

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs406-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70204) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies from device to device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can serve as a data, address or address offset register. The sixteenth Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

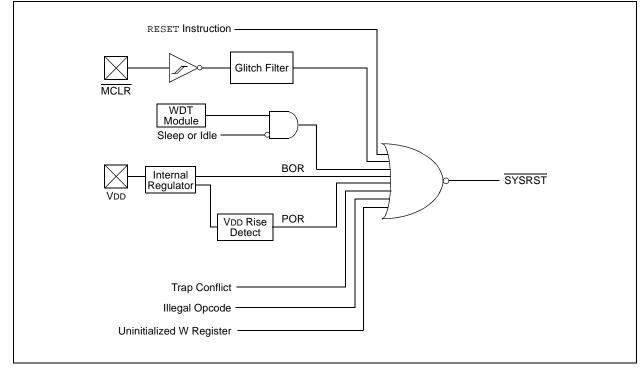
There are two classes of instruction in the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices are capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle.

As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.


Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits, right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal realtime performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain Working registers to each address space.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 7-13: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 0	INTOIE: External Interrupt 0 Enable bit
	1 = Interrupt request is enabled

0 = Interrupt request is not enabled

© 2009-2014 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
PWM2IE	PWM1IE	ADCP12IE	—	—	—	—	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	_	—	—		
bit 7							bit 0		
									
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown			
bit 15	PWM2IE: PW	/M2 Interrupt Ei	nable bit						
	•	request is enab							
	0 = Interrupt i	request is not e	nabled						
bit 14	PWM1IE: PW	/M1 Interrupt Ei	nable bit						
	1 = Interrupt i	request is enab	led						
	0 = Interrupt i	request is not e	nabled						
bit 13	ADCP12IE: A	DC Pair 12 Co	nversion Don	e Interrupt Ena	able bit				
		request is enab							
	0 = Interrupt i	request is not e	nabled						
bit 12-0	Unimplemen	ted: Read as '0)'						

REGISTER 7-18: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	PWM6IP2	PWM6IP1	PWM6IP0		PWM5IP2	PWM5IP1	PWM5IP0
bit 15			•				bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	PWM4IP2	PWM4IP1	PWM4IP0	_	PWM3IP2	PWM3IP1	PWM3IP0
oit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	emented bit, read	l as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is c		x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0,				
bit 14-12	-	>: PWM6 Inter		ts			
		ot is Priority 7 (
	•	-					
	•						
	001 = Interrup	ot is Priority 1					
		ot source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	PWM5IP<2:0	>: PWM5 Inter	rupt Priority bi	ts			
	111 = Interrup	ot is Priority 7 (highest priority	y)			
	•						
	•						
	001 = Interrup						
	-	ot source is dis					
bit 7	-	ted: Read as '					
bit 6-4		>: PWM4 Inter	, ,				
	111 = Interrup	ot is Priority 7 (highest priority	y)			
	•						
	•						
	001 = Interrup 000 = Interrup	ot is Priority 1 ot source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	PWM3IP<2:0	>: PWM3 Inter	rupt Priority bi	ts			
	111 = Interrup	ot is Priority 7 (highest priority	y)			
	•						
	•						
	001 = Interrup	at is Priority 1					

REGISTER 7-40: IPC24: INTERRUPT PRIORITY CONTROL REGISTER 24

11.0		11.0	11.0	11.0	11.0	11.0	11.0			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—			—	—	—	—			
bit 15							bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—	AC4IP2	AC4IP1	AC4IP0	—	AC3IP2	AC3IP1	AC3IP0			
bit 7							bit			
Legend:										
R = Readat		W = Writable			mented bit, read					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 6-4	111 = Interru • 001 = Interru 000 = Interru	Analog Compa pt is Priority 7 (pt is Priority 1 pt source is dis	highest priorit abled							
bit 3	-	ted: Read as '								
	AC3IP<2:0>:	Analog Compa								
bit 2-0		111 = Interrupt is Priority 7 (highest priority)								
bit 2-0	111 = Interru	pt is Priority 7 (nignest priorit	y)						
bit 2-0	111 = Interru •	pt is Priority 7 (nignest priorit	y)						
bit 2-0	111 = Interru •	pt is Priority 7 (nignest priorit	<i>y</i> /						
bit 2-0	• •	pt is Priority 7 (pt is Priority 1	nignest priorit	<i>y</i> /						

REGISTER 7-42: IPC26: INTERRUPT PRIORITY CONTROL REGISTER 26

9.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

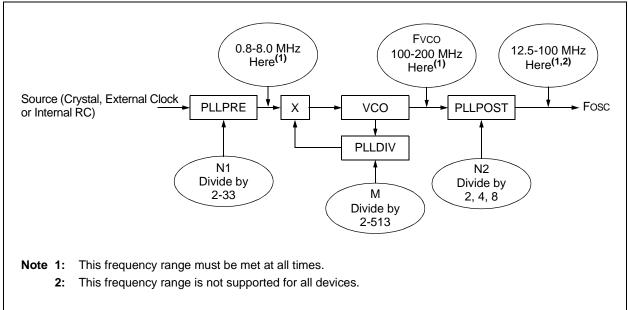
The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor, 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 100 MHz, which generates device operating speeds of 6.25-50 MIPS.

FIGURE 9-2: PLL BLOCK DIAGRAM

For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by Equation 9-2.

EQUATION 9-2: Fosc CALCULATION


FOSC = FIN *	(M)
$\Gamma OSC = \Gamma IN^{-1}$	$\overline{N1 * N2}$

For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL (see Equation 9-3).

- If PLLPRE<4:0> = 0000, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x26, then M = 40. This yields a VCO output of 5 x 40 = 200 MHz, which is within the 100-200 MHz ranged needed.
- If PLLPOST<1:0> = 00, then N2 = 2. This provides a Fosc of 200/2 = 100 MHz. The resultant device operating speed is 100/2 = 40 MIPS.

EQUATION 9-3: XT WITH PLL MODE EXAMPLE

FCY =
$$\frac{\text{Fosc}}{2} = \frac{1}{2} \left(\frac{10000000 * 40}{2 * 2} \right) = 50 \text{ MIPS}$$

R/W-0	R-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1
ENAPLL	APLLCK	SELACLK	_	—	APSTSCLR2	APSTSCLR1	APSTSCLR0
bit 15							bit 8
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
ASRCSEL	FRCSEL	—		—		—	
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	1 = APLL is e		ole bit				
	0 = APLL is d						
bit 14		LL Locked Statu	•	nly)			
		that auxiliary Pl that auxiliary Pl		ck			
bit 13	SELACLK: S	elect Auxiliary C	Clock Source	for Auxiliary C	lock Divider bit		
					auxiliary clock di e auxiliary clock		
bit 12-11	Unimplemen	ted: Read as '0	,				
bit 10-8	APSTSCLR<	2:0>: Auxiliary	Clock Output	Divider bits			
	111 = Divideo 110 = Divideo 101 = Divideo 011 = Divideo 010 = Divideo 010 = Divideo 001 = Divideo 000 = Divideo	d bý 2 d by 4 d by 8 d by 16 d by 32 d by 64					
bit 7	ASRCSEL: S	elect Reference	Clock Source	e for Auxiliary	Clock bit		
		scillator is the c					
bit 6		lect Reference (RC clock for au		for Auxiliary P			
	0 = Input cloc	k source is dete	ermined by th	e ASRCSEL b	it setting		

REGISTER 9-5: ACLKCON: AUXILIARY CLOCK DIVISOR CONTROL REGISTER

NOTES:

11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70193) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.

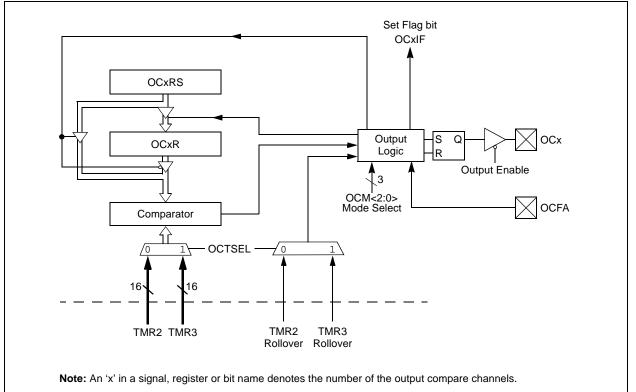
When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽²⁾	_	TSIDL ⁽¹⁾	—	—	_	—	_
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾	—		TCS ⁽²⁾	_
bit 7							bit
Legend:							
R = Reada		W = Writable		•	mented bit, rea		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own
	TON: Timery	On hit(2)					
bit 15	1 = Starts 16-						
	0 = Stops 16-						
bit 14	-	ted: Read as '	0'				
bit 13	-	ry Stop in Idle N					
	1 = Discontin	ues timer opera	ation when dev	vice enters Idle	e mode		
	0 = Continues	s timer operatio	n in Idle mode	9			
bit 12-7	-	ted: Read as '					
bit 6		ery Gated Time	Accumulation	Enable bit ⁽²⁾			
	When TCS =						
	This bit is ign When TCS =						
		<u>o.</u> ne accumulatior	n is enabled				
	0 = Gated tim	ne accumulatior	n is disabled				
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Prescal	e Select bits ⁽²⁾)		
	11 = 1:256 pr						
	10 = 1:64 pre 01 = 1:8 pres						
	01 = 1.0 pres 00 = 1:1 pres						
bit 3-2	-	ted: Read as '	0'				
bit 1	TCS: Timery	Clock Source S	Select bit ⁽²⁾				
		clock from TxCl					
	0 = Internal c	lock (Fosc/2)					
bit 0	Unimplemen	ted: Read as '	0'				
	When 32-bit timer bit must be cleared		-	-	rx Control regis	ster (TxCON<3>)	, the TSIDL

REGISTER 13-2: TyCON: TIMERY CONTROL REGISTER (y = 3, 5)

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), these bits have no effect.

15.0 OUTPUT COMPARE


- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Output Compare" (DS70005157) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

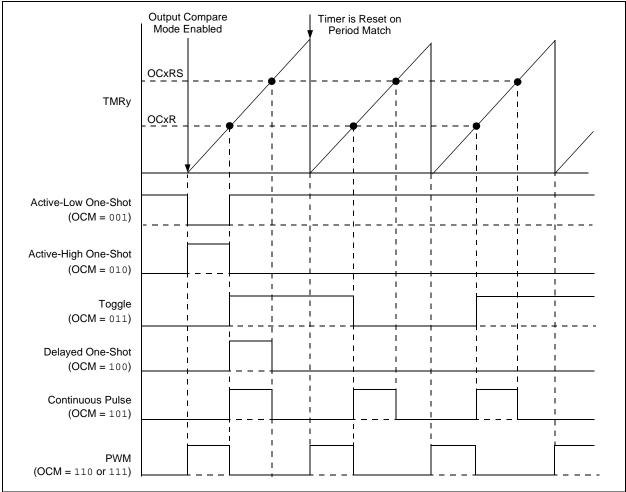
The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

FIGURE 15-1: OUTPUT COMPARE x MODULE BLOCK DIAGRAM

15.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user


TABLE 15-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note: See "Output Compare" (DS70005157) in the "dsPIC33/PIC24 Family Reference Manual" for OCxR and OCxRS register restrictions.

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation		
000	Module Disabled	Controlled by GPIO register	—		
001	Active-Low One-Shot	0	OCx rising edge		
010	Active-High One-Shot	1	OCx falling edge		
011	Toggle	Current output is maintained	OCx rising and falling edge		
100	Delayed One-Shot	0	OCx falling edge		
101	Continuous Pulse	0	OCx falling edge		
110	PWM without Fault Protection	'0' if OCxR is zero,'1' if OCxR is non-zero	No interrupt		
111	PWM with Fault Protection	'0' if OCxR is zero,'1' if OCxR is non-zero	OCFA falling edge for OC1 to OC4		

FIGURE 15-2: OUTPUT COMPARE x OPERATION

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3(1)	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							bit 0

Legend: ⊦	HC = Hardware Clearable bit	HS = Hardware Settable bit			
R = Readable bit V	N = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	PTEN: PWM Module Enable bit
	 1 = PWM module is enabled 0 = PWM module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWM Time Base Stop in Idle Mode bit
	 1 = PWM time base halts in CPU Idle mode 0 = PWM time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	1 = Special event interrupt is pending0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	 1 = Special event interrupt is enabled 0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	 1 = Active Period register is updated immediately 0 = Active Period register updates occur on PWM cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCIx/SYNCO1 polarity is inverted (active-low)0 = SYNCIx/SYNCO1 is active-high
bit 8	SYNCOEN: Primary Time Base Synchronization Enable bit ⁽¹⁾
	1 = SYNCO1 output is enabled0 = SYNCO1 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾
	 1 = External synchronization of primary time base is enabled 0 = External synchronization of primary time base is disabled
bit 6-4	SYNCSRC<2:0>: Synchronous Source Selection bits ⁽¹⁾
	111 = Reserved 101 = Reserved 011 = SYNCI4 010 = SYNCI3 001 = SYNCI2 000 = SYNCI1
Note 1.	These bits should be shanged only when DTEN. A In addition when using the SVNChy facture, the

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware clears at the end of the master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I^2C master)
	1 = Enables Receive mode for I^2C . Hardware clears at the end of the eighth bit of the master receive data byte.
	0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiates Stop condition on SDAx and SCLx pins. Hardware clears at the end of the master Stop sequence.
	0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware clears at the end of the master Repeated Start sequence.
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDAx and SCLx pins. Hardware clears at the end of the master Start sequence.
	0 = Start condition is not in progress

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	_	_	_	_	_	_	_		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IRQEN12	PEND12	SWTRG12	TRGSRC124	TRGSRC123	TRGSRC122	TRGSRC121	TRGSRC12		
bit 7						•	bit		
Legend:									
R = Readable	bit	W = Writable bit		U = Unimplem	ented bit, read	as 'O'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-8	Unimplemented: Read as '0'								
bit 7	IRQEN12: Interrupt Request Enable 12 bit								
	1 = Enables IRQ generation when requested conversion of Channels AN25 and AN24 is comp						s completed		
bit 6	0 = IRQ is not generated								
DILO	PEND12: Pending Conversion Status 12 bit								
	 1 = Conversion of Channels AN25 and AN24 is pending; set when selected trigger is asserted 0 = Conversion is complete 						serted		
bit 5 SWTRG12: Software Trigger 12 bit									
	 1 = Starts conversion of AN25 (INTREF) and AN24 (EXTREF) if selected by the TRGSRCx<4:0> I This bit is automatically cleared by hardware when the PEND12 bit is set. 0 = Conversion has not started 						Cx<4:0> bits ^{(*}		
Note 1: The				software trigge	r prior to setting	g this bit to '1'.	lf other		

REGISTER 22-12: ADCPC6: ADC CONVERT PAIR CONTROL REGISTER 6⁽²⁾

- conversions are in progress, the conversion is performed when the conversion resources are available.
 - 2: This register is not available on dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices.

23.0 HIGH-SPEED ANALOG COMPARATOR

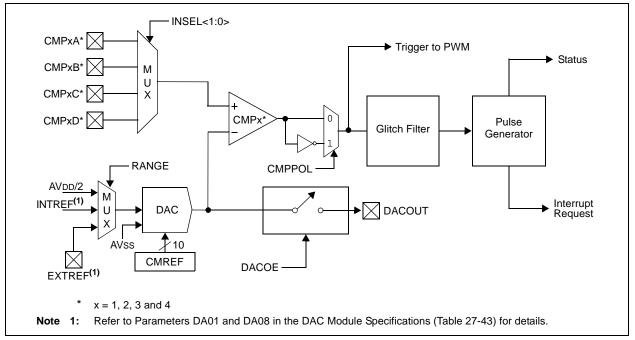
- This data sheet summarizes the features of Note 1: dsPIC33FJ32GS406/606/608/610 the dsPIC33FJ64GS406/606/608/610 and families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed Analog Comparator" (DS70296) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33F Switch Mode Power Supply (SMPS) comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

23.1 Features Overview

The SMPS comparator module offers the following major features:

- 16 Selectable Comparator Inputs
- Up to Four Analog Comparators


- 10-Bit DAC for each Analog Comparator
- Programmable Output Polarity
- Interrupt Generation Capability
- DACOUT Pin to provide DAC Output
- DAC has Three Ranges of Operation:
 - AVdd/2
 - Internal Reference (INTREF)
 - External Reference (EXTREF)
- ADC Sample-and-Convert Trigger Capability
- · Disable Capability reduces Power Consumption
- Functional Support for PWM module:
 - PWM duty cycle control
 - PWM period control
 - PWM Fault detect

23.2 Module Description

Figure 23-1 shows a functional block diagram of one analog comparator from the SMPS comparator module. The analog comparator provides high-speed operation with a typical delay of 20 ns. The comparator has a typical offset voltage of ± 5 mV. The negative input of the comparator is always connected to the DAC circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin.

The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

FIGURE 23-1: HIGH-SPEED ANALOG COMPARATOR x MODULE BLOCK DIAGRAM

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No. Symb		Characteristic		Min ⁽¹⁾	Max	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μS		
			400 kHz mode	Tcy/2 (BRG + 1)		μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS		
IM11 THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)		μS			
			400 kHz mode	Tcy/2 (BRG + 1)		μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	100	ns		
IM21 TR:SCL	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	300	ns	1	
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	_	ns		
			400 kHz mode	100	_	ns	1	
			1 MHz mode ⁽²⁾	40	_	ns	1	
IM26 THD:DAT	THD:DAT	Data Input Hold Time	100 kHz mode	0		μS		
			400 kHz mode	0	0.9	μS	1	
			1 MHz mode ⁽²⁾	0.2	—	μS	1	
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	Only relevant for	
			400 kHz mode	TCY/2 (BRG + 1)	—	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	condition	
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	After this period, the	
			400 kHz mode	Tcy/2 (BRG + 1)		μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	generated	
IM33	TSU:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μS		
IM34 THD:STC	THD:STO	 Stop Condition Hold Time 	100 kHz mode	Tcy/2 (BRG + 1)	_	ns		
			400 kHz mode	Tcy/2 (BRG + 1)		ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		ns		
IM40 TAA:SCL	TAA:SCL	Output Valid from Clock	100 kHz mode	_	3500	ns		
			400 kHz mode		1000	ns		
			1 MHz mode ⁽²⁾	—	400	ns		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be	
			400 kHz mode	1.3	—	μS	free before a new	
			1 MHz mode ⁽²⁾	0.5	—	μS	transmission can star	
IM50	Св	Bus Capacitive L	oading	_	400	pF		
IM51	TPGD	Pulse Gobbler De		65	390	ns	See Note 3	

TABLE 27-38: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l²CTM Baud Rate Generator. Refer to "Inter-Integrated CircuitTM (l²CTM)" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

NOTES: