

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 25x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152vch6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Device overview

Table 2. Ultra-low-power STM32L151xC and STM32L152xC device features and peripheral counts

Periphe	ral	STM32L15xCC	STM32L15xUC STM32L15xRC	STM32L15xVC		
Flash (Kbytes)			256			
Data EEPROM (Kb	oytes)	8				
RAM (Kbytes)			32			
	32 bit		1			
Timers	General- purpose	6				
	Basic		2			
	SPI		8(3) ⁽¹⁾			
	I ² S		2			
Communica tion interfaces	l ² C		2			
	USART	3				
	USB	1				
GPIOs		37	51	83		
Operation amplifie	ers	2				
12-bit synchronize Number of channe		1 14	1 21	1 25		
12-bit DAC Number of channe	els	2 2				
LCD ⁽²⁾ COM x SEG		1 4x18	1 4x32 or 8x28	1 4x44 or 8x40		
Comparators			2			
Capacitive sensin	g channels	16 23				
Max. CPU frequen	су	32 MHz				
Operating voltage		1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option				
Operating temperatures		Ambient operating temperature: -40 °C to 85 °C / -40 °C to 105 °C Junction temperature: -40 to + 110 °C				
Packages		LQFP48, UFQFPN48	LQFP64, WLCSP63	LQFP100, UFBGA100		

1. 5 SPIs are USART configured in synchronous mode emulating SPI master.

2. STM32L152xx devices only.

	Functionaliti	Functionalities depending on the operating power supply range					
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation			
$V_{DD} = V_{DDA} = 2.0$ to 2.4 V	Conversion time up to 500 Ksps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation			
$V_{DD} = V_{DDA} = 2.4$ to 3.6 V	Conversion time up to 1 Msps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation			

Table 3. Functionalities depending on the operating power supply range (continued)

 CPU frequency changes from initial to final must respect "F_{CPU} initial < 4*F_{CPU} final" to limit V_{CORE} drop due to current consumption peak when frequency increases. It must also respect 5 μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, the user can switch from 4.2 MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz.

2. Should be USB compliant from I/O voltage standpoint, the minimum $\rm V_{DD}$ is 3.0 V.

Table 4. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
2.1MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws)	Range 3

3.5 Low-power real-time clock and backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the sub-second, second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are made automatically. The RTC provides two programmable alarms and programmable periodic interrupts with wakeup from Stop and Standby modes.

The programmable wakeup time ranges from 120 µs to 36 hours.

The RTC can be calibrated with an external 512 Hz output, and a digital compensation circuit helps reduce drift due to crystal deviation.

The RTC can also be automatically corrected with a 50/60Hz stable powerline.

The RTC calendar can be updated on the fly down to sub second precision, which enables network system synchronization.

A time stamp can record an external event occurrence, and generates an interrupt.

There are thirty-two 32-bit backup registers provided to store 128 bytes of user application data. They are cleared in case of tamper detection.

Three pins can be used to detect tamper events. A change on one of these pins can reset backup register and generate an interrupt. To prevent false tamper event, like ESD event, these three tamper inputs can be digitally filtered.

3.6 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated AFIO registers. All GPIOs are high current capable. The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to the AHB with a toggling speed of up to 16 MHz.

External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 83 GPIOs can be connected to the 16 external interrupt lines. The 8 other lines are connected to RTC, PVD, USB, comparator events or capacitive sensing acquisition.

3.7 Memories

The STM32L151xC and STM32L152xC devices have the following features:

- 32 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
- The non-volatile memory is divided into three arrays:
 - 256 Kbytes of embedded Flash program memory
 - 8 Kbytes of data EEPROM
 - Options bytes

The options bytes are used to write-protect or read-out protect the memory (with 4 Kbytes granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (ARM Cortex-M3 JTAG and serial wire) and boot in RAM selection disabled (JTAG fuse)

The whole non-volatile memory embeds the error correction code (ECC) feature.

The user area of the Flash memory can be protected against Dbus read access by PCROP feature (see RM0038 for details).

3.8 DMA (direct memory access)

The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I^2C , USART, general-purpose timers, DAC and ADC.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM10, TIM11 and TIM9

TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.

They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock.

3.16.2 Basic timers (TIM6 and TIM7)

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

3.16.3 SysTick timer

This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit downcounter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches 0.

3.16.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

3.16.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.17 Communication interfaces

3.17.1 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SM Bus 2.0/PM Bus.

DocID022799 Rev 12

Table 9. STM32L151xC and STM32L152xC pin definitions (continued) Pins Pin functions						-				
	P	ins							Pin fund	ctions
UFBGA100	LQFP100	LQFP64	MLCSP63	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I / O Structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
C10	79	52	A3	-	PC11	I/O	FT	PC11	SPI3_MISO/ USART3_RX/ LCD_SEG29/ LCD_SEG41/ LCD_COM5	-
B10	80	53	B4	-	PC12	I/O	FT	PC12	SPI3_MOSI/I2S3_SD/ USART3_CK/ LCD_SEG30/ LCD_SEG42/ LCD_COM6	-
C9	81	-	-	-	PD0	I/O	FT	PD0	TIM9_CH1/SPI2_NSS/ I2S2_WS	-
B9	82	-	1	-	PD1	I/O	FT	PD1	SPI2_SCK/I2S2_CK	-
C8	83	54	A4	-	PD2	I/O	FT	PD2	TIM3_ETR/LCD_SEG31 /LCD_SEG43/ LCD_COM7	-
B8	84	-	-	-	PD3	I/O	FT	PD3	SPI2_MISO/ USART2_CTS	-
B7	85	-	-	-	PD4	I/O	FT	PD4	SPI2_MOSI/I2S2_SD/ USART2_RTS	-
A6	86	-		-	PD5	I/O	FT	PD5	USART2_TX	-
B6	87	-	-	-	PD6	I/O	FT	PD6	USART2_RX	-
A5	88	-	-	-	PD7	I/O	FT	PD7	TIM9_CH2/USART2_CK	-
A8	89	55	C4	39	PB3	I/O	FT	JTDO	TIM2_CH2/SPI1_SCK/ SPI3_SCK/I2S3_CK/ LCD_SEG7/JTDO	COMP2_INM
A7	90	56	D4	40	PB4	I/O	FT	NJTRST	TIM3_CH1/SPI1_MISO/ SPI3_MISO/LCD_SEG8 /NJTRST	COMP2_INP
C5	91	57	A5	41	PB5	I/O	FT	PB5	TIM3_CH2/I2C1_SMBA/ SPI1_MOSI/SPI3_MOSI /I2S3_SD/LCD_SEG9	COMP2_INP

Table 9. STM32L151xC and STM32L152xC pin definitions (continued)

5 Memory mapping

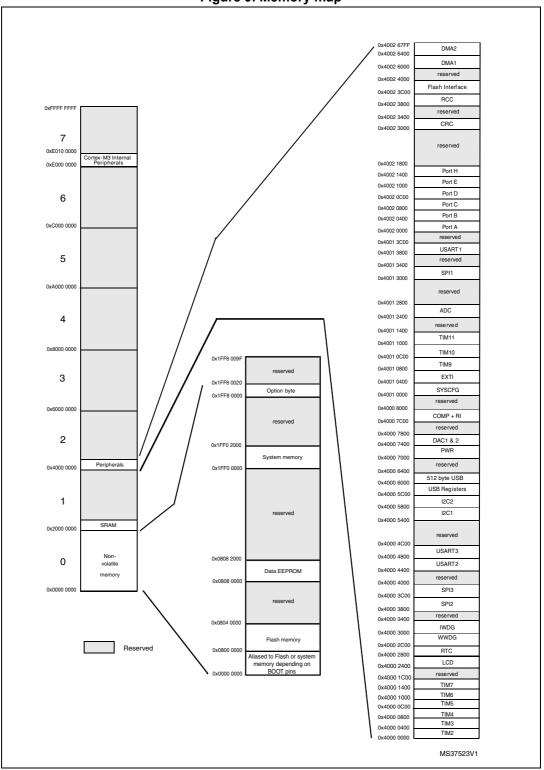


Figure 9. Memory map

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA} and V_{DD}) ⁽¹⁾	-0.3	4.0	
V _{IN} ⁽²⁾	Input voltage on five-volt tolerant pin	V _{SS} -0.3	V _{DD} +4.0	V
VIN	Input voltage on any other pin	V _{SS} –0.3	4.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	mV
V _{SSX} –V _{SS}	Variations between all different ground pins ⁽³⁾	-	50	111V
V _{REF+} –V _{DDA}	Allowed voltage difference for $V_{REF+} > V_{DDA}$	-	0.4	V
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model) see Section 6		ion 6.3.11	

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to Table 12 for maximum allowed injected current values.

3. Include V_{REF-} pin.

Table 12. Current characteristics

Symbol	Ratings	Max.	Unit
$I_{VDD(\Sigma)}$	Total current into sum of all V_{DD_x} power lines (source) ⁽¹⁾	100	
$I_{VSS(\Sigma)}^{(2)}$	Total current out of sum of all V_{SS_x} ground lines (sink) ⁽¹⁾	100	
I _{VDD(PIN)}	Maximum current into each V _{DD_x} power pin (source) ⁽¹⁾	70	
I _{VSS(PIN)}	I _{VSS(PIN)} Maximum current out of each VSS_x ground pin (sink) ⁽¹⁾		
	Output current sunk by any I/O and control pin	25	
I _{IO}	Output current sourced by any I/O and control pin	- 25	mA
51	Total output current sunk by sum of all IOs and control pins ⁽²⁾	60	
ΣΙ _{ΙΟ(ΡΙΝ)}	Total output current sourced by sum of all IOs and control pins ⁽²⁾	-60	
(3)	Injected current on five-volt tolerant I/O ⁽⁴⁾ , RST and B pins	-5/+0	
I _{INJ(PIN)} ⁽³⁾	Injected current on any other pin ⁽⁵⁾	± 5	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.

Symbol	Parameter	Conc	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
				1 MHz	215	400	
			Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	2 MHz	400	600	μA
				4 MHz	725	960	
		$f_{HSE} = f_{HCLK}$ up to 16		4 MHz	0.915	1.1	
		MHz included, f _{HSE} = f _{HCLK} /2 above 16 MHz	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	8 MHz	1.75	2.1	mA
	Supply current in Run mode,	(PLL ON) ⁽²⁾ Supply urrent in Run mode, ode xecuted rom Eloop		16 MHz	3.4	3.9	
I _{DD}			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	8 MHz	2.1	2.8	
(Run from				16 MHz	4.2	4.9	
Flash)	executed			32 MHz	8.25	9.4	
	from Flash		Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	3.5	4	
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	8.2	9.6	
		MSI clock, 65 kHz		65 kHz	40.5	110	
		MSI clock, 524 kHz	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	524 kHz	125	190	μA
		MSI clock, 4.2 MHz		4.2 MHz	775	900	

Table 18. Current consumption in Run mode, code with data processing running from Flash

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter	Condit	tions	Тур	Max ⁽¹⁾	Unit
			T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.905	-	
		RTC clocked by LSI (no	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.15	1.9	
		independent watchdog)	T _A = 55 °C	1.5	2.2	
			T _A = 85 °C	1.75	4	
I _{DD}	Supply current in		T _A = 105 °C	2.1	8.3 ⁽²⁾	
(Standby with RTC)	Standby mode with RTC enabled		T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.98	-	μA
		RTC clocked by LSE external quartz (no independent watchdog) ⁽³⁾	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.3	-	
			T _A = 55 °C	1.7	-	
			T _A = 85 °C	2.05	-	
			T _A = 105 °C	2.45	-	
		Independent watchdog and LSI enabled	$T_A = -40 \ ^\circ C \text{ to } 25 \ ^\circ C$	1	1.7	
I _{DD}	Supply current in		$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	0.29	0.6	
(Standby)	Standby mode (RTC disabled)	Independent watchdog	T _A = 55 °C	0.345	0.9	
		and LSI OFF	T _A = 85 °C	0.575	2.75	
			T _A = 105 °C	1.45	7 ⁽²⁾	
I _{DD} (WU from Standby)	Supply current during wakeup time from Standby mode	-	T _A = -40 °C to 25 °C	1	-	mA

Table 24. Typical and maximum current co	onsumptions in Standby mode
--	-----------------------------

1. Guaranteed by characterization results, unless otherwise specified.

2. Guaranteed by test in production.

3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

Multi-speed internal (MSI) RC oscillator

Table 33. MSI oscillator characteristics							
Symbol	Parameter	Condition	Тур	Мах	Unit		
		MSI range 0	65.5	-			
		MSI range 1	131	-	kHz		
f _{MSI}		MSI range 2	262	-	КПZ		
	Frequency after factory calibration, done at V_{DD} = 3.3 V and T _A = 25 °C	MSI range 3	524	-			
		MSI range 4	1.05	-			
		MSI range 5	2.1	-	MHz		
		MSI range 6	4.2	-			
ACC _{MSI}	Frequency error after factory calibration	-	±0.5	-	%		
D _{TEMP(MSI)} ⁽¹⁾	MSI oscillator frequency drift 0 °C ≤T _A ≤105 °C	-	±3	-	%		
D _{VOLT(MSI)} ⁽¹⁾	MSI oscillator frequency drift 1.65 V ≤V _{DD} ≤3.6 V, T _A = 25 °C	-	-	2.5	%/V		
	MSI oscillator power consumption	MSI range 0	0.75	-			
		MSI range 1	1	-	μA		
		MSI range 2	1.5	-			
I _{DD(MSI)} ⁽²⁾		MSI range 3	2.5	-			
		MSI range 4	4.5	-			
		MSI range 5	8	-			
		MSI range 6	15	-			
		MSI range 0	30	-			
		MSI range 1	20	-			
		MSI range 2	15	-			
		MSI range 3	10	-			
townson	MSI oscillator startup time	MSI range 4	6	-			
t _{SU(MSI)}		MSI range 5	5	-	μs		
		MSI range 6, Voltage range 1 and 2	3.5	-			
		MSI range 6, Voltage range 3	5	-			

Table 33. MSI oscillator characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA with the non-standard V_{OL}/V_{OH} specifications given in *Table 44*.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

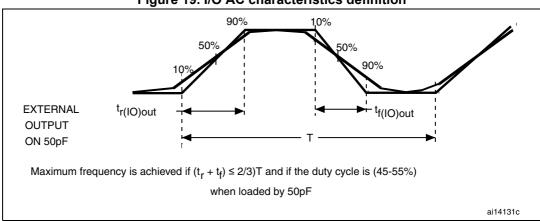
- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD(Σ)} (see *Table 12*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS(Σ)} (see *Table 12*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 44* are derived from tests performed under the conditions summarized in *Table 14*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾⁽²⁾	Output low level voltage for an I/O pin	I _{IO} = 8 mA 2.7 V < V _{DD} < 3.6 V	-	0.4	
V _{OH} ⁽²⁾⁽³⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽³⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 4 mA	-	0.45	v
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	1.65 V < V _{DD} < 3.6 V	V _{DD} -0.45	-	v
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA 2.7 V < V _{DD} < 3.6 V	-	1.3	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	

Table 44. Output voltage characteristics


1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 12* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. Guaranteed by test in production.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 12 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Guaranteed by characterization results.

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 46*)

Unless otherwise specified, the parameters given in *Table 46* are derived from tests performed under the conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	-	-	0.3 V _{DD}	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	0.39V _{DD} +0.59	-	-	V
V _{OL(NRST)} ⁽¹⁾	NRST output low	I _{OL} = 2 mA 2.7 V < V _{DD} < 3.6 V	-	-	0.4	v
VOL(NRST)	level voltage	e I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V		-	0.4	
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽³⁾	NRST input not filtered pulse	-	350	-	-	ns

Table 46. NRST pin characteristics

1. Guaranteed by design.

2. With a minimum of 200 mV.

3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%.

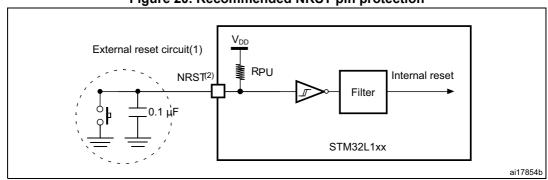


Figure 20. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 46. Otherwise the reset will not be taken into account by the device.

6.3.15 TIM timer characteristics

The parameters given in the Table 47 are guaranteed by design.

Refer to Section 6.3.13: I/O port characteristics for details on the input/output ction characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit		
t	Timer resolution time	-	1	-	t _{TIMxCLK}		
t _{res(TIM)} Timer resolution time		f _{TIMxCLK} = 32 MHz	31.25	-	ns		
f _{EXT}	Timer external clock	-	0	f _{TIMxCLK} /2	MHz		
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 32 MHz	0	16	MHz		
Res _{TIM}	Timer resolution	-		16	bit		
	16-bit counter clock	-	1	65536	t _{TIMxCLK}		
t _{COUNTER}	period when internal clock is selected (timer's prescaler disabled)	f _{TIMxCLK} = 32 MHz	0.0312	2048	μs		
t	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}		
^t MAX_COUNT		f _{TIMxCLK} = 32 MHz	-	134.2	S		

Table 47. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.

USB characteristics

The USB interface is USB-IF certified (full speed).

Table 51. USB startup time				
Symbol	Parameter	Мах	Unit	
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs	

1. Guaranteed by design.

Table 52. U	SB DC elec	trical charac	teristics
		anour onurac	

Symbol	Parameter Conditions		Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input levels					
V _{DD}	USB operating voltage	-	3.0	3.6	V
V _{DI} ⁽²⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-	
V _{CM} ⁽²⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V
V _{SE} ⁽²⁾	Single ended receiver threshold	-	1.3	2.0	
Output levels					
V _{OL} ⁽³⁾	Static output level low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6 ${\sf V}^{(4)}$	-	0.3	v
V _{OH} ⁽³⁾	Static output level high	R_L of 15 k Ω to $V_{SS}^{(4)}$	2.8	3.6	V

1. All the voltages are measured from the local ground potential.

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

4. R_L is the load connected on the USB drivers.

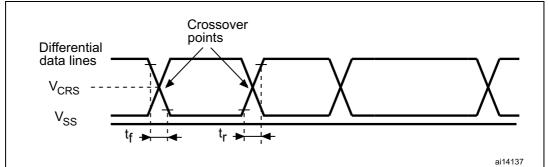
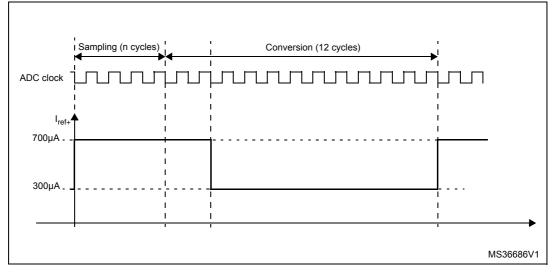



Table 53. USB: full speed electrical characteristics

	Driver characteristics ⁽¹⁾						
Symbol	Parameter	Conditions	Min	Max	Unit		
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _f	Fall Time ⁽²⁾	C _L = 50 pF	4	20	ns		

Figure 30. Maximum dynamic current consumption on V_{REF+} supply pin during ADC conversion

Table 58. Maximum source impedance R_{AIN} max⁽¹⁾

Ts (µs)	Multiplexe	d channels	Direct c	Ts (cycles) f _{ADC} =16 MHz ⁽²⁾	
	2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	2.4 V < V _{DDA} < 3.6 V 1.8 V < V _{DDA} < 2.4 V		ADC
0.25	Not allowed	Not allowed	0.7	Not allowed	4
0.5625	0.8	Not allowed	2.0	1.0	9
1	2.0	0.8	4.0	3.0	16
1.5	3.0	1.8	6.0	4.5	24
3	6.8	4.0	15.0	10.0	48
6	15.0	10.0	30.0	20.0	96
12	32.0	25.0	50.0	40.0	192
24	50.0	50.0	50.0	50.0	384

1. Guaranteed by design.

2. Number of samples calculated for f_{ADC} = 16 MHz. For f_{ADC} = 8 and 4 MHz the number of sampling cycles can be reduced with respect to the minimum sampling time Ts (µs),

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 12*. The applicable procedure depends on whether V_{REF+} is connected to V_{DDA} or not. The 100 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

6.3.18 DAC electrical specifications

Data guaranteed by design, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	
V _{REF+}	Reference supply voltage	V_{REF^+} must always be below V_{DDA}	1.8	-	3.6	V
V _{REF-}	Lower reference voltage	-		V _{SSA}		
. (1)	Current consumption on	No load, middle code (0x800)	-	130	220	
I _{DDVREF+} ⁽¹⁾	V _{REF+} supply V _{REF+} = 3.3 V	No load, worst code (0x000)	-	220	350	
. (1)	Current consumption on	No load, middle code (0x800)	-	210	320	μA
I _{DDA} ⁽¹⁾	V _{DDA} supply V _{DDA} = 3.3 V	No load, worst code (0xF1C)	-	320	520	
$R_L^{(2)}$	Resistive load		5	-	-	kΩ
C _L ⁽²⁾	Capacitive load	DAC output buffer ON	-	-	50	pF
R _O	Output impedance	DAC output buffer OFF	12	16	20	kΩ
Voltage on DAC_OUT		DAC output buffer ON	0.2	-	V _{DDA} – 0.2	V
V _{DAC_OUT}	output	DAC output buffer OFF	0.5	-	V _{REF+} – 1LSB	mV
DNL ⁽¹⁾	Differential non	$C_{L} \le 50 \text{ pF}, R_{L} \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	1.5	3	
	linearity ⁽³⁾	No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF	-	1.5	3	
INL ⁽¹⁾	Integral non linearity ⁽⁴⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	2	4	
	Integral non intearity.	No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF	-	2	4	LSB
Offset ⁽¹⁾	Offset error at code	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	±10	±25	
	0x800 ⁽⁵⁾	No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF	-	±5	±8	
Offset1 ⁽¹⁾	Offset error at code 0x001 ⁽⁶⁾	No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF	-	±1.5	±5	

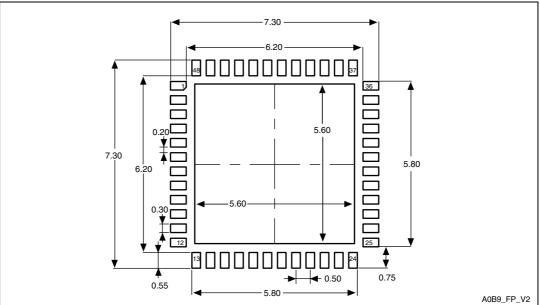
Table 59. DAC characteristic

data (continued)							
Querra ha a l		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Мах	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
CCC	-	-	0.080	-	-	0.0031	

Table 66. LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanicaldata (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 33. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package


1. Dimensions are in millimeters.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
E	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

Table 69. UFQFPN48 – ultra thin fine pitch quad flat pack no-lead 7 × 7 mm,0.5 mm pitch package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 42. UFQFPN48 recommended footprint

1. Dimensions are in millimeters.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID022799 Rev 12

