

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	32KB (32K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs606-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	—	—	—	_	—	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	—	_	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_	_	_	_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	_	_	_	_	_	_	_	—	IC4IF	IC3IF	_	_	_	SPI2IF	SPI2EIF	0000
IFS3	008A	_	_	_	_	_	QEI1IF	PSEMIF	_	—	INT4IF	INT3IF	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	008C		_	—	_	QEI2IF	—	PSESMIF		—		_	—	_	U2EIF	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	ADCP12IF	_	_	_	_	_	—	_	_	_	_	_	_	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	_	_	AC4IF	AC3IF	AC2IF	_	_	_	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	0092		_	_	_	_	_	—		—		ADCP7IF	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF	0000
IEC0	0094		_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE		—		_	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC2	0098		_	_	_	_	_	—		—	IC4IE	IC3IE	—	—	_	SPI2IE	SPI2EIE	0000
IEC3	009A		_	—	_	—	QEI1IE	PSEMIE		—	INT4IE	INT3IE	—	_	MI2C2IE	SI2C2IE	_	0000
IEC4	009C		_	—	_	QEI2IE	—	PSESMIE		—		_	—	_	U2EIE	U1EIE	_	0000
IEC5	009E	PWM2IE	PWM1IE	ADCP12IE	_	—	—	—		—		_	—	_	—		_	0000
IEC6	00A0	ADCP1IE	ADCP0IE	_	_	_	_	AC4IE	AC3IE	AC2IE		_	—	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	00A2		_	_	_	_	_	—		—		ADCP7IE	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE	0000
IPC0	00A4		T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6		T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	—	IC2IP2	IC2IP1	IC2IP0	—	_	—	—	4440
IPC2	00A8		U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	—	SPI1EIP2	SPI1EIP1	SPI1EIP0	—	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	—	—	_	—	_	—	—		—	ADIP2	ADIP1	ADIP0	_	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC		CNIP2	CNIP1	CNIP0	-	AC1IP2	AC1IP1	AC1IP0	—	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	—	—	_	—	_	—	—		—	-	—	_	—	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	—	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	—	OC3IP2	OC3IP1	OC3IP0	_	_	—	—	4440
IPC7	00B2	—	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	—	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4		—	—	—	—	—	—		—	SPI2IP2	SPI2IP1	SPI2IP0	—	SPI2EIP2	SPI2EIP1	SPI2EIP0	0044
IPC9	00B6		_	_	_	_	IC4IP2	IC4IP1	IC4IP0	—	IC3IP2	IC3IP1	IC3IP0	—	_	—	—	0440
IPC12	00BC		_	_	_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	—	SI2C2IP2	SI2C2IP1	SI2C2IP0	—	_	—	—	0440
IPC13	00BE		_	_	_	_	INT4IP2	INT4IP1	INT4IP0	—	INT3IP2	INT3IP1	INT3IP0	—	_	—	—	0440
IPC14	00C0		—	_	—	—	QEI1IP2	QEI1IP1	QEI1IP0	_	PSEMIP2	PSEMIP1	PSEMIP0	—	_	—	—	0440
IPC16	00C4		_	_	—	—	U2EIP2	U2EIP1	U2EIP0	_	U1EIP2	U1EIP1	U1EIP0	—	_	—	—	0440
IPC18	00C8	_	QEI2IP2	QEI2IP1	QEI2IP0	_	_	_		_	PSESMIP2	PSESMIP1	PSESMIP0	_	—		—	4040
IPC21	00CE		_		_	—	_	_			ADCP12IP2	ADCP12IP1	ADCP12IP0	_			_	0040

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

TABLE 4-10: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS606 DEVICES

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Legend:

TABLE 4-20: HIGH-SPEED PWM GENERATOR 4 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON4	0480	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON4	0482	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON4	0484	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC4	0486			PDC4<15:0> 00						0000								
PHASE4	0488		PHASE4<15:0> 000					0000										
DTR4	048A	—	_	DTR4<13:0> 00						0000								
ALTDTR4	048A	_	_	ALTDTR4<13:0>						0000								
SDC4	048E								SDC4	<15:0>								0000
SPHASE4	0490								SPHASI	E4<15:0>								0000
TRIG4	0492							TRGCMP<12	:0>						_	—	_	0000
TRGCON4	0494	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	—	—	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG4	0496						;	STRGCMP<12	2:0>						—	_	_	0000
PWMCAP4	0498							PWMCAP<12	::0>						—	_	_	0000
LEBCON4	049A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY4	049C	_	_	—	—		•	•	L	EB<8:0>	•		•	-	_	—	_	0000
AUXCON4	049E	HRPDIS	HRDDIS	—	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R///-0	R/₩/-0	11-0	11-0	11-0	11-0	11-0	R/\\/-0	
TRAPE	R IOPUWR		<u> </u>	<u> </u>	<u> </u>		VREGS	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR	
bit 7							bit 0	
l egend:								
R = Reada	able bit	W = Writable I	oit	U = Unimplei	mented bit. read	d as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown	
							J	
bit 15	TRAPR: Trap	Reset Flag bit						
	1 = A Trap Co	onflict Reset has	s occurred	d				
bit 14		al Opcode or l	S not occurre	u N Access Res	et Flag bit			
	1 = An illega	l opcode detec	ction, an illec	al address m	ode or Uninitia	lized W registe	er used as an	
	Address	Pointer caused	a Reset	, ,		0		
	0 = An Illegal	Opcode or Un	initialized W I	Reset has not	occurred			
bit 13-9		ted: Read as '()' Standby Durin	a Sloop hit				
DILO	1 – Voltage re	age Regulator s	e during Slee					
	0 = Voltage re	 1 = voitage regulator is active during Sleep 0 = Voltage regulator goes into Standby mode during Sleep 						
bit 7	EXTR: Extern	al Reset Pin (ICLR) bit					
	1 = A Master	Clear (pin) Res	et has occurr	ed				
1.11.0	0 = A Master	Clear (pin) Res	et has not oc	curred				
DIT 6	SWR: Softwa	re Reset Flag (Instruction) b	It				
	1 = A RESET 0 = A RESET	instruction has	not been exe	cuted				
bit 5	SWDTEN: So	oftware Enable/	Disable of WI	DT bit ⁽²⁾				
	1 = WDT is er	nabled						
1 4	0 = WDT is di	sabled						
bit 4	WDIO: Watcl	hdog limer lim	ie-out Flag bi	t				
	1 = WDT time 0 = WDT time	e-out has occur	curred					
bit 3	SLEEP: Wake	e-up from Sleep	o Flag bit					
	1 = Device ha	s been in Slee	o mode					
1.11.0	0 = Device ha	is not been in S	Sleep mode					
bit 2	IDLE: Wake-u	up from Idle Fla	g bit					
	0 = Device ha	as not been in laie r	dle mode					
bit 1	BOR: Brown-	out Reset Flag	bit					
	1 = A Brown-o	out Reset has c	occurred					
1 1 0	0 = A Brown-0	out Reset has r	ot occurred					
bit 0	POR: Power-	on Reset Flag t	Dit Dit					
	$\perp = A Power-0$ 0 = A Power-0	on Reset has o on Reset has n	ot occurred					
		4		dia activi	Detting and the	eee hite to the	una de est	
NOTE 1:	All of the Reset sta	itus bits can be set.	set or cleared	a in software. S	betting one of th	ese bits in soft	ware does not	

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

cause a device Reset.
 If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
	_	_	_	_	QEI1IF	PSEMIF	_
bit 15						1 1	bit 8
U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
	INT4IF	INT3IF	—	—	MI2C2IF	SI2C2IF	—
bit 7							bit 0
Legend:			••				
R = Readable	bit		oit		nented bit, read	d as '0'	
-n = Value at P	OR	$1^{\prime} = Bit is set$		0' = Bit is cle	ared	x = Bit is unkn	own
bit 15 11	Unimplomon	tad: Pood oc '	۰ ،				
bit 10		Event Interrun	, t Elan Status I	hit			
bit 10	1 = Interrupt request has occurred						
	0 = Interrupt request has not occurred						
bit 9	PSEMIF: PWI	M Special Ever	nt Match Interi	rupt Flag Statu	s bit		
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 8-7		ted: Read as ')' =				
Dit 6	INI4IF: Extern	nal Interrupt 4	-lag Status bi	t			
	1 = Interrupt T 0 = Interrupt r	equest has oct	occurred				
bit 5	INT3IF: Exter	nal Interrupt 3	Flag Status bi	t			
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 4-3	Unimplement	ted: Read as 'o)'				
bit 2	MI2C2IF: 12C	2 Master Event	s Interrupt Fla	ag Status bit			
	1 = Interrupt r	equest has occ	occurred				
bit 1	SI2C2IF: 12C2	2 Slave Events	Interrupt Flac	u Status bit			
2	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 0	Unimplement	ted: Read as ')'				

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	_	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	IC4IE	IC3IE	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6	IC4IE: Input C	Capture Chann	el 4 Interrupt I	Enable bit			
	1 = Interrupt r	request is enab	bled				
h:+ C		request is not e					
DIES	1 - Interrupt r	capture Chann	ei 3 interrupt i	Enable bit			
	0 = Interrupt r	request is enac	enabled				
bit 4	DMA3IE: DM	A Channel 3 D	ata Transfer C	Complete Inter	rupt Enable bit		
	1 = Interrupt r	request is enab	oled	•			
	0 = Interrupt r	request is not e	enabled				
bit 3	C1IE: ECAN1	Event Interrup	ot Enable bit ⁽¹⁾)			
	1 = Interrupt r	equest is enab	bled				
h it 0		request is not e	enabled		⊾: . (1)		
bit 2		AN1 Receive D	ata Ready Inte	errupt Enable I	DIK		
	1 = Interrupt r 0 = Interrupt r	request is enac	enabled				
bit 1	SPI2IE: SPI2	Event Interrup	t Enable bit				
	1 = Interrupt r	request is enab	oled				
	0 = Interrupt r	request is not e	enabled				
bit 0	SPI2EIE: SPI	2 Error Interru	ot Enable bit				
	1 = Interrupt r	request is enab	bled				
	0 = Interrupt r	request is not e	enabled				

REGISTER 7-15: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	ADCP10IP2	ADCP10IP1	ADCP10IP0	—	ADCP9IP2	ADCP9IP1	ADCP9IP0
bit 15	÷					•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	ADCP8IP2	ADCP8IP1	ADCP8IP0		—		
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	ADCP10IP<2	:0>: ADC Pair	10 Conversion	n Done Interru	upt 1 Priority bits	i	
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	ADCP9IP<2:0	D>: ADC Pair 9	Conversion E	Done Interrupt	1 Priority bits		
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	ADCP8IP<2:0)>: ADC Pair 8	B Conversion E	Done Interrupt	1 Priority bits		
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-37: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_			_	_
bit 15						•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	ADCP7IP2	ADCP7IP1	ADCP7IP0		ADCP6IP2	ADCP6IP1	ADCP6IP0
bit 7						•	bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	ADCP7IP<2:	0>: ADC Pair 7	Conversion	Done Interrupt	1 Priority bits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	ADCP6IP<2:	0>: ADC Pair 6	Conversion	Done Interrupt	1 Priority bits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				

REGISTER 7-45: IPC29: INTERRUPT PRIORITY CONTROL REGISTER 29

NOTES:

11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70193) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

REGISTER 16-10: MDC: PWM MASTER DUTY CYCLE REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MD	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bi	t	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 MDC<15:0>: PWM Master Duty Cycle Value bits

Note 1: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period – 0x0009.

2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 to 40 ns, depending on the mode of operation), the PWM duty cycle resolution will increase from 1 to 3 LSBs.

REGISTER 16-23: LEBCONX: LEADING-EDGE BLANKING CONTROL x REGISTER (CONTINUED)

bit 1	BPLH: Blanking in PWMxL High Enable bit
	 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high
bit 0	BPLL: Blanking in PWMxL Low Enable bit
	 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low 0 = No blanking when PWMxL output is low

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—		LEB<	<8:5>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		LEB<4:0>			—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15-12	Unimplemen	ted: Read as '	0'				
bit 11-3	LEB<8:0>: Le	eading-Edge Bl	lanking Delay	/ for Current-Lir	nit and Fault Inp	outs bits	
	The value is i	n 8.32 ns incre	ments.				

REGISTER 16-24: LEBDLYx: LEADING-EDGE BLANKING DELAY x REGISTER

bit 2-0 Unimplemented: Read as '0'

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware clears at the end of the master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	1 = Enables Receive mode for I^2C . Hardware clears at the end of the eighth bit of the master receive data byte.
	0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiates Stop condition on SDAx and SCLx pins. Hardware clears at the end of the master Stop sequence.
	0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware clears at the end of the master Repeated Start sequence.
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDAx and SCLx pins. Hardware clears at the end of the master Start sequence.
	0 = Start condition is not in progress

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0		
_	—	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0		
bit 15	÷			·	•	·	bit 8		
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0		
—	—	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-14	Unimplemented: Read as '0'								
bit 13-8	FBP<5:0>: FI	IFO Buffer Poir	nter bits						
011111 = RB31 buffer									
	011110 = RB30 buffer								
	•								
	•								
000001 = TRB1 buffer									
000000 = TRB0 buffer									
bit 7-6	Unimplemented: Read as '0'								
bit 5-0	FNRB<5:0>:	FIFO Next Rea	ad Buffer Poin	iter bits					
011111 = RB31 buffer									
	•	50 builer							
	•								
	•								
	000000 = 1R								

REGISTER 21-5: CxFIFO: ECANx FIFO STATUS REGISTER

Bit Field	Register	RTSP Effect	Description			
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection bit			
			1 = Boot segment can be written			
R66 (2)();	ГРО	Immediate	0 = Bool segment is while-protected			
855<2:0>	FB2	Immediate	Boot Segment Program Flash Code Protection Size bits			
			XII = No boot program Flash segment			
			110 = Standard security; boot program Flash segment ends at 0x0003FE			
			010 = High security; boot program Flash segment ends at 0x0003FE			
			Boot Space is 768 Instruction Words (except interrupt vectors):			
			101 = Standard security; boot program Flash segment ends at 0x0007FE			
			001 = High security; boot program Flash segment ends at 0x0007FE			
			Boot Space is 1792 Instruction Words (except interrupt vectors):			
			0x000FFE			
			000 = High security; boot program Flash segment ends at 0x000FFE			
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bits			
			11 = User program memory is not code-protected			
			10 = Standard security			
	FCS	Immediate	0x = Fligh Security			
GWKF	FGS	Inneciate	1 - User program memory is not write-protected			
			1 = 0 set program memory is not write-protected			
IESO	FOSCSEL	Immediate	Two-Speed Oscillator Start-up Enable bit			
			1 = Start-up device with FRC, then automatically switch to the user			
			selected oscillator source when ready			
			0 = Start-up device with user selected oscillator source			
FNOSC<2:0>	FOSCSEL	If clock switch	Initial Oscillator Source Selection bits			
		is enabled,	111 = Internal Fast RC (FRC) Oscillator with Postscaler			
		KISP effect	110 = Internal Fast RC (FRC) Oscillator with Divide-by-16			
		device Reset:	101 = LPRC Oscillator 100 - Secondary (LP) Oscillator			
		otherwise,	011 = Primary (XT, HS, EC) Oscillator with PLL			
		immediate	010 = Primary (XT, HS, EC) Oscillator			
			001 = Internal Fast RC (FRC) Oscillator with PLL			
			000 = FRC Oscillator			
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits			
			1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled			
			$01 = \text{Clock switching is enabled. Fail-Sale Clock Monitor is disabled 00 = \text{Clock switching is enabled. Fail-Safe Clock Monitor is enabled}$			
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes)			
			1 = OSC2 is the clock output			
			0 = OSC2 is the general purpose digital I/O pin			
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits			
			11 = Primary Oscillator is disabled			
			10 = HS Crystal Oscillator mode			
			01 = XI Crystal Oscillator mode			
1	1	1	UU = EC (External Clock) Mode			

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution
- Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

24.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the WDT will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3:2>) will need to be cleared in software after the device wakes up.

24.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

FIGURE 24-2: WDT BLOCK DIAGRAM

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions				
Power-Down Current (IPD) ^(2,4)								
DC60d	50	500	μΑ	-40°C		Base Power-Down Current		
DC60a	50	500	μΑ	+25°C	2 2\/			
DC60b	200	500	μΑ	+85°C	3.37			
DC60c	600	1000	μΑ	+125°C				
DC61d	8	13	μΑ	-40°C				
DC61a	10	15	μΑ	+25°C	2 21/	Watchdog Timor Current: Alwot(3)		
DC61b	12	20	μΑ	+85°C	3.3V	Watchdog Timer Current. AiwD149		
DC61c	13	25	μA	+125°C				

TABLE 27-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

- 2: IPD (Sleep) current is measured as follows:
 - CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
 - CLKO is configured as an I/O input pin in the Configuration Word
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD, WDT and FSCM are disabled
 - All peripheral modules are disabled (all PMDx bits are all '1's)
 - The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
 - JTAG disabled
- **3:** The ∆ current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.

FIGURE 27-17: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾		Тур ⁽²⁾	Max	Units	Conditions	
TQ30	TQUL	Quadrature Input Low Time		6 Tcy	_	ns		
TQ31	ΤουΗ	Quadrature Input High Time		6 Tcy	—	ns		
TQ35	ΤουΙΝ	Quadrature Input Period		12 TCY	—	ns		
TQ36	ΤουΡ	Quadrature Phase Period		3 TCY	—	ns		
TQ40	TQUFL	Filter Time to Recognize Low with Digital Filter	V,	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	
TQ41	TqufH	Filter Time to Recognize High, with Digital Filter		3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	

TABLE 27-45: QUADRATURE DECODER TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70208) in the "dsPIC33/PIC24 Family Reference Manual".

FIGURE 27-25: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS

