

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs606-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

dsPI	C33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Product Families	2
1.0	Device Overview	17
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	23
3.0	CPU	33
4.0	Memory Organization	45
5.0	Flash Program Memory	. 109
6.0	Resets	. 115
7.0	Interrupt Controller	. 123
8.0	Direct Memory Access (DMA)	. 179
9.0	Oscillator Configuration	. 189
10.0	Power-Saving Features	. 203
11.0	I/O Ports	. 213
12.0	Timer1	. 217
13.0	Timer2/3/4/5 features	. 219
14.0	Input Capture	. 225
15.0	Output Compare	. 227
16.0	High-Speed PWM	. 231
17.0	Quadrature Encoder Interface (QEI) Module	. 261
18.0	Serial Peripheral Interface (SPI)	. 265
19.0	Inter-Integrated Circuit (I ² C TM)	. 271
20.0	Universal Asynchronous Receiver Transmitter (UART)	. 279
21.0	Enhanced CAN (ECAN™) Module	. 285
22.0	High-Speed, 10-Bit Analog-to-Digital Converter (ADC)	. 313
23.0	High-Speed Analog Comparator	. 345
24.0	Special Features	. 349
25.0	Instruction Set Summary	. 357
26.0	Development Support	. 365
27.0	Electrical Characteristics	. 369
28.0	50 MIPS Electrical Characteristics	. 417
29.0	DC and AC Device Characteristics Graphs	. 423
30.0	Packaging Information	. 427
Appe	ndix A: Migrating from dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 to dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Devices	. 441
Appe	endix B: Revision History	. 442
Index		449
The I	Microchip Web Site	. 457
Custo	omer Change Notification Service	. 457
Custo	omer Support	. 457
Prod	uct Identification System	. 459

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *dsPIC33/PIC24 Family Reference Manual*, **Program Memory**" (DS70203), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access to program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in **Section 4.6 "Interfacing Program and Data Memory Spaces"**.

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory maps are shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAPS FOR dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DEVICES

IADLL	4 -07.		VENOL				NI)		
		Norma	al Addre	SS			Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

TABLE 4-67: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

5.0 FLASH PROGRAM MEMORY

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70191) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming

pin pairs: PGEC1/PGED1, PGEC2/PGED2 or PGEC3/ PGED3), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the Digital Signal Controller (DSC) just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data, either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0
Legend:	L:4		L:4		a a vata al la itu ya a a		
R = Readable		vv = vvritable	DIT	0 = 0	nented bit, read	as U	0000
-n = value at P	OR	I = DILIS SEL		0 = Dit is cies	areu		IOWI
bit 15	NSTDIS: Inte	rrunt Nestina F)isahle hit				
Sit 10	1 = Interrupt r	nesting is disab	oled				
	0 = Interrupt r	nesting is enab	led				
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	lag bit			
	1 = Trap was	caused by an	overflow of Ac	cumulator A			
	0 = Irap was	not caused by	an overflow o	f Accumulator	A		
bit 13	OVBERR: Ac	cumulator B O	verflow I rap H	-lag bit			
	1 = Trap was 0 = Trap was	not caused by and	an overflow of AC	f Accumulator	В		
bit 12	COVAERR: A	Accumulator A	Catastrophic (Overflow Trap F	-lag bit		
	1 = Trap was	caused by a ca	atastrophic ov	erflow of Accur	mulator A		
	0 = Trap was	not caused by	a catastrophic	c overflow of A	ccumulator A		
bit 11	COVBERR: A	Accumulator B	Catastrophic (Overflow Trap F	-lag bit		
	1 = Trap was	caused by a ca	atastrophic ov	erflow of Accur	nulator B		
bit 10	0 = Trap was	not caused by	rflow Trop En	covernow of A	Comulator B		
bit TO	1 = Trap over	flow of Accum	illator A				
	0 = Trap is dis	sabled					
bit 9	OVBTE: Accu	umulator B Ove	erflow Trap En	able bit			
	1 = Trap over	flow of Accumu	ulator B				
	0 = Trap is dis	sabled					
bit 8	COVTE: Cata	astrophic Overf	low Trap Enat	ble bit	D · · · · ·		
	1 = Irap on a 0 = Trap is dist	catastrophic o sabled	verflow of Acc	cumulator A or	B is enabled		
bit 7	SFTACERR:	Shift Accumula	tor Error Statu	us bit			
2	1 = Math erro	or trap was caus	sed by an inva	alid accumulato	or shift		
	0 = Math erro	or trap was not	caused by an	invalid accumu	lator shift		
bit 6	DIV0ERR: Ar	ithmetic Error S	Status bit				
	1 = Math erro	or trap was caus	sed by a divid caused by a d	e-by-zero livide-by-zero			
bit 5	DMACERR:	DMA Controller	Error Status	bit			
	1 = DMA Con	troller error tra	p has occurre	d			
	0 = DMA Con	troller error tra	p has not occu	urred			
bit 4	MATHERR: A	Arithmetic Error	Status bit				
	1 = Math erro 0 = Math erro	or trap has occu or trap has not c	irred occurred				

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	U-0
	—		_	QEI2IF	—	PSESMIF	_
bit 15	·			•			bit 8
U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
—	C1TXIF ⁽¹⁾	—	—	—	U2EIF	U1EIF	—
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-12	Unimplemen	ted: Read as '	0'				
bit 11	QEI2IF: QEI2	Event Interrup	ot Flag Status	bit			
	1 = Interrupt r	equest has oc	curred				
	0 = Interrupt r	equest has no	t occurred				
bit 10	Unimplemen	ted: Read as '	0'				
bit 9	PSESMIF: PV	VM Special Ev	ent Secondar	y Match Interru	ipt Flag Status b	bit	
	1 = Interrupt r	equest has oc	curred t occurred				
hit 8-7	Unimplemen	ted: Read as '	0'				
bit 6	C1TXIF: ECA	N1 Transmit Γ	°)ata Request I	nterrupt Flag S	Status bit(1)		
bit 0	1 = Interrupt r	equest has oc	curred	interrupt i lag e			
	0 = Interrupt r	equest has no	t occurred				
bit 5-3	Unimplemen	ted: Read as '	0'				
bit 2	U2EIF: UART	2 Error Interru	pt Flag Status	bit			
	1 = Interrupt r	equest has oc	curred				
	0 = Interrupt r	equest has no	t occurred				
bit 1	U1EIF: UART	1 Error Interru	pt Flag Status	bit			
	1 = Interrupt r	equest has oc	curred				
1.11.0		equest has no	t occurred				
DIT U	Unimplemen	tea: Read as '	0.				
Note 1:	Interrupts are disal	oled on device	s without ECA	N™ modules.			

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	ADCP10IP2	ADCP10IP1	ADCP10IP0	—	ADCP9IP2	ADCP9IP1	ADCP9IP0
bit 15	÷					•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	ADCP8IP2	ADCP8IP1	ADCP8IP0		—		
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	ADCP10IP<2	:0>: ADC Pair	10 Conversion	n Done Interru	upt 1 Priority bits	i	
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	ADCP9IP<2:0	D>: ADC Pair 9	Conversion E	Done Interrupt	1 Priority bits		
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	ADCP8IP<2:0)>: ADC Pair 8	B Conversion E	Done Interrupt	1 Priority bits		
	111 = Interrup	ot is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-37: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

is used in any ratio other than 1:1, which is the default.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15						•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_		—				—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ROON: Refer 1 = Reference 0 = Reference	rence Oscillator e oscillator outp e oscillator outp	Output Enab out is enabled	le bit on the REFCL	-K0 pin		
bit 14	Unimplemen	ted: Read as '	o'				
bit 13	ROSSLP: Re	ference Oscilla	tor Run in Sle	ep bit			
	1 = Reference 0 = Reference	e oscillator outp e oscillator outp	out continues out is disabled	to run in Sleep in Sleep mode	mode e		
bit 12	ROSEL: Refe	erence Oscillato	or Source Sel	ect bit			
	1 = Oscillator 0 = System cl	crystal is used lock is used as	as the refere the reference	nce clock e clock			
bit 11-8	RODIV<3:0>:	Reference Os	cillator Divide	er bits ⁽¹⁾			
	1111 = Refer 1110 = Refer 1100 = Refer 1011 = Refer 1011 = Refer 1001 = Refer 1000 = Refer 0111 = Refer 0101 = Refer 0101 = Refer 0010 = Refer 0011 = Refer 0010 = Refer 0001 = Refer 0001 = Refer	ence clock divi ence clock divi	ded by 32,768 ded by 16,384 ded by 8,192 ded by 2,048 ded by 2,048 ded by 1,024 ded by 512 ded by 256 ded by 128 ded by 64 ded by 32 ded by 16 ded by 8 ded by 4 ded by 2	8 4			
bit 7-0	Unimplemen	ted: Read as '	o'				

REGISTER 9-6: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Note 1: The reference oscillator output must be disabled (ROON = 0) before writing to these bits.

NOTES:

21.3 Modes of Operation

The ECANTM module can operate in one of several operation modes selected by the user. These modes include:

- Initialization mode
- Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3.1 INITIALIZATION MODE

In the Initialization mode, the module does not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The user application has access to Configuration registers that are access restricted in other modes. The module protects the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The ECAN module is not allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

21.3.2 DISABLE MODE

In Disable mode, the module does not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts remain and the error counters retains their value.

If the REQOP<2:0> bits (CxCTRL1<10:8>) = 001, the module enters the Module Disable mode. If the module is active, the module waits for 11 recessive bits on the CAN bus, detects that condition as an Idle bus, then accepts the module disable command. When the OPMODE<2:0> bits (CxCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CxRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CxCFG2<14>) enables or disables the filter.

Note:	Typically, if the ECAN module is allowed to transmit in a particular mode of operation, and a transmission is requested immedi- ately after the ECAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABTmn bit is cot and the TXREOm bit is cleared
	bit is set and the TXREQmn bit is cleared.

21.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins assume the CAN bus functions. The module transmits and receives CAN bus messages via the CxTX and CxRX pins.

21.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

21.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = 111. In this mode, the data, which is in the message assembly buffer until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

21.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module connects the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0
_	—	CSIDL	ABAT	r	REQOP2	REQOP1	REQOP0
bit 15							bit 8
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
OPMODE2	OPMODE1	OPMODE0	—	CANCAP		—	WIN
bit 7							bit 0
							
Legend:		r = Reserved	bit				
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	כ'				
bit 13	CSIDL: ECAN	Nx Stop in Idle	Mode bit				
	1 = Discontinues	ues module op s module opera	eration when tion in Idle m	device enters l ode	Idle mode		
bit 12	ABAT: Abort	All Pending Tra	insmissions b	oit			
	1 = Signals al 0 = Module w	ll transmit buffe ill clear this bit	rs to abort tra when all trans	ansmission smissions are a	aborted		
bit 11	Reserved: Do	o not use					
bit 10-8	REQOP<2:0>	. Request Ope	eration Mode	bits			
	111 = Sets Li	sten All Messa	ges mode				
	110 = Reserv	red					
	101 = Reserv	ved	, al a				
	100 = Sets Control = Sets Li	sten Only Mod	e e				
	010 = Sets Lo	popback mode	0				
	001 = Sets Di	isable mode					
	000 = Sets N	ormal Operatio	n mode				
bit 7-5	OPMODE<2:	0>: Operation I	Mode bits				
	111 = Module 110 = Reserve	e is in Listen Ali	Messages m	node			
	101 = Reserv	red					
	100 = Module	e is in Configura	ation mode				
	011 = Module	e is in Listen Or	nly mode				
	010 = Module	e is in Loopbaci s is in Disable r	k mode				
	000 = Module	e is in Normal C	Deration mod	de			
bit 4	Unimplemen	ted: Read as '	כ'				
bit 3	CANCAP: EC	CAN Message I	Receive Time	r Capture Ever	nt Enable bit		
	1 = Enables in 0 = Disables I	nput capture ba ECAN capture	ased on ECAI	N message rec	eive		
bit 2-1	Unimplemen	ted: Read as '	o'				
bit 0	WIN: SFR Ma	ap Window Sele	ect bit				
	1 = Uses filter	r window					
	0 = Uses buff	er window					

REGISTER 21-1: CxCTRL1: ECANx CONTROL REGISTER 1

REGISTER 22-1: ADCON: ADC CONTROL REGISTER (CONTINUED)

- bit 4 ASYNCSAMP: Asynchronous Dedicated S&H Sampling Enable bit⁽¹⁾
 - 1 = The dedicated S&H is constantly sampling and then terminates sampling as soon as the trigger pulse is detected
 - 0 = The dedicated S&H starts sampling when the trigger event is detected and completes the sampling process in two ADC clock cycles
- bit 3 Unimplemented: Read as '0'
- bit 2-0 ADCS<2:0>: Analog-to-Digital Conversion Clock Divider Select bits⁽¹⁾
 - 111 = FADC/8 110 = FADC/7 101 = FADC/6 100 = FADC/5
 - 011 = FADC/4 (default)
 - 011 = FADC/4
 - 010 = FADC/3001 = FADC/2
 - 000 = FADC/1
- **Note 1:** This control bit can only be changed while the ADC is disabled (ADON = 0).
 - 2: This control bit is only active on devices that have one SAR.

NOTES:

24.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33/PIC24 Family Reference Manual" sections. The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

24.1 Configuration Bits

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices provide non-volatile memory implementations for device Configuration bits. Refer to "**Device Configuration**" (DS70194) in the "*dsPIC33/PIC24 Family Reference Manual*" for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 24-2.

Note that address, 0xF80000, is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFF), which can only be accessed using Table Reads and Table Writes.

To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written again. Changing a device configuration requires that power to the device be cycled.

The device Configuration register map is shown in Table 24-1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS			—			BSS<2:0>		BWRP
0xF80002	RESERVED	_	—	—	—	_	—	—	—
0xF80004	FGS	_	—	—	—	_	GSS<1:	0>	GWRP
0xF80006	FOSCSEL	IESO	—	—	_	-	FNO	SC<2:0>	
0xF80008	FOSC	FCKS	VI<1:0>	—	—	_	OSCIOFNC	POSCN	1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	—	WDTPRE		WDTPOST	<3:0>	
0xF8000C	FPOR	—	ALTQIO	ALTSS1	—	—	FPW	RT<2:0>	
0xF8000E	FICD	Reserved ⁽¹⁾	Reserved ⁽¹⁾	JTAGEN	—	_	—	ICS<	:1:0>
0xF80010	FCMP	_	_	CMPPOL1(2)	HYST1<	:1:0> (2)	CMPPOL0(2)	HYST0	<1:0> (2)

TABLE 24-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, read as '0'.

Note 1: These bits are reserved for use by development tools and must be programmed as '1'.

2: These bits are reserved on dsPIC33FJXXXGS406 devices and always read as '1'.

АС СНА	RACTERI	STICS	Standar (unless Operatin	d Operati otherwising temper	ng Condi e stated) ature -40 -40	itions: 3)°C ≤ TA)°C ≤ TA	.0V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8	MHz	ECPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency	100	—	200	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	mS	
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	Measured over a 100 ms period

TABLE 27-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V	TABLE 27-17:
--	--------------

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks, use this formula:

 $Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$

For example: FOSC = 32 MHz, DCLK = 3%, SPI bit rate clock (i.e., SCK) is 2 MHz.

$$SPI SCK Jitter = \left[\frac{D_{CLK}}{\sqrt{\left(\frac{32 MHz}{2 MHz}\right)}}\right] = \left[\frac{3\%}{\sqrt{16}}\right] = \left[\frac{3\%}{4}\right] = 0.75\%$$

TABLE 27-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS56	Fhpout	On-Chip, 16x PLL CCO Frequency	112	118	120	MHz		
OS57	Fhpin	On-Chip, 16x PLL Phase Detector Input Frequency	7.0	7.37	7.5	MHz		
OS58	Tsu	Frequency Generator Lock Time	—	—	10	μs		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

TABLE 27-33:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCKx Frequency			10	MHz	-40°C to +125°C and see Note 3	
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	_	_	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_	_	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 27-17: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

FIGURE 27-27: ECAN™ MODULE I/O TIMING CHARACTERISTICS

TABLE 27-48: ECAN™ MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units Conditions			
CA10	TioF	Port Output Fall Time		—	_	ns	See Parameter DO32		
CA11	TioR	Port Output Rise Time		—		ns	See Parameter DO31		
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120	_		ns			

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 27-49: DMA READ/WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions		
DM1	DMA Read/Write Cycle Time	—	_	1 Tcy	ns			

NOTES: