

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                           |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 40 MIPs                                                                         |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, QEI, POR, PWM, WDT                                      |
| Number of I/O              | 58                                                                              |
| Program Memory Size        | 32KB (32K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 4K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                       |
| Data Converters            | A/D 16x10b; D/A 1x10b                                                           |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 64-VFQFN Exposed Pad                                                            |
| Supplier Device Package    | 64-VQFN (9x9)                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs606-i-mr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the latest sections in the "dsPIC33/PIC24 Family Reference Manual", which are available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

This document contains device-specific information for the following dsPIC33F Digital Signal Controller (DSC) devices:

- dsPIC33FJ32GS406
- dsPIC33FJ32GS606
- dsPIC33FJ32GS608
- dsPIC33FJ32GS610
- dsPIC33FJ64GS406
- dsPIC33FJ64GS606
- dsPIC33FJ64GS608
- dsPIC33FJ64GS610

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance 16-bit microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ32GS406/ 606/608/610 and dsPIC33FJ64GS406/606/608/610 devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

### 2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming<sup>TM</sup> (ICSP<sup>TM</sup>) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB<sup>®</sup> ICD 3 or MPLAB REAL ICE<sup>™</sup>.

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB<sup>®</sup> ICD 3" (poster) (DS51765)
- "MPLAB<sup>®</sup> ICD 3 Design Advisory" (DS51764)
- "MPLAB<sup>®</sup> REAL ICE<sup>™</sup> In-Circuit Debugger User's Guide" (DS51616)
- *"Using MPLAB<sup>®</sup> REAL ICE™"* (poster) (DS51749)

### 2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.



#### SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT



#### **TABLE 4-22:** HIGH-SPEED PWM GENERATOR 6 REGISTER MAP File SFR Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Addr Name PWMCON6 04C0 FLTSTAT CLSTAT TRGSTAT FLTIEN TRGIEN MDCS DTC1 DTC0 DTCP CAM XPRES CLIEN ITB \_ MTBS IUE IOCON6 04C2 PENH PENL POLH POLL PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 **OVRDAT0** FLTDAT1 FLTDAT0 CLDAT1 CLDAT0 SWAP OSYNC FCLCON6 04C4 IFLTMOD CLSRC4 CLSRC3 CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0 FLTPOL FLTMOD1 FLTMOD0 PDC6 04C6 PDC6<15:0> 04C8 PHASE6<15:0> PHASE6 DTR6 04CA DTR6<13:0> \_ \_ ALTDTR6 04CA \_ \_ ALTDTR6<13:0> SDC6 04CE SDC6<15:0> SPHASE6 04D0 SPHASE6<15:0> TRIG6 04D2 TRGCMP<12:0> \_ \_ TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 DTM TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGCON6 04D4 TRGSTRT2 TRGSTRT1 TRGSTRT0 \_ \_ \_ \_ \_ STRIG6 04D6 STRGCMP<12:0> \_ \_ \_ PWMCAP6 04D8 PWMCAP<12:0> \_ \_ \_ PHR PHF PLF FLTLEBEN CLLEBEN BCH LEBCON6 04DA PLR BCL BPHH BPHL BPLH BPLL \_ \_ LEBDLY6 04DC LEB<8:0> \_ \_ \_ \_ \_ \_ \_

\_

\_

CHOPSEL3 CHOPSEL2 CHOPSEL1

CHOPSEL0

CHOPHEN

BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0

\_ Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

\_

AUXCON6

04DE

HRPDIS

HRDDIS

All

Resets

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

CHOPLEN

| TABLE        | 4-23        | : HIG           | H-SPE               | ED PW             |         | IERATO    | R 7 REG   | ISTER M   | IAP (EXC  |           | S dsPIC | 33FJ32   | GS406 /  | ND dsF   | PIC33FJ  | 64GS406  | DEVICE   | ES)           |
|--------------|-------------|-----------------|---------------------|-------------------|---------|-----------|-----------|-----------|-----------|-----------|---------|----------|----------|----------|----------|----------|----------|---------------|
| File<br>Name | SFR<br>Addr | Bit 15          | Bit 14              | Bit 13            | Bit 12  | Bit 11    | Bit 10    | Bit 9     | Bit 8     | Bit 7     | Bit 6   | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | All<br>Resets |
| PWMCON7      | 04E0        | FLTSTAT         | CLSTAT              | TRGSTAT           | FLTIEN  | CLIEN     | TRGIEN    | ITB       | MDCS      | DTC1      | DTC0    | DTCP     |          | MTBS     | CAM      | XPRES    | IUE      | 0000          |
| IOCON7       | 04E2        | PENH            | PENL                | POLH              | POLL    | PMOD1     | PMOD0     | OVRENH    | OVRENL    | OVRDAT1   | OVRDAT0 | FLTDAT1  | FLTDAT0  | CLDAT1   | CLDAT0   | SWAP     | OSYNC    | 0000          |
| FCLCON7      | 04E4        | IFLTMOD         | CLSRC4              | CLSRC3            | CLSRC2  | CLSRC1    | CLSRC0    | CLPOL     | CLMOD     | FLTSRC4   | FLTSRC3 | FLTSRC2  | FLTSRC1  | FLTSRC0  | FLTPOL   | FLTMOD1  | FLTMOD0  | 0000          |
| PDC7         | 04E6        | PDC7<15:0> 000  |                     |                   |         |           |           |           |           |           | 0000    |          |          |          |          |          |          |               |
| PHASE7       | 04E8        | PHASE7<15:0> 00 |                     |                   |         |           |           |           |           | 0000      |         |          |          |          |          |          |          |               |
| DTR7         | 04EA        | _               | — — DTR7<13:0> 0001 |                   |         |           |           |           |           |           | 0000    |          |          |          |          |          |          |               |
| ALTDTR7      | 04EA        | _               | _                   | ALTDTR7<13:0> 000 |         |           |           |           |           |           |         |          | 0000     |          |          |          |          |               |
| SDC7         | 04EE        |                 |                     |                   |         |           |           |           | SDC       | 7<15:0>   |         |          |          |          |          |          |          | 0000          |
| SPHASE7      | 04F0        |                 |                     |                   |         |           |           |           | SPHAS     | SE7<15:0> |         |          |          |          |          |          |          | 0000          |
| TRIG7        | 04F2        |                 |                     |                   |         |           |           | TRGCMP<12 | 2:0>      |           |         |          |          |          | _        | _        | _        | 0000          |
| TRGCON7      | 04F4        | TRGDIV3         | TRGDIV2             | TRGDIV1           | TRGDIV0 | _         | _         | -         | -         | DTM       | _       | TRGSTRT5 | TRGSTRT4 | TRGSTRT3 | TRGSTRT2 | TRGSTRT1 | TRGSTRT0 | 0000          |
| STRIG7       | 04F6        |                 |                     |                   |         |           |           | STRGCMP<1 | 2:0>      |           |         |          |          |          | _        | _        | _        | 0000          |
| PWMCAP7      | 04F8        |                 |                     |                   |         |           |           | PWMCAP<12 | 2:0>      |           |         |          |          |          | _        | _        | _        | 0000          |
| LEBCON7      | 04FA        | PHR             | PHF                 | PLR               | PLF     | FLTLEBEN  | CLLEBEN   | _         | -         | _         | _       | BCH      | BCL      | BPHH     | BPHL     | BPLH     | BPLL     | 0000          |
| LEBDLY7      | 04FC        | —               | _                   | —                 | _       |           |           |           | L         | EB<8:0>   |         |          |          |          | -        | _        | —        | 0000          |
| AUXCON7      | 04FE        | HRPDIS          | HRDDIS              |                   | —       | BLANKSEL3 | BLANKSEL2 | BLANKSEL1 | BLANKSEL0 | _         | —       | CHOPSEL3 | CHOPSEL2 | CHOPSEL1 | CHOPSEL0 | CHOPHEN  | CHOPLEN  | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

| DAVO                                                                                 | D 0                                        |                   | 11.0                     |                  | 11.0   | 11.0            |                |  |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------|-------------------|--------------------------|------------------|--------|-----------------|----------------|--|--|--|
| R/VV-0                                                                               | R-0                                        | 0-0               | 0-0                      | 0-0              | 0-0    | 0-0             | 0-0            |  |  |  |
| ALIIVI                                                                               | DISI                                       | —                 | _                        | _                | —      | —               |                |  |  |  |
| Dit 15                                                                               |                                            |                   |                          |                  |        |                 | bit 8          |  |  |  |
|                                                                                      |                                            |                   | <b>B</b> 444 a           | <b>B</b> 444 a   | -      | -               | <b>B M M A</b> |  |  |  |
| 0-0                                                                                  | 0-0                                        | U-0               | R/W-0                    | R/W-0            | R/W-0  | R/W-0           | R/W-0          |  |  |  |
|                                                                                      | —                                          | —                 | IN14EP                   | INT3EP           | INT2EP | INT1EP          | INTOEP         |  |  |  |
| bit 7                                                                                |                                            |                   |                          |                  |        |                 | bit 0          |  |  |  |
|                                                                                      |                                            |                   |                          |                  |        |                 |                |  |  |  |
| Legend:                                                                              |                                            |                   |                          |                  |        |                 |                |  |  |  |
| $R = Readable bit \qquad W = Writable bit \qquad U = Unimplemented bit, read as '0'$ |                                            |                   |                          |                  |        |                 |                |  |  |  |
| -n = Value at F                                                                      | POR                                        | '1' = Bit is set  |                          | '0' = Bit is cle | ared   | x = Bit is unkr | nown           |  |  |  |
|                                                                                      |                                            |                   |                          |                  |        |                 |                |  |  |  |
| bit 15                                                                               | ALTIVT: Enab                               | ole Alternate In  | terrupt Vector           | Table bit        |        |                 |                |  |  |  |
|                                                                                      | 1 = Uses Alte                              | rnate Interrupt   | Vector Table             | ar Tabla         |        |                 |                |  |  |  |
| hit 11                                                                               |                                            |                   | niteriupi vecii<br>s bit |                  |        |                 |                |  |  |  |
| Dit 14                                                                               | 1 – DISI inst                              | ruction is active | 2 DIL                    |                  |        |                 |                |  |  |  |
|                                                                                      | 0 = DISI inst                              | ruction is not a  | ctive                    |                  |        |                 |                |  |  |  |
| bit 13-5                                                                             | Unimplemen                                 | ted: Read as '    | 0'                       |                  |        |                 |                |  |  |  |
| bit 4                                                                                | INT4EP: Exte                               | ernal Interrupt 4 | Edge Detect              | Polarity Selec   | t bit  |                 |                |  |  |  |
|                                                                                      | 1 = Interrupt o                            | on negative edg   | ge                       |                  |        |                 |                |  |  |  |
|                                                                                      | 0 = Interrupt o                            | on positive edg   | e                        |                  |        |                 |                |  |  |  |
| bit 3                                                                                | INT3EP: Exte                               | ernal Interrupt 3 | Edge Detect              | Polarity Selec   | t bit  |                 |                |  |  |  |
|                                                                                      | 1 = Interrupt o                            | on negative edg   | ge                       |                  |        |                 |                |  |  |  |
|                                                                                      | 0 = Interrupt o                            | on positive edg   | e                        |                  |        |                 |                |  |  |  |
| bit 2                                                                                | INT2EP: Exte                               | ernal Interrupt 2 | Edge Detect              | Polarity Selec   | t bit  |                 |                |  |  |  |
|                                                                                      | 1 = Interrupt of $0 = $ Interrupt of $0 =$ | on negative ede   | ge                       |                  |        |                 |                |  |  |  |
| hit 1                                                                                |                                            | an positive edg   | Edge Detect              | Delarity Selec   | t hit  |                 |                |  |  |  |
| DICT                                                                                 | 1 - Interrupt c                            | n negative ed     |                          | Folanty Selec    |        |                 |                |  |  |  |
|                                                                                      | 0 = Interrupt of                           | on positive edg   | e                        |                  |        |                 |                |  |  |  |
| bit 0                                                                                | INT0EP: Exte                               | ernal Interrupt 0 | Edge Detect              | Polarity Selec   | t bit  |                 |                |  |  |  |
|                                                                                      | 1 = Interrupt of                           | on negative edg   | ge                       | ,                |        |                 |                |  |  |  |
|                                                                                      | 0 = Interrupt o                            | on positive edg   | e                        |                  |        |                 |                |  |  |  |
|                                                                                      |                                            |                   |                          |                  |        |                 |                |  |  |  |

#### REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

| R/W-0                                                                      | R/W-0                                  | R/W-0           | U-0            | U-0              | U-0              | U-0     | U-0   |  |  |  |
|----------------------------------------------------------------------------|----------------------------------------|-----------------|----------------|------------------|------------------|---------|-------|--|--|--|
| PWM2IF                                                                     | PWM1IF                                 | ADCP12IF        | —              | _                | _                | —       | —     |  |  |  |
| bit 15                                                                     | •                                      |                 |                | •                |                  |         | bit 8 |  |  |  |
|                                                                            |                                        |                 |                |                  |                  |         |       |  |  |  |
| U-0                                                                        | U-0                                    | U-0             | R/W-0          | R/W-0            | R/W-0            | R/W-0   | U-0   |  |  |  |
| _                                                                          | —                                      | —               | ADCP11IF       | ADCP10IF         | ADCP9IF          | ADCP8IF | —     |  |  |  |
| bit 7                                                                      |                                        |                 |                |                  |                  |         | bit 0 |  |  |  |
|                                                                            |                                        |                 |                |                  |                  |         |       |  |  |  |
| Legend:                                                                    |                                        |                 |                |                  |                  |         |       |  |  |  |
| R = Readable                                                               | bit                                    | W = Writable    | bit            | U = Unimpler     | mented bit, read | as '0'  |       |  |  |  |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown |                                        |                 |                |                  |                  |         |       |  |  |  |
|                                                                            |                                        |                 |                |                  |                  |         |       |  |  |  |
| bit 15                                                                     | PWM2IF: PW                             | M2 Interrupt Fl | ag Status bit  |                  |                  |         |       |  |  |  |
|                                                                            | 1 = Interrupt request has occurred     |                 |                |                  |                  |         |       |  |  |  |
|                                                                            | 0 = Interrupt request has not occurred |                 |                |                  |                  |         |       |  |  |  |
| bit 14                                                                     | PWM1IF: PW                             | M1 Interrupt FI | ag Status bit  |                  |                  |         |       |  |  |  |
|                                                                            | 1 = Interrupt r                        | equest has occ  |                |                  |                  |         |       |  |  |  |
| hit 13                                                                     |                                        | DC Pair 12 Co   | nversion Don   | a Interrunt Flag | n Status hit     |         |       |  |  |  |
| bit 15                                                                     |                                        | equest has occ  |                |                  | y Status bit     |         |       |  |  |  |
|                                                                            | 0 = Interrupt r                        | request has not | occurred       |                  |                  |         |       |  |  |  |
| bit 12-5                                                                   | Unimplemen                             | ted: Read as '  | )'             |                  |                  |         |       |  |  |  |
| bit 4                                                                      | ADCP111F: A                            | DC Pair 11 Co   | nversion Done  | e Interrupt Flag | g Status bit     |         |       |  |  |  |
|                                                                            | 1 = Interrupt r                        | equest has occ  | curred         |                  |                  |         |       |  |  |  |
|                                                                            | 0 = Interrupt r                        | request has not | occurred       |                  |                  |         |       |  |  |  |
| bit 3                                                                      | ADCP10IF: A                            | DC Pair 10 Co   | nversion Don   | e Interrupt Flag | g Status bit     |         |       |  |  |  |
|                                                                            | 1 = Interrupt r                        | request has occ | curred         |                  |                  |         |       |  |  |  |
| 1                                                                          | 0 = Interrupt r                        | request has not | occurred       |                  | х., н.,          |         |       |  |  |  |
| bit 2                                                                      | ADCP9IF: AL                            | DC Pair 9 Conv  | ersion Done II | nterrupt Flag S  | status bit       |         |       |  |  |  |
|                                                                            | 1 = Interrupt request has occurred     |                 |                |                  |                  |         |       |  |  |  |
| bit 1                                                                      |                                        | C Pair 8 Conv   | ersion Done li | nterrunt Flag S  | status hit       |         |       |  |  |  |
| Dit 1                                                                      | 1 = Interrupt r                        | request has occ | curred         | nenupt i lag e   |                  |         |       |  |  |  |
|                                                                            | 0 = Interrupt r                        | request has not | occurred       |                  |                  |         |       |  |  |  |
| bit 0                                                                      | Unimplemen                             | ted: Read as '  | )'             |                  |                  |         |       |  |  |  |
|                                                                            | -                                      |                 |                |                  |                  |         |       |  |  |  |

#### REGISTER 7-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

| U-0           | R/W-1         | R/W-0            | R/W-0            | U-0             | R/W-1             | R/W-0           | R/W-0   |
|---------------|---------------|------------------|------------------|-----------------|-------------------|-----------------|---------|
| _             | U1RXIP2       | U1RXIP1          | U1RXIP0          | —               | SPI1IP2           | SPI1IP1         | SPI1IP0 |
| bit 15        |               |                  |                  |                 |                   | ·               | bit 8   |
|               |               |                  |                  |                 |                   |                 |         |
| U-0           | R/W-1         | R/W-0            | R/W-0            | U-0             | R/W-1             | R/W-0           | R/W-0   |
| —             | SPI1EIP2      | SPI1EIP1         | SPI1EIP0         | —               | T3IP2             | T3IP1           | T3IP0   |
| bit 7         |               |                  |                  | L               |                   |                 | bit 0   |
|               |               |                  |                  |                 |                   |                 |         |
| Legend:       |               |                  |                  |                 |                   |                 |         |
| R = Readabl   | le bit        | W = Writable     | bit              | U = Unimple     | emented bit, read | d as '0'        |         |
| -n = Value at | t POR         | '1' = Bit is set |                  | '0' = Bit is cl | eared             | x = Bit is unkr | nown    |
|               |               |                  |                  |                 |                   |                 |         |
| bit 15        | Unimplemen    | ted: Read as '   | 0'               |                 |                   |                 |         |
| bit 14-12     | U1RXIP<2:0>   | -: UART1 Rec     | eiver Interrupt  | Priority bits   |                   |                 |         |
|               | 111 = Interru | pt is Priority 7 | (highest priorit | y interrupt)    |                   |                 |         |
|               | •             |                  |                  |                 |                   |                 |         |
|               | •             |                  |                  |                 |                   |                 |         |
|               | 001 = Interru | pt is Priority 1 |                  |                 |                   |                 |         |
|               | 000 = Interru | pt source is dis | abled            |                 |                   |                 |         |
| bit 11        | Unimplemen    | ted: Read as '   | 0'               |                 |                   |                 |         |
| bit 10-8      | SPI1IP<2:0>:  | : SPI1 Event In  | terrupt Priority | / bits          |                   |                 |         |
|               | 111 = Interru | pt is Priority 7 | (highest priorit | y interrupt)    |                   |                 |         |
|               | •             |                  |                  |                 |                   |                 |         |
|               | •             |                  |                  |                 |                   |                 |         |
|               | 001 = Interru | pt is Priority 1 |                  |                 |                   |                 |         |
|               | 000 = Interru | pt source is dis | abled            |                 |                   |                 |         |
| bit 7         | Unimplemen    | ted: Read as '   | 0'               |                 |                   |                 |         |
| bit 6-4       | SPI1EIP<2:0   | >: SPI1 Error I  | nterrupt Priorit | ty bits         |                   |                 |         |
|               | 111 = Interru | pt is Priority 7 | (highest priorit | y interrupt)    |                   |                 |         |
|               | •             |                  |                  |                 |                   |                 |         |
|               | •             |                  |                  |                 |                   |                 |         |
|               | 001 = Interru | pt is Priority 1 |                  |                 |                   |                 |         |
|               | 000 = Interru | pt source is dis | abled            |                 |                   |                 |         |
| bit 3         | Unimplemen    | ted: Read as '   | 0'               |                 |                   |                 |         |
| bit 2-0       | T3IP<2:0>: ⊺  | imer3 Interrupt  | Priority bits    |                 |                   |                 |         |
|               | 111 = Interru | pt is Priority 7 | (highest priorit | y interrupt)    |                   |                 |         |
|               | •             |                  |                  |                 |                   |                 |         |
|               | •             |                  |                  |                 |                   |                 |         |
|               | 001 = Interru | pt is Priority 1 |                  |                 |                   |                 |         |
|               | 000 = Interru | pt source is dis | abled            |                 |                   |                 |         |
|               |               |                  |                  |                 |                   |                 |         |

# REGISTER 7-23: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

| U-0          | R/W-1                      | R/W-0              | R/W-0           | U-0              | R/W-1              | R/W-0           | R/W-0   |
|--------------|----------------------------|--------------------|-----------------|------------------|--------------------|-----------------|---------|
| —            | T4IP2                      | T4IP1              | T4IP0           | —                | OC4IP2             | OC4IP1          | OC4IP0  |
| bit 15       |                            |                    |                 |                  |                    |                 | bit 8   |
|              |                            |                    |                 |                  |                    |                 |         |
| U-0          | R/W-1                      | R/W-0              | R/W-0           | U-0              | R/W-1              | R/W-0           | R/W-0   |
| _            | OC3IP2                     | OC3IP1             | OC3IP0          | —                | DMA2IP2            | DMA2IP1         | DMA2IP0 |
| bit 7        |                            |                    |                 |                  |                    |                 | bit 0   |
|              |                            |                    |                 |                  |                    |                 |         |
| Legend:      |                            |                    |                 |                  |                    |                 |         |
| R = Readab   | ole bit                    | W = Writable       | bit             | U = Unimple      | mented bit, read   | l as '0'        |         |
| -n = Value a | at POR                     | '1' = Bit is set   |                 | '0' = Bit is cle | eared              | x = Bit is unkr | nown    |
|              |                            |                    |                 |                  |                    |                 |         |
| bit 15       | Unimplemen                 | ted: Read as '     | 0'              |                  |                    |                 |         |
| bit 14-12    | <b>T4IP&lt;2:0&gt;:</b> Ti | imer4 Interrupt    | Priority bits   |                  |                    |                 |         |
|              | 111 = Interrup             | pt is Priority 7 ( | highest priorit | y interrupt)     |                    |                 |         |
|              | •                          |                    |                 |                  |                    |                 |         |
|              | •                          |                    |                 |                  |                    |                 |         |
|              | 001 = Interrup             | ot is Priority 1   |                 |                  |                    |                 |         |
|              | 000 = Interru              | pt source is dis   | abled           |                  |                    |                 |         |
| bit 11       | Unimplemen                 | ted: Read as '     | 0'              |                  |                    |                 |         |
| bit 10-8     | OC4IP<2:0>:                | Output Compa       | are Channel 4   | Interrupt Prior  | rity bits          |                 |         |
|              | 111 = Interrup             | pt is Priority 7 ( | highest priorit | y interrupt)     |                    |                 |         |
|              | •                          |                    |                 |                  |                    |                 |         |
|              | •                          |                    |                 |                  |                    |                 |         |
|              | 001 = Interrup             | ot is Priority 1   |                 |                  |                    |                 |         |
|              | 000 = Interrup             | pt source is dis   | abled           |                  |                    |                 |         |
| bit 7        | Unimplemen                 | ted: Read as '     | 0'              |                  |                    |                 |         |
| bit 6-4      | OC3IP<2:0>:                | Output Compa       | are Channel 3   | Interrupt Prior  | rity bits          |                 |         |
|              | 111 = Interrup             | pt is Priority 7 ( | highest priorit | y interrupt)     |                    |                 |         |
|              | •                          |                    |                 |                  |                    |                 |         |
|              | •                          |                    |                 |                  |                    |                 |         |
|              | 001 = Interrup             | ot is Priority 1   |                 |                  |                    |                 |         |
|              | 000 = Interrup             | pt source is dis   | abled           |                  |                    |                 |         |
| bit 3        | Unimplemen                 | ted: Read as '     | 0'              |                  |                    |                 |         |
| bit 2-0      | DMA2IP<2:0                 | >: DMA Chann       | el 2 Data Trar  | nsfer Complete   | e Interrupt Priori | ty bits         |         |
|              | 111 = Interrup             | pt is Priority 7 ( | highest priorit | y interrupt)     |                    |                 |         |
|              | •                          |                    |                 |                  |                    |                 |         |
|              | •                          |                    |                 |                  |                    |                 |         |
|              | 001 = Interrup             | ot is Priority 1   |                 |                  |                    |                 |         |
|              | 000 = Interrup             | pt source is dis   | abled           |                  |                    |                 |         |
|              |                            |                    |                 |                  |                    |                 |         |

# REGISTER 7-27: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

#### REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0           | R/W-0           | R/W-0 |
|-----------------|-------|------------------|-------|------------------|-----------------|-----------------|-------|
|                 |       |                  | STB   | <15:8>           |                 |                 |       |
| bit 15          |       |                  |       |                  |                 |                 | bit 8 |
|                 |       |                  |       |                  |                 |                 |       |
| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0           | R/W-0           | R/W-0 |
|                 |       |                  | STE   | 3<7:0>           |                 |                 |       |
| bit 7           |       |                  |       |                  |                 |                 | bit 0 |
|                 |       |                  |       |                  |                 |                 |       |
| Legend:         |       |                  |       |                  |                 |                 |       |
| R = Readable    | bit   | W = Writable b   | bit   | U = Unimpler     | mented bit, rea | id as '0'       |       |
| -n = Value at P | POR   | '1' = Bit is set |       | '0' = Bit is cle | ared            | x = Bit is unkr | nown  |

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

# REGISTER 8-5: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER<sup>(1)</sup>

| R/W-0           | R/W-0 | R/W-0            | R/W-0                                  | R/W-0                              | R/W-0 | R/W-0 | R/W-0 |  |
|-----------------|-------|------------------|----------------------------------------|------------------------------------|-------|-------|-------|--|
|                 |       |                  | PAD<                                   | 15:8> <sup>(2)</sup>               |       |       |       |  |
| bit 15          |       |                  |                                        |                                    |       |       | bit 8 |  |
|                 |       |                  |                                        |                                    |       |       |       |  |
| R/W-0           | R/W-0 | R/W-0            | R/W-0                                  | R/W-0                              | R/W-0 | R/W-0 | R/W-0 |  |
|                 |       |                  | PAD<                                   | :7:0> <sup>(2)</sup>               |       |       |       |  |
| bit 7           |       |                  |                                        |                                    |       |       | bit 0 |  |
|                 |       |                  |                                        |                                    |       |       |       |  |
| Legend:         |       |                  |                                        |                                    |       |       |       |  |
| R = Readable I  | bit   | W = Writable     | bit                                    | U = Unimplemented bit, read as '0' |       |       |       |  |
| -n = Value at P | OR    | '1' = Bit is set | 0' = Bit is cleared x = Bit is unknown |                                    |       |       |       |  |

bit 15-0 PAD<15:0>: Peripheral Address Register bits<sup>(2)</sup>

**Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

**2:** See Table 8-1 for a complete list of peripheral addresses.

| 11.0         | 11.0                                                  |                    | 11.0          |                         |                 |                |        |  |  |  |  |
|--------------|-------------------------------------------------------|--------------------|---------------|-------------------------|-----------------|----------------|--------|--|--|--|--|
| 0-0          | U-0                                                   | 0-0                | 0-0           | R/C-0                   | R/C-U           | R/C-0          |        |  |  |  |  |
| —            | —                                                     | —                  | _             | PWCOL3                  | PWCOL2          | PWCOL1         | PWCOL0 |  |  |  |  |
| bit 15       |                                                       |                    |               |                         |                 |                | bit 8  |  |  |  |  |
|              |                                                       |                    |               | D/0 0                   |                 | D/0 0          |        |  |  |  |  |
| 0-0          | 0-0                                                   | 0-0                | 0-0           | R/C-0                   | R/C-0           | R/C-0          | R/C-0  |  |  |  |  |
|              | —                                                     | —                  | —             | XWCOL3                  | XWCOL2          | XWCOL1         | XWCOLO |  |  |  |  |
| Dit 7        |                                                       |                    |               |                         |                 |                | bit 0  |  |  |  |  |
| Logond       |                                                       | C – Cloarabla      | hit           |                         |                 |                |        |  |  |  |  |
| R – Roadable | bit                                                   | C = Clearable      | bit           | II – Unimpler           | mented bit read | 1 25 (0)       |        |  |  |  |  |
|              |                                                       | 1' = Rit is set    | UIL           | $0^{\circ} = 0^{\circ}$ | arad            | v – Ritic unkr |        |  |  |  |  |
|              | OR                                                    |                    |               |                         | aleu            |                | 101111 |  |  |  |  |
| bit 15-12    | Unimplemen                                            | ted: Read as '     | ז'            |                         |                 |                |        |  |  |  |  |
| bit 11       | PWCOL3: Ch                                            | hannel 3 Periph    | eral Write Co | ollision Flag bit       |                 |                |        |  |  |  |  |
|              | 1 = Write coll                                        | lision is detecte  | d             |                         |                 |                |        |  |  |  |  |
|              | 0 = No write collision is detected                    |                    |               |                         |                 |                |        |  |  |  |  |
| bit 10       | PWCOL2: Channel 2 Peripheral Write Collision Flag bit |                    |               |                         |                 |                |        |  |  |  |  |
|              | 1 = Write coll                                        | lision is detecte  | d             |                         |                 |                |        |  |  |  |  |
|              | 0 = No write 0                                        | collision is dete  | cted          |                         |                 |                |        |  |  |  |  |
| bit 9        | PWCOL1: Ch                                            | hannel 1 Periph    | eral Write Co | ollision Flag bit       |                 |                |        |  |  |  |  |
|              | 1 = Write coll                                        | lision is detected | d<br>stod     |                         |                 |                |        |  |  |  |  |
| bit 8        |                                                       | hannel () Perinh   | oral Write Co | ullision Flag hit       |                 |                |        |  |  |  |  |
| bit o        | 1 – Write coll                                        | lision is detected | d             | nision riag bit         |                 |                |        |  |  |  |  |
|              | 0 = No write 0                                        | collision is dete  | cted          |                         |                 |                |        |  |  |  |  |
| bit 7-4      | Unimplemen                                            | ted: Read as '     | )'            |                         |                 |                |        |  |  |  |  |
| bit 3        | XWCOL3: CI                                            | hannel 3 DMA F     | RAM Write C   | ollision Flag bit       |                 |                |        |  |  |  |  |
|              | 1 = Write coll                                        | lision is detecte  | d             |                         |                 |                |        |  |  |  |  |
|              | 0 = No write                                          | collision is dete  | cted          |                         |                 |                |        |  |  |  |  |
| bit 2        | XWCOL2: CI                                            | hannel 2 DMA F     | RAM Write C   | ollision Flag bit       |                 |                |        |  |  |  |  |
|              | 1 = Write coll                                        | lision is detecte  | d<br>ata d    |                         |                 |                |        |  |  |  |  |
| h:4 d        |                                                       |                    |               | ellicica Flor bit       |                 |                |        |  |  |  |  |
| DIT          |                                                       | hannel 1 DiviA F   | AIVI WITTE C  | ollision Flag bit       |                 |                |        |  |  |  |  |
|              | 0 = No write 0                                        | collision is dete  | cted          |                         |                 |                |        |  |  |  |  |
| bit 0        | XWCOLO: CI                                            | hannel 0 DMA F     | RAM Write C   | ollision Flag bit       |                 |                |        |  |  |  |  |
| -            | 1 = Write coll                                        | lision is detecte  | d             |                         |                 |                |        |  |  |  |  |
|              | 0 = No write                                          | collision is dete  | cted          |                         |                 |                |        |  |  |  |  |
|              |                                                       |                    |               |                         |                 |                |        |  |  |  |  |

#### REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0

|                                                                          | 00                                      | 0-0      | U-0   |  |  |
|--------------------------------------------------------------------------|-----------------------------------------|----------|-------|--|--|
|                                                                          | —                                       |          | —     |  |  |
| bit 15                                                                   |                                         |          | bit 8 |  |  |
|                                                                          |                                         |          |       |  |  |
| U-0 U-0 R/W-0 R/W-0 R/W-0                                                | R/W-0                                   | R/W-0    | R/W-0 |  |  |
| — — TUN<5:0:                                                             | > <sup>(1)</sup>                        |          |       |  |  |
| bit 7                                                                    |                                         |          | bit 0 |  |  |
|                                                                          |                                         |          |       |  |  |
| Legend:                                                                  |                                         |          |       |  |  |
| R = Readable bit W = Writable bit U = Unimplement                        | ed bit, read                            | d as '0' |       |  |  |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared                  | '0' = Bit is cleared x = Bit is unknown |          |       |  |  |
|                                                                          |                                         |          |       |  |  |
| bit 15-6 Unimplemented: Read as '0'                                      |                                         |          |       |  |  |
| bit 5-0 <b>TUN&lt;5:0&gt;:</b> FRC Oscillator Tuning bits <sup>(1)</sup> |                                         |          |       |  |  |
| 011111 = Center Frequency + 2.91% (7.584 MHz)                            |                                         |          |       |  |  |
| 011110 = Center Frequency + 2.81% (7.577 MHz)                            |                                         |          |       |  |  |
| •                                                                        |                                         |          |       |  |  |
| •                                                                        |                                         |          |       |  |  |
| 000001 = Center Frequency + 0.0938% (7.377 MHz)                          |                                         |          |       |  |  |
| 000000 = Center Frequency (7.37 MHz nominal)                             |                                         |          |       |  |  |
| 111111 = Center Frequency – 0.0938% (7.363 MHz)                          |                                         |          |       |  |  |
| •                                                                        |                                         |          |       |  |  |
| •                                                                        |                                         |          |       |  |  |
| 100001 = Center Frequency – 2.91% (7.156 MHz)                            |                                         |          |       |  |  |

### REGISTER 9-4: OSCTUN: OSCILLATOR TUNING REGISTER

**Note 1:** OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step-size is an approximation and is neither characterized nor tested.

### 16.3 Control Registers

The following registers control the operation of the high-speed PWM module.

- PTCON: PWM Time Base Control Register
- PTCON2: PWM Clock Divider Select Register 2
- PTPER: PWM Primary Master Time Base Period Register<sup>(1,2)</sup>
- SEVTCMP: PWM Special Event Compare Register<sup>(1)</sup>
- STCON: PWM Secondary Master Time Base Control Register
- STCON2: PWM Secondary Clock Divider Select Register 2
- STPER: PWM Secondary Master Time Base Period Register
- SSEVTCMP: PWM Secondary Special Event Compare Register
- CHOP: PWM Chop Clock Generator Register(1)
- MDC: PWM Master Duty Cycle Register(1,2)
- PWMCONx: PWM Control x Register
- PDCx: PWM Generator Duty Cycle x Register(1,2,3)
- PHASEx: PWM Primary Phase-Shift x Register(1,2)
- DTRx: PWM Dead-Time x Register
- ALTDTRx: PWM Alternate Dead-Time x Register
- SDCx: PWM Secondary Duty Cycle x Register(1,2,3)
- SPHASEx: PWM Secondary Phase-Shift x Register(1,2)
- TRGCONx: PWM Trigger Control x Register
- IOCONx: PWM I/O Control x Register
- FCLCONx: PWM Fault Current-Limit Control x Register
- TRIGx: PWM Primary Trigger x Compare Value Register
- STRIGx: PWM Secondary Trigger x Compare Value Register<sup>(1)</sup>
- LEBCONx: Leading-Edge Blanking Control x Register
- LEBDLYx: Leading-Edge Blanking Delay x Register
- AUXCONx: PWM Auxiliary Control x Register
- PWMCAPx: Primary PWM Time Base Capture x Register

| REGISTER 16-21: | FCLCONX: PWM FAULT C | URRENT-LIMIT | CONTROL x REGISTER |
|-----------------|----------------------|--------------|--------------------|
|-----------------|----------------------|--------------|--------------------|

| R/W-0         | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R/W-0                                                                                                                                                                                                                                                                                                             | R/W-0                                                                               | R/W-0                                                                   | R/W-0                                                                 | R/W-0                                                          | R/W-0                                                |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|
| IFLTMOD       | CLSRC4 <sup>(2,3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CLSRC3 <sup>(2,3)</sup>                                                                                                                                                                                                                                                                                           | CLSRC2 <sup>(2,3)</sup>                                                             | CLSRC1 <sup>(2,3)</sup>                                                 | CLSRC0 <sup>(2,3)</sup>                                               | CLPOL <sup>(1)</sup>                                           | CLMOD                                                |
| bit 15        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                                                         | 1                                                                     | 1                                                              | bit 8                                                |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                                                         |                                                                       |                                                                |                                                      |
| R/W-0         | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R/W-0                                                                                                                                                                                                                                                                                                             | R/W-0                                                                               | R/W-0                                                                   | R/W-0                                                                 | R/W-0                                                          | R/W-0                                                |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   | ELTOPC1(2,3)                                                                        |                                                                         |                                                                       |                                                                |                                                      |
| FLISRC4       | FLISKUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FLIGROZ                                                                                                                                                                                                                                                                                                           | FLISKER                                                                             | FLISKOU                                                                 | FLIFUL                                                                | FLINODI                                                        | FLINODO                                              |
| DIT /         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                                                         |                                                                       |                                                                | Dit U                                                |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                                                         |                                                                       |                                                                |                                                      |
| Legend:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                                                         |                                                                       |                                                                |                                                      |
| R = Readable  | e bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W = Writable k                                                                                                                                                                                                                                                                                                    | bit                                                                                 | U = Unimplem                                                            | ented bit, read                                                       | as '0'                                                         |                                                      |
| -n = Value at | POR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | '1' = Bit is set                                                                                                                                                                                                                                                                                                  |                                                                                     | '0' = Bit is clea                                                       | red                                                                   | x = Bit is unkr                                                | nown                                                 |
| bit 15        | IFLTMOD: In<br>1 = Independ<br>maps FL<br>0 = Normal I<br>outputs.                                                                                                                                                                                                                                                                                                                                                                                                                                             | dependent Fault<br>dent Fault mode<br>TDAT<0> to PW<br>Fault mode: Cu<br>The PWM Fault                                                                                                                                                                                                                            | t Mode Enable<br>: Current-limit<br>/MxL output. T<br>rrent-Limit mo<br>mode maps F | bit<br>input maps FLT<br>he CLDAT<1:0:<br>de maps CLD.<br>LTDAT<1:0> to | TDAT<1> to PW<br>> bits are not us<br>AT<1:0> bits to<br>the PWMxH ar | /MxH output a<br>sed for override<br>the PWMxH<br>id PWMxL out | nd Fault input<br>e functions.<br>and PWMxL<br>puts. |
| bit 14-10     | CLSRC<4:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Current-Limit                                                                                                                                                                                                                                                                                                     | Control Signal                                                                      | Source Select                                                           | for PWM Gener                                                         | ator # bits <sup>(2,3)</sup>                                   |                                                      |
|               | 11111 = Res   11111 = Fau   11101 = Fau   1101 = Fau   1101 = Fau   1101 = Fau   1101 = Fau   1100 = Fau   1001 = Fau   1001 = Fau   1010 = Fau   1011 = Fau   1010 = Fau   1010 = Fau   1001 = Fau   1000 = Fau   1000 = Fau   0101 = Fau   0110 = Fau   0101 = Fau   0100 = Fau   0101 = Fau   0101 = Res   0011 = Res   0010 = Res   0010 = Ana   0010 = Ana   0011 = Ana   0010 = Ana | so specify the sc<br>erved<br>It 23<br>It 22<br>It 21<br>It 20<br>It 19<br>It 18<br>It 19<br>It 18<br>It 17<br>It 16<br>It 15<br>It 14<br>It 13<br>It 12<br>It 11<br>It 10<br>It 9<br>It 8<br>It 7<br>It 6<br>It 5<br>It 4<br>It 3<br>It 2<br>It 1<br>erved<br>erved<br>erved<br>log Comparator<br>log Comparator | 4                                                                                   |                                                                         |                                                                       |                                                                | Γ.                                                   |

- 00001 = Analog Comparator 2 00000 = Analog Comparator 1
- **Note 1:** These bits should be changed only when PTEN (PTCON<15>) = 0.
  - 2: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
  - 3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

| R/W-0           | R/W-0                        | R/W-0                             | U-0                                | U-0              | U-0              | U-0              | U-0   |
|-----------------|------------------------------|-----------------------------------|------------------------------------|------------------|------------------|------------------|-------|
| FRMEN           | SPIFSD                       | FRMPOL                            | —                                  | —                | —                | —                | _     |
| bit 15          |                              |                                   |                                    |                  |                  |                  | bit 8 |
|                 |                              |                                   |                                    |                  |                  |                  |       |
| U-0             | U-0                          | U-0                               | U-0                                | U-0              | U-0              | R/W-0            | U-0   |
| —               |                              |                                   | —                                  |                  | —                | FRMDLY           | _     |
| bit 7           |                              |                                   |                                    |                  |                  |                  | bit 0 |
|                 |                              |                                   |                                    |                  |                  |                  |       |
| Legend:         |                              |                                   |                                    |                  |                  |                  |       |
| R = Readable    | bit                          | W = Writable                      | bit                                | U = Unimpler     | mented bit, read | as '0'           |       |
| -n = Value at F | POR                          | '1' = Bit is set                  |                                    | '0' = Bit is cle | ared             | x = Bit is unkn  | own   |
|                 |                              |                                   |                                    |                  |                  |                  |       |
| bit 15          | FRMEN: Frar                  | ned SPIx Supp                     | ort bit                            |                  |                  |                  |       |
|                 | 1 = Framed S                 | Plx support is                    | enabled (SSx                       | pin is used as   | Frame Sync pu    | Ilse input/outpu | t)    |
|                 | 0 = Framed S                 | Pix support is                    | disabled                           |                  |                  |                  |       |
| bit 14          | SPIFSD: Fran                 | ne Sync Pulse                     | Direction Cor                      | ntrol bit        |                  |                  |       |
|                 | 1 = Frame Sy<br>0 = Frame Sy | nc puise input<br>nc pulse outpu  | (slave)<br>t (master)              |                  |                  |                  |       |
| bit 13          | FRMPOL: Fra                  | ame Sync Puls                     | e Polarity bit                     |                  |                  |                  |       |
|                 | 1 = Frame Sy                 | nc pulse is acti                  | ve-high                            |                  |                  |                  |       |
|                 | 0 = Frame Sy                 | nc pulse is acti                  | ve-low                             |                  |                  |                  |       |
| bit 12-2        | Unimplemen                   | ted: Read as '                    | )'                                 |                  |                  |                  |       |
| bit 1           | FRMDLY: Fra                  | me Sync Pulse                     | Edge Select                        | bit              |                  |                  |       |
|                 | 1 = Frame Sy<br>0 = Frame Sy | nc pulse coinci<br>nc pulse prece | des with first<br>des first bit cl | bit clock<br>ock |                  |                  |       |
| bit 0           | Unimplemen                   | ted: This bit m                   | ust not be set                     | to '1' by the us | ser application  |                  |       |

### REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

| R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0  | R/C-0  |
|---------|---------|---------|---------|---------|---------|--------|--------|
| RXFUL15 | RXFUL14 | RXFUL13 | RXFUL12 | RXFUL11 | RXFUL10 | RXFUL9 | RXFUL8 |
| bit 15  |         |         |         |         |         |        | bit 8  |
|         |         |         |         |         |         |        |        |
| R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0  | R/C-0  |
| RXFUL7  | RXFUL6  | RXFUL5  | RXFUL4  | RXFUL3  | RXFUL2  | RXFUL1 | RXFUL0 |
| bit 7   |         |         |         |         |         |        | bit 0  |

### REGISTER 21-22: CxRXFUL1: ECANx RECEIVE BUFFER FULL REGISTER 1

| bit | 7 |  |
|-----|---|--|
|     |   |  |

| Legend:           | C = Writeable, but only '0' can be written to clear the bit |                             |                    |  |  |  |
|-------------------|-------------------------------------------------------------|-----------------------------|--------------------|--|--|--|
| R = Readable bit  | W = Writable bit                                            | U = Unimplemented bit, read | as '0'             |  |  |  |
| -n = Value at POR | '1' = Bit is set                                            | '0' = Bit is cleared        | x = Bit is unknown |  |  |  |

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

#### REGISTER 21-23: CxRXFUL2: ECANx RECEIVE BUFFER FULL REGISTER 2

| R/C-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15  |         |         |         |         |         |         | bit 8   |

| R/C-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:           | C = Writeable, but only '0' can be written to clear the bit |                                    |                    |  |  |  |
|-------------------|-------------------------------------------------------------|------------------------------------|--------------------|--|--|--|
| R = Readable bit  | W = Writable bit                                            | U = Unimplemented bit, read as '0' |                    |  |  |  |
| -n = Value at POR | '1' = Bit is set                                            | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |

bit 15-0 RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

| R/W-0      | U-0                                | R/W-0                                | U-0                           | U-0                                | U-0                                 | U-0                              | R/W-0               |  |  |  |
|------------|------------------------------------|--------------------------------------|-------------------------------|------------------------------------|-------------------------------------|----------------------------------|---------------------|--|--|--|
| CMPO       | N                                  | CMPSIDL                              |                               |                                    | _                                   |                                  | DACOE               |  |  |  |
| bit 15     |                                    |                                      |                               |                                    |                                     |                                  | bit 8               |  |  |  |
|            |                                    |                                      |                               |                                    |                                     |                                  |                     |  |  |  |
| R/W-0      | R/W-0                              | R/W-0                                | U-0                           | R/W-0                              | U-0                                 | R/W-0                            | R/W-0               |  |  |  |
| INSEL      | 1 INSEL0                           | EXTREF                               |                               | CMPSTAT                            | _                                   | CMPPOL                           | RANGE               |  |  |  |
| bit 7      |                                    |                                      |                               |                                    |                                     |                                  | bit 0               |  |  |  |
|            |                                    |                                      |                               |                                    |                                     |                                  |                     |  |  |  |
| Legend:    |                                    |                                      |                               |                                    |                                     |                                  |                     |  |  |  |
| R = Reada  | able bit                           | W = Writable                         | bit                           | U = Unimpler                       | mented bit, read                    | d as '0'                         |                     |  |  |  |
| -n = Value | at POR                             | '1' = Bit is set                     |                               | '0' = Bit is cle                   | ared                                | x = Bit is unkr                  | nown                |  |  |  |
|            |                                    |                                      |                               |                                    |                                     |                                  |                     |  |  |  |
| bit 15     | CMPON: Cor                         | nparator Opera                       | ting Mode bi                  | it                                 |                                     |                                  |                     |  |  |  |
|            | 1 = Compare                        | ator module is e                     | nabled (red                   |                                    | sumption)                           |                                  |                     |  |  |  |
| bit 14     |                                    |                                      |                               | uces hower cou                     | ວແມ່ນເບັນ                           |                                  |                     |  |  |  |
| DIL 14     |                                    | omporator Stan                       |                               | - hit                              |                                     |                                  |                     |  |  |  |
|            |                                    | unparator Stop                       |                               | - UIL<br>n device enters           | Idle mode                           |                                  |                     |  |  |  |
|            | 0 = Continue                       | s module opera                       | ation in Idle r               | node                               | idie mode.                          |                                  |                     |  |  |  |
|            | If a device ha                     | is multiple com                      | parators, any                 | y CMPSIDL bit                      | set to '1' disab                    | les ALL compa                    | rators while in     |  |  |  |
|            | Idle mode.                         |                                      |                               |                                    |                                     |                                  |                     |  |  |  |
| bit 12-9   | Unimplemen                         | Unimplemented: Read as '0'           |                               |                                    |                                     |                                  |                     |  |  |  |
| bit 8      | DACOE: DAG                         | C Output Enable                      | e                             | (1)                                |                                     |                                  |                     |  |  |  |
|            | 1 = DAC anal                       | log voltage is o<br>log voltage is p | utput to the [                |                                    | Tinin                               |                                  |                     |  |  |  |
| hit 7-6    |                                    | Input Source S                       | Select for Co                 | mparator hite                      | i pin                               |                                  |                     |  |  |  |
|            | 11 = Selects                       | CMPxD input p                        | in                            |                                    |                                     |                                  |                     |  |  |  |
|            | 10 = Selects                       | CMPxC input p                        | in                            |                                    |                                     |                                  |                     |  |  |  |
|            | 01 = Selects                       | CMPxB input p                        | in                            |                                    |                                     |                                  |                     |  |  |  |
|            | 00 = Selects                       | CMPxA input p                        | in<br>                        |                                    |                                     |                                  |                     |  |  |  |
| bit 5      | EXTREF: Ena                        | able External R                      | eference bit                  |                                    |                                     |                                  |                     |  |  |  |
|            | 1 = External voltage s             | source provide                       | es reference                  | to DAC (maxi                       | mum DAC voi                         | tage determine                   | d by external       |  |  |  |
|            | 0 = Internal                       | reference source                     | ces provide                   | reference to D                     | AC (maximum                         | DAC voltage c                    | letermined by       |  |  |  |
|            | RANGE                              | bit setting)                         | ·                             |                                    | ,                                   | 0                                | 2                   |  |  |  |
| bit 4      | Unimplemen                         | ted: Read as 'd                      | כי                            |                                    |                                     |                                  |                     |  |  |  |
| bit 3      | <b>CMPSTAT:</b> C                  | urrent State of                      | Comparator                    | Output Including                   | g CMPPOL Sel                        | lection bit                      |                     |  |  |  |
| bit 2      | Unimplemen                         | ted: Read as 'd                      | כ'                            |                                    |                                     |                                  |                     |  |  |  |
| bit 1      | CMPPOL: Co                         | omparator Outp                       | ut Polarity C                 | ontrol bit                         |                                     |                                  |                     |  |  |  |
|            | 1 = Output is                      | inverted                             |                               |                                    |                                     |                                  |                     |  |  |  |
| 1.11.0     | 0 = Output is                      | non-inverted                         |                               | 1.5                                |                                     |                                  |                     |  |  |  |
| bit 0      | KANGE: Sele                        | ects DAC Outpu                       | ut Voltage Ra                 | ange bit                           |                                     |                                  |                     |  |  |  |
|            | ⊥ = High Ran<br>0 = Low Ran        | ge: Max DAC V<br>ne: Max DAC V       | alue = AVDD<br>alue = INTRI   | v∠, 1.65V at 3.3<br>FF             | IV AVDD                             |                                  |                     |  |  |  |
|            |                                    |                                      |                               |                                    |                                     |                                  |                     |  |  |  |
| Note 1:    | DACOUT can be a that multiple comp | associated only<br>arators do not e  | with a single<br>enable the D | e comparator at<br>AC output by se | any given time<br>etting their resp | . The software r<br>ective DACOE | nust ensure<br>bit. |  |  |  |

### REGISTER 23-1: CMPCONX: COMPARATOR CONTROL x REGISTER

© 2009-2014 Microchip Technology Inc.

#### 28.1 DC Characteristics

|  | TABLE 28-1: | <b>OPERATING MIPS vs.</b> | VOLTAGE |
|--|-------------|---------------------------|---------|
|--|-------------|---------------------------|---------|

|                | Voo Bango           | Tomp Pango     | Max MIPS                                                         |
|----------------|---------------------|----------------|------------------------------------------------------------------|
| Characteristic | (in Volts)          | (in °C)        | dsPIC33FJ32GS406/606/608/610 and<br>dsPIC33FJ64GS406/606/608/610 |
|                | 3.0-3.6∨ <b>(1)</b> | -40°C to +85°C | 50                                                               |

**Note 1:** Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. See Parameter BO10 in Table 27-11 for the BOR values.

#### TABLE 28-2: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

| DC CHARACTERISTICSStandard Operating Conditions: $3.0V$ to $3.6V$ (u<br>Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Ir |                                        |     |       |            | to 3.6V (unless otherwise stated)<br>85°C for Industrial |         |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----|-------|------------|----------------------------------------------------------|---------|--|--|--|--|
| Parameter<br>No.                                                                                                                            | Typical                                | Мах | Units | Conditions |                                                          |         |  |  |  |  |
| Operating C                                                                                                                                 | Operating Current (IDD) <sup>(1)</sup> |     |       |            |                                                          |         |  |  |  |  |
| MDC29d                                                                                                                                      | 85                                     | 100 | mA    | -40°C      |                                                          |         |  |  |  |  |
| MDC29a                                                                                                                                      | 85                                     | 100 | mA    | +25°C      | 3.3V                                                     | 50 MIPS |  |  |  |  |
| MDC29b                                                                                                                                      | 85                                     | 100 | mA    | +85°C      | 1                                                        |         |  |  |  |  |

**Note 1:** IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU executing while(1) statement
- JTAG is disabled



### 64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

DETAIL 1

|                          | N      | <b>IILLIMETER</b> | S        |      |  |
|--------------------------|--------|-------------------|----------|------|--|
| Dimension                | Limits | MIN               | NOM      | MAX  |  |
| Number of Leads          | Ν      |                   | 64       |      |  |
| Lead Pitch               | е      |                   | 0.50 BSC |      |  |
| Overall Height           | А      | -                 | -        | 1.20 |  |
| Molded Package Thickness | A2     | 0.95              | 1.00     | 1.05 |  |
| Standoff                 | A1     | 0.05              | -        | 0.15 |  |
| Foot Length              | L      | 0.45              | 0.60     | 0.75 |  |
| Footprint                | L1     | 1.00 REF          |          |      |  |
| Foot Angle               | ¢      | 0° 3.5° 7°        |          |      |  |
| Overall Width            | E      | 12.00 BSC         |          |      |  |
| Overall Length           | D      | 12.00 BSC         |          |      |  |
| Molded Package Width     | E1     | 10.00 BSC         |          |      |  |
| Molded Package Length    | D1     | 10.00 BSC         |          |      |  |
| Lead Thickness           | С      | 0.09              | -        | 0.20 |  |
| Lead Width               | b      | 0.17              | 0.22     | 0.27 |  |
| Mold Draft Angle Top     | α      | 11°               | 12°      | 13°  |  |
| Mold Draft Angle Bottom  | β      | 11°               | 12°      | 13°  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

#### 100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

NOTES: