

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152ccu6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Ultra-low-power STM32L151xC and STM32L152xC block diagram	13
Figure 2.	Clock tree	22
Figure 3.	STM32L15xVC UFBGA100 ballout	32
Figure 4.	STM32L15xVC LQFP100 pinout	33
Figure 5.	STM32L15xRC LQFP64 pinout	34
Figure 6.	STM32L15xUC WLCSP63 ballout	35
Figure 7.	STM32L15xCC UFQFPN48 pinout	36
Figure 8.	STM32L15xCC LQFP48 pinout	37
Figure 9.	Memory map	51
Figure 10.	Pin loading conditions	52
Figure 11.	Pin input voltage	52
Figure 12.	Power supply scheme.	53
Figure 13.	Optional LCD power supply scheme	54
Figure 14.	Current consumption measurement scheme	54
Figure 15.	High-speed external clock source AC timing diagram	72
Figure 16.	Low-speed external clock source AC timing diagram	73
Figure 17.	HSE oscillator circuit diagram.	75
Figure 18.	Typical application with a 32.768 kHz crystal	76
Figure 19.	I/O AC characteristics definition	88
Figure 20.	Recommended NRST pin protection	89
Figure 21.	I ² C bus AC waveforms and measurement circuit	91
Figure 22.	SPI timing diagram - slave mode and CPHA = 0	93
Figure 23.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾	93
Figure 24.	SPI timing diagram - master mode ⁽¹⁾	94
Figure 25.	USB timings: definition of data signal rise and fall time	95
Figure 26.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾	97
Figure 27.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	97
Figure 28.	ADC accuracy characteristics	01
Figure 29.	Typical connection diagram using the ADC1	01
Figure 30.	Maximum dynamic current consumption on V _{REF+} supply pin during ADC	
-	conversion	02
Figure 31.	12-bit buffered /non-buffered DAC	05
Figure 32.	LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline	10
Figure 33.	LQFP100, 14 x 14 mm, 100-pin low-profile guad flat package	
-	recommended footprint	11
Figure 34.	LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package top view example 1	12
Figure 35.	LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline	13
Figure 36.	LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package	
U	recommended footprint.	14
Figure 37.	LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example 1	15
Figure 38.	LQFP48, 7 x 7 mm, 48-pin low-profile guad flat package outline	16
Figure 39.	LQFP48 recommended footprint1	17
Figure 40.	LQFP48 package top view example	18
Figure 41.	UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline	19
Figure 42.	UFQFPN48 recommended footprint 1	20
Figure 43.	UFQFPN48 package top view example	21
Figure 44.	UFBGA100, 7 x 7 mm, 0.5 mm pitch package outline	22
Figure 45.	UFBGA100, 7 x 7 mm, 0.5 mm pitch, package recommended footprint	23

2 Description

The ultra-low-power STM32L151xC and STM32L152xC devices incorporate the connectivity power of the universal serial bus (USB) with the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at a frequency of 32 MHz (33.3 DMIPS), a memory protection unit (MPU), high-speed embedded memories (Flash memory up to 256 Kbytes and RAM up to 32 Kbytes) and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

The STM32L151xC and STM32L152xC devices offer two operational amplifiers, one 12-bit ADC, two DACs, two ultra-low-power comparators, one general-purpose 32-bit timer, six general-purpose 16-bit timers and two basic timers, which can be used as time bases.

Moreover, the STM32L151xC and STM32L152xC devices contain standard and advanced communication interfaces: up to two I2Cs, three SPIs, two I2S, three USARTs and an USB. The STM32L151xC and STM32L152xC devices offer up to 23 capacitive sensing channels to simply add a touch sensing functionality to any application.

They also include a real-time clock and a set of backup registers that remain powered in Standby mode.

Finally, the integrated LCD controller (except STM32L151xC devices) has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with the contrast independent of the supply voltage.

The ultra-low-power STM32L151xC and STM32L152xC devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +85 °C and -40 to +105 °C temperature ranges. A comprehensive set of power-saving modes allows the design of low-power applications.

3 Functional overview

Figure 1. Ultra-low-power STM32L151xC and STM32L152xC block diagram

DocID022799 Rev 12

• **Stop** mode without RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 μ s. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup.

• **Standby** mode with RTC

Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

• Standby mode without RTC

Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode.

	Functionaliti	Functionalities depending on the operating power supply range								
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation						
V _{DD} = V _{DDA} = 1.65 to 1.71 V	Not functional	Not functional	Range 2 or Range 3	Degraded speed performance						
$V_{DD} = V_{DDA} = 1.71 \text{ to } 1.8 \text{ V}^{(1)}$	Not functional	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance						
V _{DD} =V _{DDA} = 1.8 to 2.0 V ⁽¹⁾	Conversion time up to 500 Ksps	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance						

Table 3. Functionalities depending on the operating power supply range

3.4 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- **Safe clock switching**: clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management**: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **System clock source**: three different clock sources can be used to drive the master clock SYSCLK:
 - 1-24 MHz high-speed external crystal (HSE), that can supply a PLL
 - 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz).
 When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
- **Auxiliary clock source**: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE)
 - 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.
- **RTC and LCD clock sources:** the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.
- **USB clock source:** the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.
- Clock-out capability (MCO: microcontroller clock output): it outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

Figure 2. Clock tree

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{\scriptsize SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. See *Table 61: Temperature sensor calibration values*.

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the V_{DD} value (when no external voltage, VREF+, is available for ADC). The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. See *Table 16: Embedded internal reference voltage calibration values*.

3.11 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

This dual digital Interface supports the following features:

- Two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channels, independent or simultaneous conversions
- DMA capability for each channel (including the underrun interrupt)
- External triggers for conversion
- Input reference voltage V_{REF+}

Eight DAC trigger inputs are used in the STM32L151xC and STM32L152xC devices. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

Pin descriptions

DocID022799 Rev 12

48/136

Port	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	•	AFIO11	•	AFIO14	AFIO15
name					Alte	ernate fund	tion						
	SYSTEM	TIM2	TIM3/4/5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3		LCD		CPRI	SYSTEM
PC4	-	-	-	-	-	-	-	-		SEG22		TIMx_IC1	EVENT OUT
PC5	-	-	-	-	-	-	-	-		SEG23		TIMx_IC2	EVENT OUT
PC6	-	-	TIM3_CH1	-	-	I2S2_MCK	-	-		SEG24		TIMx_IC3	EVENT OUT
PC7	-	-	TIM3_CH2	-	-	-	I2S3_MCK	-		SEG25		TIMx_IC4	EVENT OUT
PC8	-	-	TIM3_CH3	-	-	-	-	-		SEG26		TIMx_IC1	EVENT OUT
PC9	-	-	TIM3_CH4	-	-	-	-	-		SEG27		TIMx_IC2	EVENT OUT
PC10	-	-	-	-	-	-	SPI3_SCK I2S3_CK	USART3_TX		COM4/ SEG28/ SEG40		TIMx_IC3	EVENT OUT
PC11	-	-	-	-	-	-	SPI3_MISO	USART3_RX		COM5/ SEG29 /SEG41		TIMx_IC4	EVENT OUT
PC12	-	-	-	-	-	-	SPI3_MOSI I2S3_SD	USART3_CK		COM6/ SEG30/ SEG42		TIMx_IC1	EVENT OUT
PC13- WKUP2	-	-	-	-	-	-	-	-		-		TIMx_IC2	EVENT OUT
PC14 OSC32_IN	-	-	-	-	-	-	-	-		-		TIMx_IC3	EVENT OUT
PC15 OSC32_ OUT	-	-	-	-	-	-	-	-		-		TIMx_IC4	EVENT OUT
PD0	-	-	-	TIM9_CH1	-	SPI2_NSS I2S2_WS	-	-		-		TIMx_IC1	EVENT OUT
PD1	-	-	-	-	-	SPI2 SCK I2S2_CK	-	-		-		TIMx_IC2	EVENT OUT
PD2	-	-	TIM3_ETR	-	-	-	-	-		COM7/ SEG31/ SEG43		TIMx_IC3	EVENT OUT

Table 10. Alternate function input/output (continued)

Digital alternate function number

STM32L151xC STM32L152xC

Pin
descri
ption
õ

			Table	10. Alterna	te functio	on input/o	utput (co	ntinued)				
		Digital alternate function number										
Port	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO11	AFIO14	AFIO15	
name			l	•	Alte	ernate func	tion		1		1	
	SYSTEM	TIM2	TIM3/4/5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3	LCD	CPRI	SYSTEM	
PD3	-	-	-	-	-	SPI2_MISO	-	USART2_CTS	-	TIMx_IC4	EVENT OUT	
PD4	-	-	-	-	-	SPI2_MOSI I2S2_SD	-	USART2_RTS	-	TIMx_IC1	EVENT OUT	
PD5	-	-	-	-	-		-	USART2_TX	-	TIMx_IC2	EVENT OUT	
PD6	-	-	-		-	-	-	USART2_RX	-	TIMx_IC3	EVENT OUT	
PD7	-	-	-	TIM9_CH2	-	-	-	USART2_CK	-	TIMx_IC4	EVENT OUT	
PD8	-	-	-	-	-	-	-	USART3_TX	SEG28	TIMx_IC1	EVENT OUT	
PD9	-	-	-	-	-	-	-	USART3_RX	SEG29	TIMx_IC2	EVENT OUT	
PD10	-	-	-	-	-	-	-	USART3_CK	SEG30	TIMx_IC3	EVENT OUT	
PD11	-	-	-	-	-	-	-	USART3_CTS	SEG31	TIMx_IC4	EVENT OUT	
PD12	-	-	TIM4_CH1	-	-	-	-	USART3_RTS	SEG32	TIMx_IC1	EVENT OUT	
PD13	-	-	TIM4_CH2	-	-	-	-	-	SEG33	TIMx_IC2	EVENT OUT	
PD14	-	-	TIM4_CH3	-	-	-	-	-	SEG34	TIMx_IC3	EVENT OUT	
PD15	-	-	TIM4_CH4	-	-	-	-	-	SEG35	TIMx_IC4	EVENT OUT	
PE0	-	-	TIM4_ETR	TIM10_CH1	-	-	-	-	SEG36	TIMx_IC1	EVENT OUT	
PE1	-	-	-	TIM11_CH1	-	-	-	-	SEG37	TIMx_IC2	EVENT OUT	
PE2	TRACECK	-	TIM3_ETR	-				-	SEG 38	TIMx_IC3	EVENT OUT	
PE3	TRACED0	-	TIM3_CH1	-	-	-	-	-	SEG 39	TIMx_IC4	EVENT OUT	
PE4	TRACED1	-	TIM3_CH2	-	-	-	-	-	-	TIMx_IC1	EVENT OUT	
PE5	TRACED2	-	-	TIM9_CH1	-	-	-	-	-	TIMx_IC2	EVENT OUT	
PE6- WKUP3	TRACED3	-	-	TIM9_CH2	-	-	-	-	-	TIMx_IC3	EVENT OUT	
PE7	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENT OUT	

. 4 : . . . 4 . . 40 A 14 E. :.

DocID022799 Rev 12

49/136

577

Pin descriptions

		Digital alternate function number										
Port	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO11	•	AFIO14	AFIO15
name		Alternate function										
	SYSTEM	TIM2	TIM3/4/5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3	LCD		CPRI	SYSTEM
PE8	-	-	-	-	-	-	-	-	-		TIMx_IC1	EVENT OUT
PE9	-	TIM2_CH1_ETR	TIM5_ETR	-	-	-	-	-	-		TIMx_IC2	EVENT OUT
PE10	-	TIM2_CH2	-	-	-	-	-	-	-		TIMx_IC3	EVENT OUT
PE11	-	TIM2_CH3	-	-	-	-	-	-	-		TIMx_IC4	EVENT OUT
PE12	-	TIM2_CH4	-	-	-	SPI1_NSS	-	-	-		TIMx_IC1	EVENT OUT
PE13	-	-	-	-	-	SPI1_SCK	-	-	-		TIMx_IC2	EVENT OUT
PE14	-	-	-	-	-	SPI1_MISO	-	-	-		TIMx_IC3	EVENT OUT
PE15	-	-	-	-	-	SPI1_MOSI	-	-	-		TIMx_IC4	EVENT OUT
PH0OSC _IN	-	-	-	-	-	-	-	-	-		-	-
PH1OSC_ OUT	-	-	-	-	-	-	-	-	-		-	-
PH2	-	-	-	-	-	-	-	-	-		-	_

Table 10. Alternate function input/output (continued)

50/136

Symbol	Parameter	Conditions	Min	Max	Unit
Тл	Ambient temperature for 6 suffix version	Maximum power dissipation ⁽⁵⁾	-40	85	°C
IA	Ambient temperature for 7 suffix version	Maximum power dissipation	-40	105	
т.	lupation tomporature range	6 suffix version	-40	105	°C
IJ	Sunction temperature range	7 suffix version	-40	110	

Table 14. General operating conditions (continued)

1. When the ADC is used, refer to Table 56: ADC characteristics.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and up to 140 mV in operation.

3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.

 If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see Table 73: Thermal characteristics on page 128).

In low-power dissipation state, T_A can be extended to -40°C to 105°C temperature range as long as T_J does not exceed T_J max (see *Table 73: Thermal characteristics on page 128*).

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	V rise time rate	BOR detector enabled	0	-	8	
$t_{1} = -(1)$		BOR detector disabled	0	-	1000	.ue//
VDD · ·	V fall time rate	BOR detector enabled	20	-	∞	μ5/ ν
		BOR detector disabled	0	-	1000	
T _{RSTTEMPO} ⁽¹⁾	Poset temperization	V _{DD} rising, BOR enabled	-	2	3.3	
	Reset temporization	V_{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	1115
N	Power on/power down reset	Falling edge	1	1.5	1.65	
V POR/PDR	threshold	Rising edge	1.3	1.5	1.65	
N	Brown out reset threshold 0	Falling edge	1.67	1.7	1.74	
V BOR0		Rising edge	1.69	1.76	1.8	V
N	Brown out reset threshold 1	Falling edge	1.87	1.93	1.97	
VBOR1		Rising edge	1.96	2.03	2.07	
V	Prown out rooot throohold 2	Falling edge	2.22	2.30	2.35	
VBOR2		Rising edge	2.31	2.41	2.44]

Table 15. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions				Max ⁽¹⁾	Unit
			MSI clock, 65 kHz f _{HCLK} = 32 kHz Flash OFF	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	4.4	-	
			MSI clock 65 kHz	T_A = -40 °C to 25 °C	14	16	
			f _{HCLK} = 32 kHz	T _A = 85 °C	19	23	
			Flash ON	T _A = 105 °C	27	33	
		All peripherals	MSI clock, 65 kHz	T_A = -40 °C to 25 °C	15	17	
		1.65 V to 3.6 V	f _{HCLK} = 65 kHz,	T _A = 85 °C	20	23	
	Supply current in Low-power sleep mode		Flash ON	T _A = 105 °C	28	33	
				T_A = -40 °C to 25 °C	17	19	
I _{DD} (LP Sleep)			MSI clock, 131 kHz f _{HCLK} = 131 kHz, Flash ON	T _A = 55 °C	18	21	μA
				T _A = 85 °C	22	25	
				T _A = 105 °C	30	35	
			MSI clock, 65 kHz f _{HCLK} = 32 kHz	T_A = -40 °C to 25 °C	14	16	
				T _A = 85 °C	19	22	
				T _A = 105 °C	27	32	
		TIM9 and		T_A = -40 °C to 25 °C	15	17	
		USART1 enabled Flash	MSI сюск, 65 кHz f _{HCI к} = 65 kHz	T _A = 85 °C	20	23	
		ON, V _{DD} from	HOLK	T _A = 105 °C	28	33	
		1.65 V to 3.6 V		T_A = -40 °C to 25 °C	17	19	
			MSI clock, 131 kHz	T _A = 55 °C	18	21	
			f _{HCLK} = 131 kHz	T _A = 85 °C	22	25	
				T _A = 105 °C	30	36	
I _{DD} max (LP Sleep)	Max allowed current in Low-power sleep mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200	

Table 22.	Current consum	ption in L	.ow-power sle	ep mode
TUDIC LL.	ourient consum			op moae

1. Guaranteed by characterization results, unless otherwise specified.

Symbol	Parameter	Conditions	i	Тур	Max ⁽¹⁾	Unit
I _{DD} (Stop)		Regulator in LP mode, HSI and HSE OFF, independent watchdog and LSI enabled	$T_A = -40^{\circ}C$ to 25°C	1.8	2.2	
	Supply current in Stop mode (RTC disabled)		$T_A = -40^{\circ}C$ to $25^{\circ}C$	0.435	1	uА
		Regulator in LP mode, LSI, HSI and HSE OFF (no independent watchdog)	T _A = 55°C	0.99	3	-
			T _A = 85°C	2.4	9	
			T _A = 105°C	5.5	22 ⁽⁵⁾	
חח	Supply current during	MSI = 4.2 MHz		2	-	
(WU from Stop)	wakeup from Stop mode	MSI = 1.05 MHz	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.45	-	mA
		MSI = 65 kHz ⁽⁶⁾		1.45	-	

1. Guaranteed by characterization results, unless otherwise specified.

2. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected.

3. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

4. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

5. Guaranteed by test in production.

When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining part
of the wakeup period, the current corresponds the Run mode current.

