

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs606-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICE[™].

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) (DS51765)
- "MPLAB[®] ICD 3 Design Advisory" (DS51764)
- "MPLAB[®] REAL ICE[™] In-Circuit Debugger User's Guide" (DS51616)
- *"Using MPLAB[®] REAL ICE™"* (poster) (DS51749)

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

NOTES:

TABLE 4-32: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES ONLY (CONTINUED)

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCBUF22	036C		ADC Data Buffer 22 xxx											xxxx				
ADCBUF23	036E		ADC Data Buffer 23											XXXX				
ADCBUF24	0370		ADC Data Buffer 24 xxxx											xxxx				
ADCBUF25	0372		ADC Data Buffer 25											xxxx				

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 8000h and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during Table Reads/Writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction using PSV to access data, to execute in a single cycle.

When CORCON < 2 > = 1 and EA < 15 > = 1: **Program Space** Data Space **PSVPAG** 15 0 0x000000 0x0000 02 Data EA<14:0> 0x010000 0x018000 The data in the page designated by PSVPAG is mapped into the upper half of the data memory 0x8000 space... **PSV** Area ...while the lower 15 bits of the EA specify an exact address within 0xFFFF the PSV area. This corresponds exactly to the same lower 15 bits of the actual program space address. 0x800000

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

NOTES:

6.2 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed. The delay, TPOR, ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 27.0 "Electrical Characteristics" for details.

The Power-on Reset (POR) status bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

6.3 Brown-out Reset (BOR) and Power-up Timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses the

VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.

The Brown-out Reset (BOR) status bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides a Power-up Time Delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The Power-up Timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select (FPWRT<2:0>) bits in the FPOR Configuration (FPOR<2:0>) register, which provides eight settings (from 0 ms to 128 ms). Refer to **Section 24.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The Reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

FIGURE 6-3: BROWN-OUT SITUATIONS

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INT0IF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

REGISTER 9	-2: CLKDI	V: CLOCK D		SISTER									
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0						
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	FRCDIV2	FRCDIV1	FRCDIV0						
bit 15							bit 8						
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0						
bit 7							bit 0						
Legend:													
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'							
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15	ROI: Recover	on Interrupt b	oit										
	1 = Interrupts	s will clear the	DOZEN bit an	d the processo	or clock/periphe	ral clock ratio is	s set to 1:1						
	0 = Interrupts	s have no effec	ct on the DOZE	EN bit									
bit 14-12	DOZE<2:0>:	Processor Clo	ck Reduction S	Select bits									
	111 = FCY/12	8											
	110 = FCY/64 101 = FCY/32												
	100 = FCY/16												
	011 = FCY/8 (default)											
	010 = FCY/4	010 = FCY/2											
	001 = FCY/2 000 = FCY/1												
bit 11	DOZEN: Doz	e Mode Enable	e bit ⁽¹⁾										
	1 = DOZE<2	:0> field specif	fies the ratio be	etween the per	ipheral clocks a	and the process	or clocks						
	0 = Processo	or clock/periph	eral clock ratio	forced to 1:1									
bit 10-8	FRCDIV<2:0	Internal Fas	t RC Oscillator	Postscaler bit	S								
	111 = FRC di	vide-by-256											
	101 = FRC di	vide-by-04 vide-bv-32											
	100 = FRC divide-by-16												
	011 = FRC divide-by-8												
	010 = FRC di	vide-by-4 vide-by-2											
	000 = FRC di	vide-by-1 (def	ault)										
bit 7-6	PLLPOST<1:	0>: PLL VCO	Output Divide	Select bits (al	lso denoted as	N2', PLL posts	caler)						
	11 = Output/8	}											
	10 = Reserve	d											
	01 = Output/4	(default)											
bit 5	Unimplemen	ted: Read as '	ʻ∩'										
bit 4-0		> PLI Phase	Detector Input	Divider hits (a	ulso denoted as	'N1' PLL pres	caler)						
	00000 = lnpu	t/2 (default)	Detector input				Salor)						
	00001 = Inpu	it/3											
	•												
	•												
	•												
	11111 = I npu	t/33											

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

r					_							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0					
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD ⁽¹⁾						
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0					
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	<u> </u>	C1MD	ADCMD					
bit 7							bit 0					
Legend:												
R = Readable	e bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
bit 15	T5MD: Timer5	5 Module Disab	le bit									
	1 = Timer5 mod	odule is disable	d									
h:+ 4 4	0 = 11mer5 mc	Daule is enabled] - -:+									
DIT 14	T4MD: Timer4 Module Disable bit											
	1 = Timer4 module is disabled 0 = Timer4 module is enabled											
bit 13	T3MD: Timer3 Module Disable bit											
	1 = Timer3 module is disabled											
	0 = Timer3 mo	odule is enabled	ł									
bit 12	T2MD: Timer2	2 Module Disab	le bit									
	1 = Timer2 mo 0 = Timer2 mo	odule is disable odule is enable	b k									
bit 11	T1MD: Timer1	I Module Disab	le bit									
	1 = Timer1 mor	odule is disable	d 1									
hit 10		1 Modulo Disak	u No hit									
DIL TO		I MOUUIE DISAL										
	$0 = QEI1 \mod$	lule is enabled										
bit 9	PWMMD: PW	M Module Disa	ble bit ⁽¹⁾									
	1 = PWM mod	dule is disabled										
	0 = PWM mod	dule is enabled										
bit 8	Unimplement	ted: Read as '0	,									
bit 7	12C1MD: 12C1	Module Disab	le bit									
	1 = I2C1 mod 0 = I2C1 mod	ule is disabled ule is enabled										
bit 6	U2MD: UART	2 Module Disat	ole bit									
	1 = UART2 m 0 = UART2 m	odule is disable odule is enable	ed d									
bit 5	U1MD: UART	1 Module Disat	ole bit									
	1 = UART1 m	odule is disable	d									
	0 = UART1 m	odule is enable	d									
bit 4	SPI2MD: SPI2	2 Module Disab	le bit									
	$1 = SPI2 \mod$	ule is disabled										
	$0 = SPI2 \mod$	ule is enabled										

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be re-initialized.

14.1 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1 TO 4)

					•	,						
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
_	_	ICSIDL			_	—	_					
bit 15				·			bit 8					
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0					
ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0					
bit 7							bit 0					
Legend:		HC = Hardwar	e Clearable bit									
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'												
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15-14	Unimplemer	nted: Read as '0	3									
bit 13	ICSIDL: Input Capture x Stop in Idle Control bit											
	1 = Input cap	ture module hal	ts in CPU Idle	mode								
	0 = Input cap	ture module cor	itinues to opera	ate in CPU Idle	mode							
bit 12-8	Unimplemen	ited: Read as '0										
bit 7	ICTMR: Inpu	t Capture x Time	er Select bit									
	1 = TMR2 contents are captured on capture event											
hit 6-5		lect Number of (Captures per In	torrupt bite								
DIL 0-3	11 – Interrun	t on every fourth	captures per in									
	10 = Interrup	10 = Interrupt on every fourth capture event										
	01 = Interrup	ot on every secor	nd capture eve	nt								
	00 = Interrup	t on every captu	ire event									
bit 4	ICOV: Input (Capture x Overfl	ow Status Flag	bit (read-only)								
	1 = Input cap	oture overflow oc	curred									
1.10	0 = No input capture overflow occurred											
bit 3	ICBNE: Inpu	t Capture x Buffe	er Empty Statu	s bit (read-only)							
	1 = Input cap 0 = Input cap	oture buffer is no oture buffer is en	t empty, at leas npty	st one more cap	oture value c	an de read						

bit 2-0 ICM<2:0>: Input Capture x Mode Select bits

111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode; rising edge detect only, all other control bits are not applicable

- 110 = Unused (module disabled)
- 101 = Capture mode, every 16th rising edge
- 100 = Capture mode, every 4th rising edge
- 011 = Capture mode, every rising edge
- 010 = Capture mode, every falling edge
- 001 = Capture mode, every edge (rising and falling); ICI<1:0> bits do not control interrupt generation for this mode
- 000 = Input capture module is turned off

REGISTER 16-6: STCON2: PWM SECONDARY CLOCK DIVIDER SELECT REGISTER 2	REGISTER 16-6:	STCON2: PWM SECONDARY CLOCK DIVIDER SELECT REGISTER 2
--	----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
—	—	—	—	—	PCLKDIV2 ⁽¹⁾	PCLKDIV1 ⁽¹⁾	PCLKDIV0 ⁽¹⁾			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$						
bit 15-3	Unimplement	ted: Read as '	0'							
bit 2-0	PCLKDIV<2:0	D>: PWM Input	t Clock Presca	ler (Divider) S	elect bits ⁽¹⁾					
	 111 = Reserved 110 = Divide-by-64, maximum PWM timing resolution 101 = Divide-by-32, maximum PWM timing resolution 									

100 = Divide-by-16, maximum PWM timing resolution

011 = Divide-by-8, maximum PWM timing resolution

010 = Divide-by-4, maximum PWM timing resolution

001 = Divide-by-2, maximum PWM timing resolution

000 = Divide-by-1, maximum PWM timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-7: STPER: PWM SECONDARY MASTER TIME BASE PERIOD REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			STPE	R<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			STPE	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at POR $(1' = Bit is set)$ $(0' = Bit is cleared)$ $x = Bit is cleared$			x = Bit is unkr	nown			

bit 15-0 STPER<15:0>: Secondary Master Time Base (SMTMR) Period Value bits

19.0 INTER-INTEGRATED CIRCUIT (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 dsPIC33FJ64GS406/606/608/610 and families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit[™] (I²C[™])" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C Interface Supporting Both Master and Slave modes of Operation
- I²C Slave mode Supports 7-Bit and 10-Bit Addressing
- I²C Master mode Supports 7-Bit and 10-Bit Addressing
- I²C Port allows Bidirectional Transfers Between Master and Slaves
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control)
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates Accordingly

19.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, refer to the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest "*dsPIC33/PIC24 Family Reference Manual*" sections.

19.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it.
- I2CxRCV is the receive buffer and the register to which data bytes are written or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- The I2CxADD register holds the slave address.
- A status bit, ADD10, indicates 10-Bit Addressing mode.
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0						
	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN						
bit 15							bit 8						
	5/2.2			D /0.0	5/2.2								
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0						
	WAKIF	ERRIF	—	FIFUIF	RBOVIE	RBIF	I BIF						
							DILO						
Legend:		C = Writable.	but only '0' ca	n be written to	clear the bit								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own						
bit 15-14	Unimplemen	ted: Read as ')'										
bit 13	TXBO: Trans	mitter in Error S	State Bus Off I	oit									
	1 = Transmitte	er is in Bus Off	state										
h:40	0 = Iransmitte	er is not in Bus	Off state										
DIT 12	1 - Transmitte	nitter in Error S	otate Bus Pass	sive bit									
	0 = Transmitter is not in Bus Passive state												
bit 11	RXBP: Receiver in Error State Bus Passive bit												
	1 = Receiver is in Bus Passive state												
	0 = Receiver	is not in Bus Pa	assive state										
bit 10	TXWAR: Tran	smitter in Erro	r State Warnir	ig bit									
	1 = Transmitte 0 = Transmitte	er is in Error W er is not in Erro	arning state r Warning sta	te									
bit 9	RXWAR: Rec	eiver in Error S	State Warning	bit									
	1 = Receiver	is in Error Warr	ning state										
	0 = Receiver	is not in Error V	Varning state										
bit 8	EWARN: Tran	nsmitter or Rec	eiver in Error	State Warning	bit								
	1 = Transmitte	er or receiver is	in Error Warı	ning state Marning state									
bit 7	IVRIF: Invalid	Message Rec	eived Interrup	t Flag bit									
bit i	1 = Interrupt r	request has occ	curred										
	0 = Interrupt r	equest has not	occurred										
bit 6	WAKIF: Bus	Wake-up Activit	ty Interrupt Fla	ag bit									
	1 = Interrupt r	equest has occ	curred										
ь: <i>н г</i>	0 = Interrupt r	equest has not				han hita)							
DIT 5	1 - Interrupt r	Interrupt Flag t	bit (multiple sc	ources in CXIN	1F<13:8> regis	ter bits)							
	1 = Interrupt r 0 = Interrupt r	equest has not	occurred										
bit 4	Unimplemen	ted: Read as ')'										
bit 3	FIFOIF: FIFO	Almost Full Int	errupt Flag bi	t									
	1 = Interrupt r	equest has occ	curred										
	0 = Interrupt r	equest has not	occurred										
bit 2	RBOVIF: RX	Buffer Overflov	v Interrupt Fla	g bit									
	\perp = interrupt r 0 = Interrupt r	equest has occ	occurred										
	on apri												

REGISTER 21-6: CXINTF: ECANX INTERRUPT FLAG REGISTER

REGISTER 21-8: CxEC: ECANx TRANSMIT/RECEIVE ERROR COUNT REGISTER

| R-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| TERRCNT7 | TERRCNT6 | TERRCNT5 | TERRCNT4 | TERRCNT3 | TERRCNT2 | TERRCNT1 | TERRCNT0 |
| bit 15 | • | | • | | | • | bit 8 |

| R-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| RERRCNT7 | RERRCNT6 | RERRCNT5 | RERRCNT4 | RERRCNT3 | RERRCNT2 | RERRCNT1 | RERRCNT0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	TERRCNT<7:0>:	Transmit	Error	Count	bits
	TEDDDDTE = 0				

bit 7-0 RERRCNT<7:0>: Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x TQ
	10 = Length is 3 x TQ
	01 = Length is 2 x TQ
	00 = Length is 1 x TQ
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits
	11 1111 = TQ = 2 x 64 x 1/FCAN
	•
	•
	•
	00 0010 = TQ = 2 x 3 x 1/FCAN
	00 0001 = TQ = 2 x 2 x 1/FCAN
	00 0000 = Tq = 2 x 1 x 1/Fcan

Bit Field	Register	RTSP Effect	Description		
FWDTEN	FWDT	Immediate	Watchdog Timer Enable bit		
			 1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN bit in the RCON register will have no effect) 		
			 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register) 		
WINDIS	FWDT	Immediate	Watchdog Timer Window Enable bit		
			1 = Watchdog Timer in Non-Window mode0 = Watchdog Timer in Window mode		
WDTPRE	FWDT	Immediate	Watchdog Timer Prescaler bit		
			1 = 1:128		
			0 = 1:32		
WDTPOST<3:0>	FWDT	Immediate	Watchdog Timer Postscaler bits		
			1111 = 1:32,768		
			1110 = 1:16,384		
			•		
			•		
			0001 = 1 :2		
			0000 = 1:1		
FPWRT<2:0>	FPOR	Immediate	Power-on Reset Timer Value Select bits		
			111 = PWRT = 128 ms		
			110 = PWRT = 64 ms		
			101 = PWRT = 32 ms		
			100 = PWRI = 16 ms		
			011 = PWRT = 0 ms 010 = PWRT = 4 ms		
			001 = PWRT = 2 ms		
			000 = PWRT = Disabled		
JTAGEN	FICD	Immediate	JTAG Enable bit		
			1 = JTAG is enabled		
			0 = JTAG is disabled		
ICS<1:0>	FICD	Immediate	ICD Communication Channel Select Enable bits		
			11 = Communicate on PGEC1 and PGED1		
			10 = Communicate on PGEC2 and PGED2		
			00 = Reserved, do not use		
ALTQIO	FPOR	Immediate	Enable Alternate QEI1 Pin bit		
	_		1 = QEA1, QEB1 and INDX1 are selected as inputs to QEI1		
			0 = AQEA1, AQEB1 and AINDX1 are selected as inputs to QEI1		
ALTSS1	FPOR	Immediate	Enable Alternate SS1 pin bit		
			$1 = \overline{\text{ASS}1}$ is selected as the I/O pin for SPI1		
			0 = SS1 is selected as the I/O pin for SPI1		
CMPPOL0	FCMP	Immediate	Comparator Hysteresis Polarity bit (for even numbered comparators)		
			1 = Hysteresis is applied to falling edge		
	501/5		0 = Hysteresis is applied to rising edge		
HYSI0<1:0>	FCMP	Immediate	Comparator Hysteresis Select bits		
			$\perp \perp = 45 \text{ mV}$ hysteresis		
			10 = 30 mV hysteresis 01 = 15 mV hysteresis		
			00 = No hysteresis		

TABLE 24-2:	dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

© 2009-2014 Microchip Technology Inc.

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S	
Dimensior	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B