG	Y	Y	Y	Y				
Touch sensing	Y	Y						
Systic Timer	Y	Y	Y	Y				
GPIOs	Y	Y	Y	Y	Y	Y		3 pins
Wakeup time to Run mode	0 µs	0.4 µs	3 µs	46 µs		< 8 µs		58 µs
					(1	0.43 µA no RTC) _{DD} =1.8V	(0.29 µA no RTC) ′ _{DD} =1.8V
Consumption $V_{} = 1.8 \text{ to } 3.6 \text{ V}$	Down to 185 µA/MHz (from	Down to 34.5 µA/MHz (from	Down to	Down to	(v	1.15 μΑ (with RTC) V _{DD} =1.8V		0.9 μA vith RTC) / _{DD} =1.8V
V _{DD} =1.8 to 3.6 V (Typ)	Flash)	Flash)	8.6 µA	4.4 µA	0.44 µA (no RTC) V _{DD} =3.0V		(0.29 µA no RTC) ′ _{DD} =3.0V
						1.4 μΑ /ith RTC) / _{DD} =3.0V	(v	1.15 μA (with RTC) V _{DD} =3.0V

Table 5. Functionalities depending on the working mode (from Run/active down to
standby) (continued)

1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before entering run mode.

3.2 ARM[®] Cortex[®]-M3 core with MPU

The ARM[®] Cortex[®]-M3 processor is the industry leading processor for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The memory protection unit (MPU) improves system reliability by defining the memory attributes (such as read/write access permissions) for different memory regions. It provides up to eight different regions and an optional predefined background region.

Owing to its embedded ARM core, the STM32L151xC and STM32L152xC devices are compatible with all ARM tools and software.

Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L151xC and STM32L152xC devices embed a nested vectored interrupt controller able to handle up to 53 maskable interrupt channels (not including the 16 interrupt lines of ARM[®] Cortex[®]-M3) and 16 priority levels.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving*, higher-priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.3 **Reset and supply management**

3.3.1 Power supply schemes

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.

3.3.2 **Power supply supervisor**

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

The device exists in two versions:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the V_{DD} min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the

power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).

3.3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from Flash memory
- Boot from System memory
- Boot from embedded RAM

The boot loader is located in System memory. It is used to reprogram the Flash memory by using USART1, USART2 or USB. See Application note "STM32 microcontroller system memory boot mode" (AN2606) for details.

introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. The capacitive sensing acquisition only requires few external components to operate. This acquisition is managed directly by the GPIOs, timers and analog I/O groups (see Section 3.14: System configuration controller and routing interface).

Reliable touch sensing functionality can be quickly and easily implemented using the free STM32L1xx STMTouch touch sensing firmware library.

3.16 Timers and watchdogs

The ultra-low-power STM32L151xC and STM32L152xC devices include seven generalpurpose timers, two basic timers, and two watchdog timers.

Table 7 compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type Prescaler factor request		Counter type Prescaler factor request		Complementary outputs				
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No				
TIM5	32-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No				
TIM9	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No				
TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No				
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No				

Table 7. Timer feature comparison

3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11)

There are seven synchronizable general-purpose timers embedded in the STM32L151xC and STM32L152xC devices (see *Table 7* for differences).

TIM2, TIM3, TIM4, TIM5

TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures/output compares/PWMs on the largest packages.

TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

	Table 9. STM32L151xC and STM32L152xC pin definitions (continued) Pins Pin functions								•			
	F	rins										
UFBGA100	LQFP100	LQFP64	WLCSP63	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I / O Structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions		
C1	7	2	D5	2	PC13- WKUP2	I/O	FT	PC13	-	WKUP2/ RTC_TAMP1/ RTC_TS/RTC_OUT		
D1	8	3	D7	3	PC14- OSC32_IN ⁽⁴⁾	I/O	тс	PC14	-	OSC32_IN		
E1	9	4	D6	4	PC15- OSC32_OUT	I/O	тс	PC15	-	OSC32_OUT		
F2	10	-	-	-	V _{SS_5}	S	-	V _{SS_5}	-	-		
G2	11	-	-	-	V_{DD_5}	S	-	V _{DD_5}	-	-		
F1	12	5	F6	5	PH0- OSC_IN ⁽⁵⁾	I/O	тс	PH0	-	OSC_IN		
G1	13	6	F7	6	PH1- OSC_OUT ⁽⁵⁾	I/O	тс	PH1	-	OSC_OUT		
H2	14	7	E7	7	NRST	I/O	RST	NRST	-	-		
H1	15	8	E6	-	PC0	I/O	FT	PC0	LCD_SEG18	ADC_IN10/ COMP1_INP		
J2	16	9	E5	-	PC1	I/O	FT	PC1	LCD_SEG19	ADC_IN11/ COMP1_INP		
J3	17	10	G7	-	PC2	I/O	FT	PC2	LCD_SEG20	ADC_IN12/ COMP1_INP		
K2	18	11	G6	-	PC3	I/O	тс	PC3	LCD_SEG21	ADC_IN13/ COMP1_INP		
J1	19	12	F5	8	V _{SSA}	S	-	V _{SSA}	-	-		
K1	20	-	-	-	V _{REF-}	S	-	V _{REF-}	-	-		
L1	21	-	-	-	V _{REF+}	S	-	V _{REF+}	-	-		
M1	22	13	H7	9	V _{DDA}	S	-	V _{DDA}	-	-		
L2	23	14	E4	10	PA0-WKUP1	I/O	FT	PA0	TIM2_CH1_ETR/ TIM5_CH1/ USART2_CTS	WKUP1/ RTC_TAMP2/ ADC_IN0/ COMP1_INP		

Table 9. STM32L151xC and STM32L152xC pin definitions (continued)

5 Memory mapping

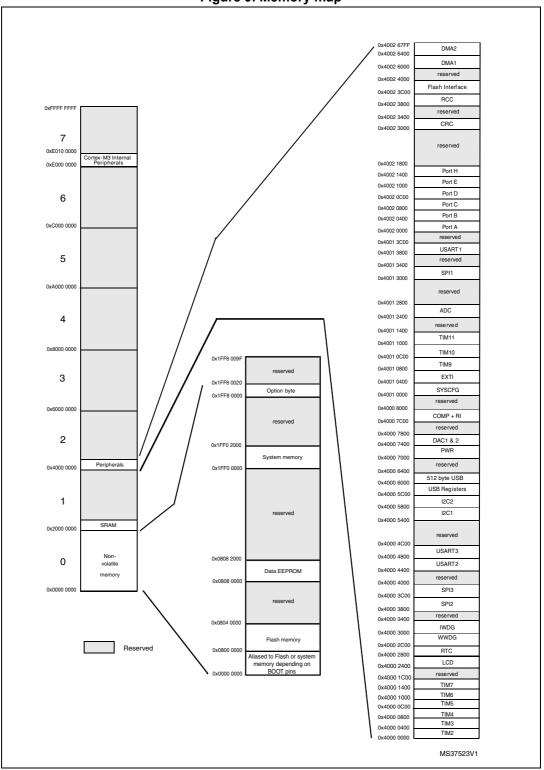


Figure 9. Memory map

Symbol	Parameter	Conditions	Min	Мах	Unit				
Тл	Ambient temperature for 6 suffix version	Maximum power dissipation ⁽⁵⁾	-40	85	°C				
ΤΑ	Ambient temperature for 7 suffix version	Maximum power dissipation	-40	105	C				
TJ	Junction temperature range	6 suffix version	-40	105	°C				
		7 suffix version	-40	110					

Table 14. General operating conditions (continued)

1. When the ADC is used, refer to Table 56: ADC characteristics.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and up to 140 mV in operation.

3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.

 If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see Table 73: Thermal characteristics on page 128).

In low-power dissipation state, T_A can be extended to -40°C to 105°C temperature range as long as T_J does not exceed T_J max (see *Table 73: Thermal characteristics on page 128*).

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	V _{DD} rise time rate	BOR detector enabled	0	-	∞	
t _{VDD} ⁽¹⁾		BOR detector disabled	0	-	1000	μs/V
VDD**	V foll time rate	BOR detector enabled	20	-	∞	μ5/ ν
	V _{DD} fall time rate	BOR detector disabled	0	-	1000	
T _{RSTTEMPO} ⁽¹⁾	Reset temporization	V _{DD} rising, BOR enabled	-	2	3.3	ms
'RSTTEMPO` '	Reset temporization	V _{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	1115
N .	Power on/power down reset	Falling edge	1	1.5	1.65	
V _{POR/PDR}	threshold	Rising edge	1.3	1.5	1.65	
N	Brown-out reset threshold 0	Falling edge	1.67	1.7	1.74	
V _{BOR0}		Rising edge	1.69	1.76	1.8	v
N .	Brown-out reset threshold 1	Falling edge	1.87	1.93	1.97	v
V _{BOR1}	Brown-out reset threshold 1	Rising edge	1.96	2.03	2.07	
N .	Brown-out reset threshold 2	Falling edge	2.22	2.30	2.35	
V _{BOR2}		Rising edge	2.31	2.41	2.44	

Table 15. Embedded reset and power control block characteristics

Symbol	Parameter	Conc	f _{HCLK}	Тур	Max ⁽¹⁾	Unit	
I _{DD}				1 MHz	215	400	
			Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	2 MHz	400	600	μA
				4 MHz	725	960	
		$f_{HSE} = f_{HCLK}$ up to 16		4 MHz	0.915	1.1	
		MHz included, f _{HSE} = f _{HCLK} /2 above 16 MHz	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	8 MHz	1.75	2.1	
	Cumple	(PLL ON) ⁽²⁾ urrent in un mode, ode xecuted		16 MHz	3.4	3.9	
	current in Run mode,		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	8 MHz	2.1	2.8	
(Run from				16 MHz	4.2	4.9	mA
Flash)	executed			32 MHz	8.25	9.4	
	from Flash		Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	3.5	4	
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	8.2	9.6	
		MSI clock, 65 kHz		65 kHz	40.5	110	
		MSI clock, 524 kHz	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	524 kHz	125	190	μA
		MSI clock, 4.2 MHz		4.2 MHz	775	900	

Table 18. Current consumption in Run mode, code with data processing running from Flash

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

6.3.7 Internal clock source characteristics

The parameters given in *Table 31* are derived from tests performed under the conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
TRIM ⁽¹⁾⁽²⁾	HSI user-trimmed	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	resolution	Trimming code is a multiple of 16	-	-	±1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated HSI oscillator	V_{DDA} = 3.0 V, T_{A} = 0 to 55 °C	-1.5	-	1.5	%
		V_{DDA} = 3.0 V, T_{A} = -10 to 70 °C	-2	-	2	%
ACC _{HSI} ⁽²⁾		V _{DDA} = 3.0 V, T _A = -10 to 85 °C	-2.5	-	2	%
		V_{DDA} = 3.0 V, T_{A} = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 105 °C	-4	-	3	%
t _{SU(HSI)} ⁽²⁾	HSI oscillator startup time	_	-	3.7	6	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	100	140	μA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

Low-speed internal (LSI) RC oscillator

Table 32. LSI oscillator characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift $0^{\circ}C \leq T_{A} \leq 105^{\circ}C$	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

SPI characteristics

Unless otherwise specified, the parameters given in the following table are derived from tests performed under the conditions summarized in *Table 14*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit	
-		Master mode	-	16		
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	16	MHz	
		Slave transmitter	-	12 ⁽³⁾		
$t_{r(SCK)}^{(2)}_{t_{f(SCK)}^{(2)}}$	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	6	ns	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%	
t _{su(NSS)}	NSS setup time	Slave mode	4t _{HCLK}	-		
t _{h(NSS)}	NSS hold time	Slave mode	2t _{HCLK}	-		
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode	t _{SCK} /2-5	t _{SCK} /2+3		
t _{su(MI)} ⁽²⁾	Data input actur time	Master mode	5	-		
t _{su(SI)} ⁽²⁾	Data input setup time	Slave mode	6	-		
t _{h(MI)} ⁽²⁾	Deta input hold time	Master mode	5	-	ns	
t _{h(SI)} ⁽²⁾	Data input hold time	Slave mode	5	-		
t _{a(SO)} ⁽⁴⁾	Data output access time	Slave mode	0	3t _{HCLK}		
t _{v(SO)} (2)	Data output valid time	Slave mode	-	33		
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode	-	6.5		
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode	17	-		
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode	0.5	-		

Table 50. SPI characteristics⁽¹⁾

1. The characteristics above are given for voltage range 1.

2. Guaranteed by characterization results.

3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK)) ranging between 40 to 60%.

4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

7.3 LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package information

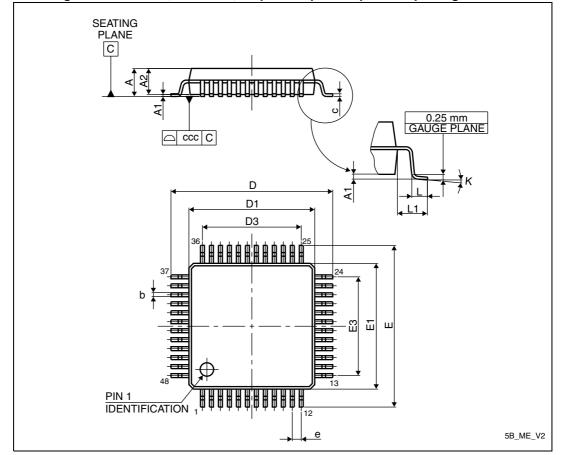


Figure 38. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline

1. Drawing is not to scale.

7.4 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information

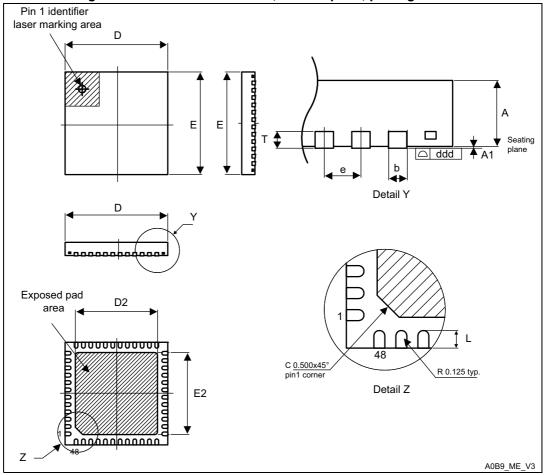


Figure 41. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

7.5 UFBGA100, 7 x 7 mm, 100-ball ultra thin, fine pitch ball grid array package information

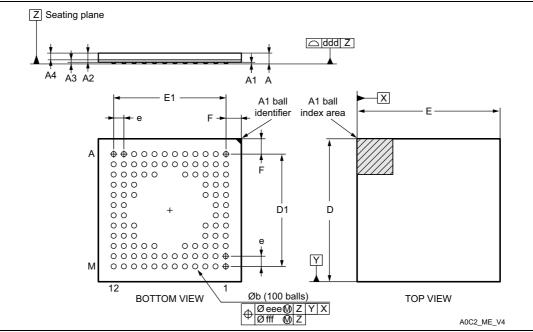
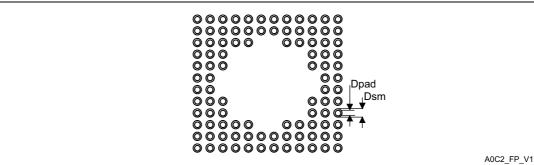


Figure 44. UFBGA100, 7 x 7 mm, 0.5 mm pitch package outline

1. Drawing is not to scale.

Table 70. UFBGA100, 7 X 7 mm, 0.5 mm pitch package mechanical data							
Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Мах	
А	0.460	0.530	0.600	0.0181	0.0209	0.0236	
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043	
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197	
A3	0.080	0.130	0.180	0.0031	0.0051	0.0071	
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146	
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
D	6.950	7.000	7.050	0.2736	0.2756	0.2776	
D1	5.450	5.500	5.550	0.2146	0.2165	0.2185	
Е	6.950	7.000	7.050	0.2736	0.2756	0.2776	
E1	5.450	5.500	5.550	0.2146	0.2165	0.2185	
е	-	0.500	-	-	0.0197	-	
F	0.700	0.750	0.800	0.0276	0.0295	0.0315	
ddd	-	-	0.100	-	-	0.0039	

Table 70. UFBGA100, 7 x 7 mm, 0.5 mm pitch package mechanical data



Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

Table 70. UFBGA100, 7 x 7 mm, 0.5 mm pitch package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 45. UFBGA100, 7 x 7 mm, 0.5 mm pitch, package recommended footprint

Table 71. UFBGA100, 7 x 7 mm, 0.50 mm pitch, recommended PCB design rules

Dimension	Recommended values		
Pitch	0.5		
Dpad	0.280 mm		
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)		
Stencil opening	0.280 mm		
Stencil thickness	Between 0.100 mm and 0.125 mm		

7.6 WLCSP63, 0.400 mm pitch wafer level chip size package information

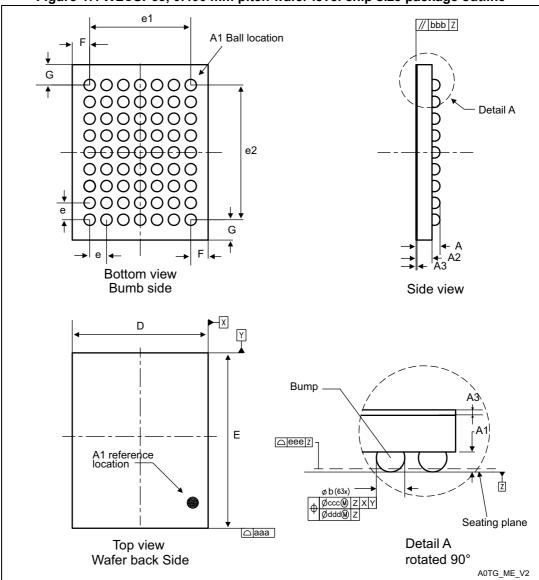


Figure 47. WLCSP63, 0.400 mm pitch wafer level chip size package outline

1. Drawing is not to scale.

Date	Revision	Changes
01-Feb-2013	3	Removed AHB1/AHB2 and corrected typo on APB1/APB2 in: <i>Figure 1:</i> <i>Ultra-low-power STM32L162xC block diagram-low-power</i> <i>STM32L162xC block diagram</i> Updated "OP amp" line in <i>Table 4: Functionalities depending on the</i> <i>working mode (from Run/active down to standby)</i> Added IWDG and WWDG rows in <i>Table 4: Functionalities depending</i> <i>on the working mode (from Run/active down to standby)</i> Updated address range in <i>Table 7: Internal voltage reference</i> <i>measured values</i> The comment "HSE = 16 MHz(2) (PLL ON for fHCLK above 16 MHz)" replaced by "fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2 above 16 MHz (PLL ON)(2)" in table <i>Table 27: Current consumption in</i> <i>Sleep mode</i> replaced pin names D7,C7,C6,C8,B8,A8 respectively by D11,D10,C12,B12,A12,A11 in column UFBGA100 of <i>Table 9:</i> <i>STM32L15xxC pin definitions</i> Added more alternate functions supported on pin K3 and M4 for UFBGA100 package in <i>Table 9:</i> <i>STM32L15xxC pin definitions</i> Added part number STM32L151CC in <i>Table 1: Device summary</i> Updated Stop mode current to 1.5 µA in <i>Ultra-low-power platform</i> Updated entire <i>Section 7: Package information</i>
02-Sep-2013	4	Removed UFBGA132 and LQFP144 packages Removed first sentence in Section : I2C interface characteristics Added Section Table 5.: V_{LCD} rail decoupling Added VRAIL functions in Table 9: STM32L15xxC pin definitions Updated PH0-OSC_IN and PH1-OSC_OUT type in Table 9: STM32L15xxC pin definitions. Added Table 6.1.7: Optional LCD power supply scheme. Updated consumption data in Table 6.3.4: Supply current characteristics Updated Table 7: Pin loading conditions Updated Table 7: Pin loading conditions Updated Table 8: Pin input voltage Updated Table 15: Typical application with a 32.768 kHz crystal Updated Table 25: Recommended NRST pin protection Table 26: I^2 C bus AC waveforms and measurement circuitUpdated Table 35: Typical connection diagram using the ADC and definition of symbol "RAIN" in Table 77: ADC characteristics Updated Table 49: Thermal resistance suffix 6. Added D2 and E2 in Table 69: UFQFPN48 – ultra thin fine pitch quad flat pack no-lead 7 × 7 mm, 0.5 mm pitch package mechanical data Fixed columns inversion in Table 67: LQFP64, 10 × 10 mm 64-pin low- profile quad flat package mechanical data

Date	Revision	75. Document revision history (continued) Changes
2410		-
		Updated Section 3.15: Touch sensing. Added V _{DD} = 1.71 to 1.8 V operating power supply range in Table 4: Functionalities depending on the working mode (from Run/active down to standby) Renamed "I/O Level" to "I/O structure" in Table 9: STM32L15xxC pin definitions, added the I/O structure for PC14, PC15, PC3, PH0, PH1, PA3, PA4, PA5, PB0, PE7, PE8, PE9, PE10, NRST and BOOT0 Updated Table 10: Voltage characteristics added row
		Updated <i>Table 11: Current characteristics</i> replaced with the one inside STM32L15xxBxxA datasheet.
		Updated <i>Table 13: General operating conditions</i> , footnote and added row.
		Updated Table 15: Embedded internal reference voltage calibration values and moved inside Section 6.3.3: Embedded internal reference voltage
		Updated Section 6.3.4: Supply current characteristics.
		Updated Table 19: Current consumption in Run mode, code with data processing running from Flash.
		Updated Table 22: Current consumption in Run mode, code with data processing running from RAM.
		Created Section 6.3.5: Wakeup time from low-power mode
		Updated Table 38: High-speed external user clock characteristics.
12-Nov-2013	5	Moved Figure 12: High-speed external clock source AC timing diagram after Table 38: High-speed external user clock characteristics.
		Updated Table 40: HSE oscillator characteristics.
		Updated Section 6.3.12: Electrical sensitivity characteristics (title).
		Updated Section 6.3.13: I/O current injection characteristics.
		Updated <i>Table 61: I/O current injection susceptibility</i> and added footnote.
		Updated Table 63: I/O static characteristics
		Updated Section 6.3.15: NRST pin characteristics.
		Updated <i>Table 77: ADC characteristics</i> . Added footnote ⁽⁵⁾ and ⁽⁶⁾ in <i>Table 77: ADC characteristics</i>
		Updated THD values and added 4 more rows ENOB, SINAD, SNR, THD in <i>Table 78: ADC accuracy</i>
		Updated "SDA data hold time" and "SDA and SCL rise time" values and added "Pulse width of spikes that are suppressed by the analog filter" row in <i>Table 68: I²C characteristics</i>
		Updated direct channels VDDA range in <i>Table 79:</i> R_{AIN} max for $f_{ADC} = 16 MHz$
		Moved Table 82: Temperature sensor calibration values and moved inside Section 6.3.23: Temperature sensor characteristics
		Updated I _{DD} (WU from Standby) unit in <i>Table 31: Typical and maximum current consumptions in Standby mode</i> .
		Updated Table 67: LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data
		Updated Chapter 8: Part numbering (title).

Table 75. Document revision I	history ((continued)
-------------------------------	-----------	-------------

