E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 25x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152vct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• **Stop** mode without RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 μ s. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup.

• **Standby** mode with RTC

Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

• Standby mode without RTC

Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode.

	Functionalities depending on the operating power supply range					
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation		
V _{DD} = V _{DDA} = 1.65 to 1.71 V	Not functional	Not functional	Range 2 or Range 3	Degraded speed performance		
$V_{DD} = V_{DDA} = 1.71 \text{ to } 1.8 \text{ V}^{(1)}$	Not functional	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance		
$V_{DD}=V_{DDA}= 1.8 \text{ to } 2.0 \text{ V}^{(1)}$ Conversion time up to 500 Ksps		Not functional	Range 1, Range 2 or Range 3	Degraded speed performance		

Table 3. Functionalities depending on the operating power supply range

power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).

3.3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from Flash memory
- Boot from System memory
- Boot from embedded RAM

The boot loader is located in System memory. It is used to reprogram the Flash memory by using USART1, USART2 or USB. See Application note "STM32 microcontroller system memory boot mode" (AN2606) for details.

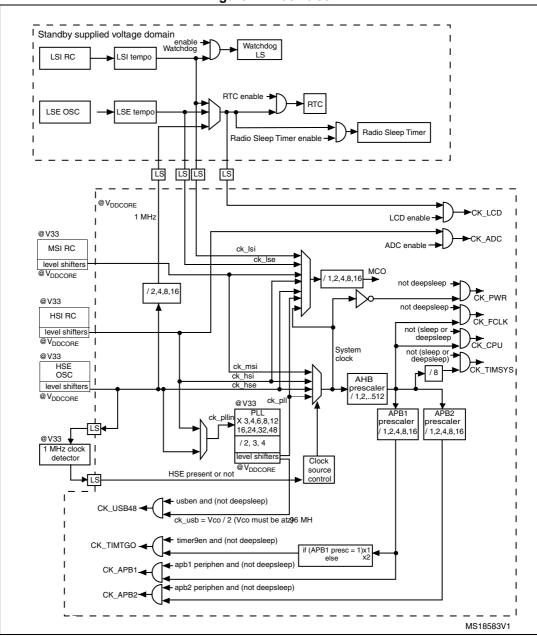


Figure 2. Clock tree

3.9 LCD (liquid crystal display)

The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320 pixels.

- Internal step-up converter to guarantee functionality and contrast control irrespective of V_{DD}. This converter can be deactivated, in which case the V_{LCD} pin is used to provide the voltage to the LCD
- Supports static, 1/2, 1/3, 1/4 and 1/8 duty
- Supports static, 1/2, 1/3 and 1/4 bias
- Phase inversion to reduce power consumption and EMI
- Up to 8 pixels can be programmed to blink
- Unneeded segments and common pins can be used as general I/O pins
- LCD RAM can be updated at any time owing to a double-buffer
- The LCD controller can operate in Stop mode
- V_{LCD} rail decoupling capability

		LOD	1 0		
		Bias	В	in	
	1/2	1/3	1/4	- Pin	
V _{LCDRAIL1}	1/2 V _{LCD}	2/3 V _{LCD}	1/2 V _{LCD}	PB2	
V _{LCDRAIL2}	N/A	1/3 V _{LCD}	1/4 V _{LCD}	PB12	PE11
V _{LCDRAIL3}	N/A	N/A	3/4 V _{LCD}	PB0	PE12

Table 6. V_{LCD} rail decoupling

3.10 ADC (analog-to-digital converter)

A 12-bit analog-to-digital converters is embedded into STM32L151xC and STM32L152xC devices with up to 25 external channels, performing conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs with up to 24 external channels in a group.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers. An injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task.

The ADC includes a specific low-power mode. The converter is able to operate at maximum speed even if the CPU is operating at a very low frequency and has an auto-shutdown function. The ADC's runtime and analog front-end current consumption are thus minimized whatever the MCU operating mode.

3.12 Operational amplifier

The STM32L151xC and STM32L152xC devices embed two operational amplifiers with external or internal follower routing capability (or even amplifier and filter capability with external components). When one operational amplifier is selected, one external ADC channel is used to enable output measurement.

The operational amplifiers feature:

- Low input bias current
- Low offset voltage
- Low-power mode
- Rail-to-rail input

3.13 Ultra-low-power comparators and reference voltage

The STM32L151xC and STM32L152xC devices embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- One comparator with fixed threshold
- One comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of the following:
 - DAC output
 - External I/O
 - Internal reference voltage (V_{REFINT}) or a sub-multiple (1/4, 1/2, 3/4)

Both comparators can wake up from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 μ A typical).

3.14 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports.

The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage V_{REFINT} .

3.15 Touch sensing

The STM32L151xC and STM32L152xC devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 23 capacitive sensing channels distributed over 10 analog I/O groups. Both software and timer capacitive sensing acquisition modes are supported.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation

Figure 8. STM32L15xCC LQFP48 pinout

1. This figure shows the package top view.

Table 9. STM32L151xC and STM32L152xC Pins												
	P	rins							Pin functions			
UFBGA100	LQFP100	rgfp64	MLCSP63	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I / O Structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions		
E11	64	38	E1	-	PC7	I/O	FT	PC7	TIM3_CH2/I2S3_MCK/ LCD_SEG25	-		
E10	65	39	D1	-	PC8	I/O	FT	PC8	TIM3_CH3/LCD_SEG26	-		
D12	66	40	E2	-	PC9	I/O	FT	PC9	TIM3_CH4/LCD_SEG27	-		
D11	67	41	E3	29	PA8	I/O	FT	PA8	USART1_CK/MCO/ LCD_COM0	-		
D10	68	42	C1	30	PA9	I/O	FT	PA9	USART1_TX/ LCD_COM1	-		
C12	69	43	D2	31	PA10	I/O	FT	PA10	USART1_RX/ LCD_COM2	-		
B12	70	44	B1	32	PA11	I/O	FT	PA11	USART1_CTS/ SPI1_MISO	USB_DM		
A12	71	45	D3	33	PA12	I/O	FT	PA12	USART1_RTS/ SPI1_MOSI	USB_DP		
A11	72	46	C2	34	PA13	I/O	FT	JTMS- SWDIO	JTMS-SWDIO	-		
C11	73	-	-	-	PH2	I/O	FT	PH2	-	-		
F11	74	47	A1	35	V _{SS_2}	S	-	V _{SS_2}	-	-		
G11	75	48	B2	36	V _{DD_2}	S	-	V _{DD_2}	-	-		
A10	76	49	C3	37	PA14	I/O	FT	JTCK- SWCLK	JTCK-SWCLK	-		
A9	77	50	A2	38	PA15	I/O	FT	JTDI	TIM2_CH1_ETR/ SPI1_NSS/ SPI3_NSS/I2S3_WS/ LCD_SEG17/JTDI	-		
B11	78	51	В3	-	PC10	I/O	FT	PC10	SPI3_SCK/I2S3_CK/ USART3_TX/ LCD_SEG28/ LCD_SEG40/ LCD_COM4	_		

Table 9. STM32L151xC and STM32L152xC pin definitions (continued)

STM32L151xC STM32L152xC

Pin
descriptions

	Digital alternate function number												
Port	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO11	AFIO14	AFIO15		
name		Alternate function											
	SYSTEM	TIM2	TIM3/4/5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3	LCD	CPRI	SYSTEM		
PD3	-	-	-	-	-	SPI2_MISO	-	USART2_CTS	-	TIMx_IC4	EVENT OUT		
PD4	-	-	-	-	-	SPI2_MOSI I2S2_SD	-	USART2_RTS	-	TIMx_IC1	EVENT OUT		
PD5	-	-	-	-	-		-	USART2_TX	-	TIMx_IC2	EVENT OU		
PD6	-	-	-		-	-	-	USART2_RX	-	TIMx_IC3	EVENT OUT		
PD7	-	-	-	TIM9_CH2	-	-	-	USART2_CK	-	TIMx_IC4	EVENT OU		
PD8	-	-	-	-	-	-	-	USART3_TX	SEG28	TIMx_IC1	EVENT OUT		
PD9	-	-	-	-	-	-	-	USART3_RX	SEG29	TIMx_IC2	EVENT OUT		
PD10	-	-	-	-	-	-	-	USART3_CK	SEG30	TIMx_IC3	EVENT OUT		
PD11	-	-	-	-	-	-	-	USART3_CTS	SEG31	TIMx_IC4	EVENT OUT		
PD12	-	-	TIM4_CH1	-	-	-	-	USART3_RTS	SEG32	TIMx_IC1	EVENT OU		
PD13	-	-	TIM4_CH2	-	-	-	-	-	SEG33	TIMx_IC2	EVENT OUT		
PD14	-	-	TIM4_CH3	-	-	-	-	-	SEG34	TIMx_IC3	EVENT OUT		
PD15	-	-	TIM4_CH4	-	-	-	-	-	SEG35	TIMx_IC4	EVENT OU		
PE0	-	-	TIM4_ETR	TIM10_CH1	-	-	-	-	SEG36	TIMx_IC1	EVENT OUT		
PE1	-	-	-	TIM11_CH1	-	-	-	-	SEG37	TIMx_IC2	EVENT OUT		
PE2	TRACECK	-	TIM3_ETR	-				-	SEG 38	TIMx_IC3	EVENT OUT		
PE3	TRACED0	-	TIM3_CH1	-	-	-	-	-	SEG 39	TIMx_IC4	EVENT OUT		
PE4	TRACED1	-	TIM3_CH2	-	-	-	-	-	-	TIMx_IC1	EVENT OUT		
PE5	TRACED2	-	-	TIM9_CH1	-	-	-	-	-	TIMx_IC2	EVENT OUT		
PE6- WKUP3	TRACED3	-	-	TIM9_CH2	-	-	-	-	-	TIMx_IC3	EVENT OU		
PE7	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENT OU		

. 4 : . . . 4 . . 40 A 14 E. :..

DocID022799 Rev 12

49/136

577

5 Memory mapping

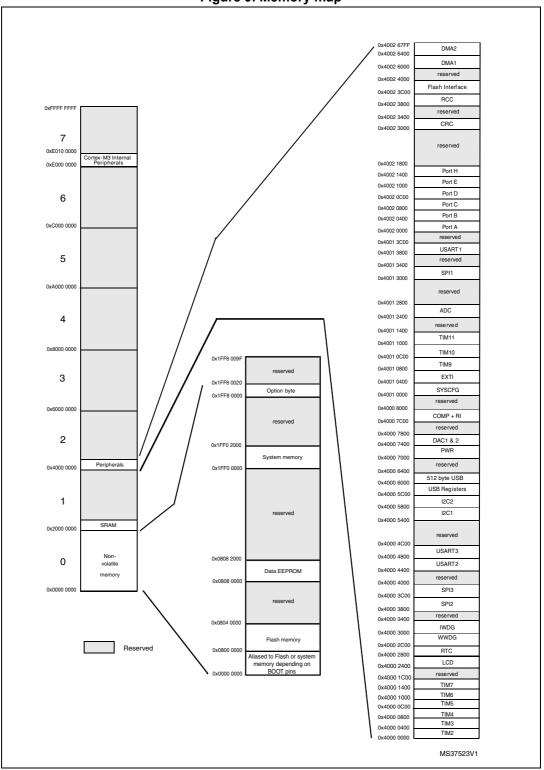


Figure 9. Memory map

5. To guarantee less than 1% VREF_OUT deviation.

6.3.4 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in *Figure 14: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to the Dhrystone 2.1 code, unless otherwise specified. The current consumption values are derived from tests performed under ambient temperature $T_A = 25$ °C and V_{DD} supply voltage conditions summarized in *Table 14: General operating conditions*, unless otherwise specified.

The MCU is placed under the following conditions:

- All I/O pins are configured in analog input mode
- All peripherals are disabled except when explicitly mentioned.
- The Flash memory access time, 64-bit access and prefetch is adjusted depending on f_{HCLK} frequency and voltage range to provide the best CPU performance.
- When the peripherals are enabled $f_{APB1} = f_{APB2} = f_{AHB}$.
- When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or HSE = 16 MHz (if HSE bypass mode is used).
- The HSE user clock applied to OSCI_IN input follows the characteristic specified in *Table 27: High-speed external user clock characteristics*.
- For maximum current consumption $V_{DD} = V_{DDA} = 3.6$ V is applied to all supply pins.
- For typical current consumption V_{DD} = V_{DDA} = 3.0 V is applied to all supply pins if not specified otherwise.

Symbol	Parameter		Conditions		Тур	Max ⁽¹⁾	Unit
			MSI clock, 65 kHz f _{HCLK} = 32 kHz Flash OFF	T _A = -40 °C to 25 °C	4.4	-	
			MSI clock, 65 kHz	T_A = -40 °C to 25 °C	14	16	
			f _{HCLK} = 32 kHz	T _A = 85 °C	19	23	
			Flash ON	T _A = 105 °C	27	33	
		All peripherals OFF, V _{DD} from	MSI clock, 65 kHz	T_A = -40 °C to 25 °C	15	17	
		1.65 V to 3.6 V	f _{HCLK} = 65 kHz,	T _A = 85 °C	20	23	
			Flash ON	T _A = 105 °C	28	33	
				$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	17	19	
	Supply		MSI clock, 131 kHz f _{HCLK} = 131 kHz, Flash ON	T _A = 55 °C	18	21	μΑ
I _{DD}	current in			T _A = 85 °C	22	25	
(LP Sleep)	Low-power sleep mode			T _A = 105 °C	30	35	
		TIM9 and		T_A = -40 °C to 25 °C	14	16	
			MSI clock, 65 kHz f _{HCLK} = 32 kHz	T _A = 85 °C	19	22	
				T _A = 105 °C	27	32	
				T_A = -40 °C to 25 °C	15	17	
		USART1	MSI clock, 65 kHz f _{HCLK} = 65 kHz	T _A = 85 °C	20	23	
		enabled, Flash ON, V _{DD} from		T _A = 105 °C	28	33	
		1.65 V to 3.6 V		T_A = -40 °C to 25 °C	17	19	
			MSI clock, 131 kHz	T _A = 55 °C	18	21	-
			f _{HCLK} = 131 kHz	T _A = 85 °C	22	25	
				T _A = 105 °C	30	36	
I _{DD} max (LP Sleep)	Max allowed current in Low-power sleep mode	V _{DD} from 1.65 V to 3.6 V	-	_	-	200	

Table 22. Current consum	ntion in Low	nower sleen	mode
Table 22. Current Consum	puon in Low	hower sleep	moue

1. Guaranteed by characterization results, unless otherwise specified.

Symbol	Parameter	С	onditions		Тур	Max ⁽¹⁾	Unit
				T _A = -40°C to 25°C V _{DD} = 1.8 V	1.15	-	
			LCD	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.4	-	
			OFF	T _A = 55°C	2	-	
				T _A = 85°C	3.4	10	
		RTC clocked by LSI or LSE external clock		T _A = 105°C	6.35	23	
		(32.768kHz),	LCD	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.55	6	
		regulator in LP mode, HSI and HSE OFF	ON	T _A = 55°C	2.15	7	
		(no independent	(static duty) ⁽²⁾	T _A = 85°C	3.55	12	
		watchdog)	uuty).	T _A = 105°C	6.3	27	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.9	10	
			LCD ON (1/8 duty) ⁽³⁾	T _A = 55°C	4.65	11	-
	Supply surrent in			T _A = 85°C	6.25	16	
				T _A = 105°C	9.1	44	
		RTC clocked by LSE	LCD OFF	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.5	-	
I _{DD} (Stop with RTC)	Supply current in Stop mode with RTC			$T_A = 55^{\circ}C$	2.15	-	μΑ
with IXIC)	enabled			T _A = 85°C	3.7	-	
				T _A = 105°C	6.75	-	
			LCD ON (static duty) ⁽²⁾	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.6	-	
				T _A = 55°C	2.3	-	
				T _A = 85°C	3.8	-	
		external quartz (32.768kHz),		T _A = 105°C	6.85	-	
		regulator in LP mode,		$T_A = -40^{\circ}C$ to $25^{\circ}C$	4	-	
		HSI and HSE OFF (no independent	LCD ON (1/8	T _A = 55°C	4.85	-	
		watchdog ⁽⁴⁾	duty) ⁽³⁾	T _A = 85°C	6.5	-	
				T _A = 105°C	9.1	-	1
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8V$	1.2	-	
			LCD OFF	$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.0V$	1.5	-	
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.6V$	1.75	-	

6.3.8 PLL characteristics

The parameters given in *Table 34* are derived from tests performed under the conditions summarized in *Table 14*.

Symbol	Parameter		Unit		
Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f	PLL input clock ⁽²⁾	2	-	24	MHz
f _{PLL_IN}	PLL input clock duty cycle	45	-	55	%
f _{PLL_OUT}	PLL output clock	2	-	32	MHz
t _{LOCK}	PLL lock time PLL input = 16 MHz PLL VCO = 96 MHz	-	115	160	μs
Jitter	Cycle-to-cycle jitter	-	-	±600	ps
I _{DDA} (PLL)	Current consumption on V _{DDA}	-	220	450	
I _{DD} (PLL) Current consumption on V _{DD}		-	120	150	μA

Table 34.	PLL	characteristics

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT} .

6.3.9 Memory characteristics

The characteristics are given at T_A = -40 to 105 °C unless otherwise specified.

RAM memory

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

SPI characteristics

Unless otherwise specified, the parameters given in the following table are derived from tests performed under the conditions summarized in *Table 14*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter Conditions		Min	Max ⁽²⁾	Unit
-		Master mode	-	16	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	16	MHz
		Slave transmitter	-	12 ⁽³⁾	
$t_{r(SCK)}^{(2)}_{t_{f(SCK)}^{(2)}}$	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	6	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%
t _{su(NSS)}	NSS setup time	Slave mode	4t _{HCLK}	-	
t _{h(NSS)}	NSS hold time	Slave mode	2t _{HCLK}	-	
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode	t _{SCK} /2-5	t _{SCK} /2+3	
t _{su(MI)} ⁽²⁾	Data input actur time	Master mode	5	-	
t _{su(SI)} ⁽²⁾	Data input setup time	Slave mode	6	-	
t _{h(MI)} ⁽²⁾	Deta input hold time	Master mode	5	-	ns
t _{h(SI)} ⁽²⁾	Data input hold time	Slave mode	5	-	
t _{a(SO)} ⁽⁴⁾	Data output access time	Slave mode	0	3t _{HCLK}	
t _{v(SO)} (2)	Data output valid time	Slave mode	-	33	
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode	-	6.5	
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode	17	-	
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode	0.5	-	

Table 50. SPI characteristics⁽¹⁾

1. The characteristics above are given for voltage range 1.

2. Guaranteed by characterization results.

3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK)) ranging between 40 to 60%.

4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

USB characteristics

The USB interface is USB-IF certified (full speed).

Table 51. USB startup time				
Symbol	Parameter	Мах	Unit	
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs	

1. Guaranteed by design.

Table 52. US	SB DC electrica	I characteristics

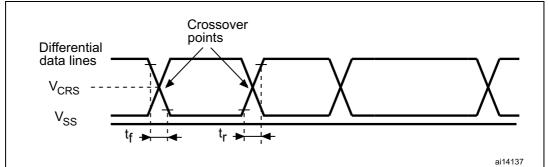
Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input leve	ls				
V _{DD}	USB operating voltage	-	3.0	3.6	V
V _{DI} ⁽²⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-	
V _{CM} ⁽²⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V
V _{SE} ⁽²⁾	Single ended receiver threshold -		1.3	2.0	
Output levels					
V _{OL} ⁽³⁾	Static output level low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6 ${\sf V}^{(4)}$	-	0.3	v
V _{OH} ⁽³⁾	Static output level high R_{L} of 15 k Ω to V _{SS} ⁽⁴⁾		2.8	3.6	V

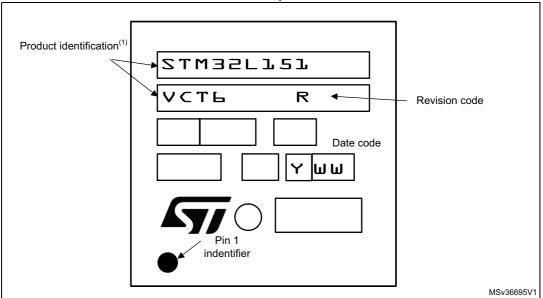
1. All the voltages are measured from the local ground potential.

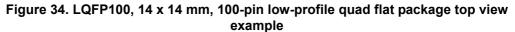
2. Guaranteed by characterization results.

3. Guaranteed by test in production.

4. R_L is the load connected on the USB drivers.




Table 53. USB: full speed electrical characteristics


	Driver characteristics ⁽¹⁾					
Symbol	Parameter	Conditions	Min	Max	Unit	
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns	
t _f	Fall Time ⁽²⁾	C _L = 50 pF	4	20	ns	

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity

Table 67. LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data
(continued)

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Max	
E3	-	7.500	-	-	0.2953	-	
е	-	0.500	-	-	0.0197	-	
К	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
CCC	-	-	0.080	-	-	0.0031	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

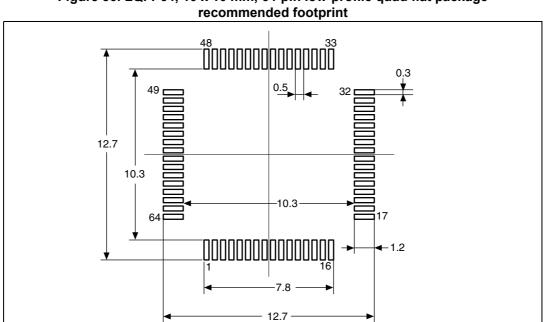


Figure 36. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package

1. Dimensions are in millimeters.

ai14909c

7.4 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information

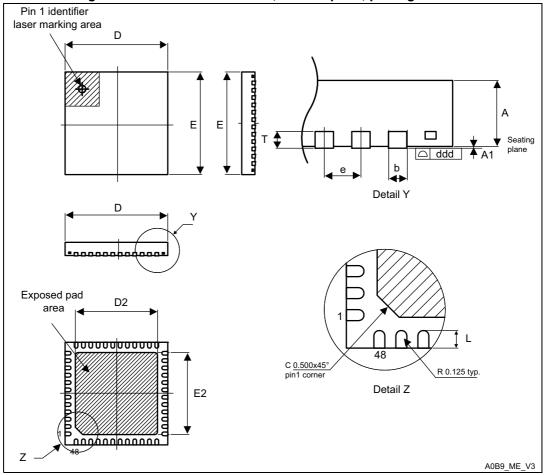
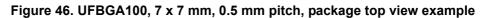


Figure 41. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline


1. Drawing is not to scale.


- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

Marking of engineering samples

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity

9 Revision History

Date	Revision	Changes
21-Feb-2012	1	Initial release.
12-Oct-2012	2	Added WLCSP63 package. Updated <i>Figure 1: Ultra-low-power STM32L162xC block diagram.</i> Changed maximum number of touch sensing channels to 34, and updated <i>Table 2: Ultralow power STM32L15xxC device features and</i> <i>peripheral counts.</i> Added <i>Table 4: Functionalities depending on the working mode (from</i> <i>Run/active down to standby)</i> , and <i>Table 3: ange depending on</i> <i>dynamic voltage scaling.</i> Updated <i>Section 3.10: ADC (analog-to-digital converter)</i> to add <i>Section 3.10.1: Temperature sensor</i> and <i>Section 3.10.2: Internal</i> <i>voltage reference (VREFINT).</i> Updated <i>Figure 3: STM32L162VC LQFP100 pinout.</i> <i>Table 10: STM32L15xxC pin definitions:</i> updated name of reference manual in footnote 5. Changed I2C1_SMBAI into I2C1_SMBA in <i>Table 10: STM32L15xxC</i> <i>pin definitions.</i> Modified PB10/11/12 for AFIO4 alternate function, and replaced LBAR by NADV for AFIO12 in <i>Table 10: Alternate function input/output.</i> Removed caution note below <i>Figure 8: Power supply scheme.</i> Added <i>Note 2</i> in <i>Table 15: Embedded reset and power control block</i> <i>characteristics.</i> Updated <i>Table 22: Typical and maximum current consumptions in Stop</i> <i>mode</i> and added <i>Note 6.</i> Updated <i>Table 23: Typical and maximum</i> <i>current consumptions in Standby mode.</i> Updated t _{WUSTOP} in <i>Table : .</i> Updated <i>Table 26: Peripheral current consumption.</i> Updated <i>Table 60: SPI characteristics,</i> added <i>Note 1</i> and <i>Note 3</i> , and applied <i>Note 2</i> to t _{r(SCK)} , t _{R(SCK)} , t _{w(SCKL)} , t _{su(MI)} , t _{su(SI)} , t _{h(MI)} , and t _{h(SI)} . Added <i>Table 61: I2S characteristics, Figure 29: I2S slave timing</i> <i>diagram (Philips protocol)(1)</i> and <i>Figure 30: I2S master timing diagram</i> <i>(Philips protocol)(1).</i> Updated <i>Table 72: Temperature sensor characteristics.</i> Added <i>Figure 40: Thermal resistance.</i>

Table 75. Document revision history