6.3.6 **External clock source characteristics**

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the recommended clock input waveform is shown in Figure 15.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	User external clock source	CSS is on or PLL is used	1	8	32	MHz
^I HSE_ext	frequency	CSS is off, PLL not used	0	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V_{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	-	12	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance		-	2.6	-	pF

Table 27.	High-speed	external user	r clock chara	acteristics ⁽¹⁾
-----------	------------	---------------	---------------	----------------------------

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{OSC_IN}	Oscillator frequency	-	1		24	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	20	-	pF
I _{HSE}	HSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load	-	-	3	mA
I _{DD(HSE)}	HSE oscillator power consumption	C = 20 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.7 (stabilized)	٣٨
		C = 10 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.46 (stabilized)	ШA
9 _m	Oscillator transconductance	Startup	3.5	-	-	mA /V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	ms

Table 29. HSE oscillator characteristics⁽¹⁾⁽²⁾

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results.

 The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

6.3.8 PLL characteristics

The parameters given in *Table 34* are derived from tests performed under the conditions summarized in *Table 14*.

Symbol	Parameter		Unit			
Symbol	Falameter	Min	Тур	Max ⁽¹⁾	e.iit	
f	PLL input clock ⁽²⁾	2	-	24	MHz	
^T PLL_IN	PLL input clock duty cycle	45	-	55	%	
f _{PLL_OUT}	PLL output clock	2	-	32	MHz	
t _{LOCK}	PLL lock time PLL input = 16 MHz PLL VCO = 96 MHz	-	115	160	μs	
Jitter	Cycle-to-cycle jitter	-	-	±600	ps	
I _{DDA} (PLL)	Current consumption on V _{DDA}	-	220	450		
I _{DD} (PLL)	Current consumption on V_{DD}	-	120	150		

Table 34. PLL characteristics

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT} .

6.3.9 Memory characteristics

The characteristics are given at T_A = -40 to 105 °C unless otherwise specified.

RAM memory

Table 35.	RAM and	l hardware	reaisters

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _S ⁽⁵⁾	Sampling time	Direct channels 2.4 V ≤V _{DDA} ≤3.6 V	0.25	-	-	
		Multiplexed channels 2.4 V ≤V _{DDA} ≤3.6 V	0.56	-	-	
		Direct channels 1.8 V ≤V _{DDA} ⊴2.4 V	0.56	-	-	μ5
		Multiplexed channels 1.8 V ≤V _{DDA} ⊴.4 V	1	-	-	
		-	4	-	384	1/f _{ADC}
t _{CONV}	Total conversion time (including sampling time)	f _{ADC} = 16 MHz	1	-	24.75	μs
		-	4 to 384 (sampling phase) +12 (successive approximation)			1/f _{ADC}
C _{ADC}	Internal sample and hold capacitor	Direct channels	-	16	-	рЕ
		Multiplexed channels	-	10	-	pr
4	External trigger frequency Regular sequencer	12-bit conversions	-	-	Tconv+1	1/f _{ADC}
'TRIG		6/8/10-bit conversions	-	-	Tconv	1/f _{ADC}
f	External trigger frequency Injected sequencer	12-bit conversions	-	-	Tconv+2	1/f _{ADC}
'TRIG		6/8/10-bit conversions	-	-	Tconv+1	1/f _{ADC}
R _{AIN} ⁽⁶⁾	Signal source impedance		-	-	50	kΩ
t _{lat}	Injection trigger conversion latency	f _{ADC} = 16 MHz	219	-	281	ns
		-	3.5	-	4.5	1/f _{ADC}
t	Regular trigger conversion	f _{ADC} = 16 MHz	156	-	219	ns
Чаtr	latency	-	2.5	-	3.5	1/f _{ADC}
t _{STAB}	Power-up time	-	-	-	3.5	μs

Table 56. ADC characteristics (continued)

1. The Vref+ input can be grounded if neither the ADC nor the DAC are used (this allows to shut down an external voltage reference).

2. The current consumption through VREF is composed of two parameters:

- one constant (max 300 µA)

- one variable (max 400 μA), only during sampling time + 2 first conversion pulses

So, peak consumption is 300+400 = 700 μA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 μA at 1Msps

 V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pin descriptions for further details.

4. V_{SSA} or V_{REF-} must be tied to ground.

5. Minimum sampling time is reached for an external input impedance limited to a value as defined in *Table 58: Maximum source impedance RAIN max*.

6. External impedance has another high value limitation when using short sampling time as defined in *Table 58: Maximum source impedance RAIN max*.

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 37. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity

Figure 49. Thermal resistance suffix 6

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

