

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs606-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	—	—	—	_	—	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	—	_	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_	_	_	_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	_	_	_	_	_	_	_	—	IC4IF	IC3IF	_	_	_	SPI2IF	SPI2EIF	0000
IFS3	008A	_	_	_	_	_	QEI1IF	PSEMIF	_	—	INT4IF	INT3IF	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	008C		_	—	_	QEI2IF	—	PSESMIF		—		_	—	_	U2EIF	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	ADCP12IF	_	_	_	_	_	—	_	_	_	_	_	_	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	_	_	AC4IF	AC3IF	AC2IF	_	_	_	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	0092		_	_	_	_	_	—		—		ADCP7IF	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF	0000
IEC0	0094		_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE		—		_	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC2	0098		_	_	_	_	_	—		—	IC4IE	IC3IE	—	—	_	SPI2IE	SPI2EIE	0000
IEC3	009A		_	—	_	—	QEI1IE	PSEMIE		—	INT4IE	INT3IE	—	_	MI2C2IE	SI2C2IE	_	0000
IEC4	009C		_	—	_	QEI2IE	—	PSESMIE		—		_	—	_	U2EIE	U1EIE	_	0000
IEC5	009E	PWM2IE	PWM1IE	ADCP12IE	_	—	—	—		—		_	—	_	—		_	0000
IEC6	00A0	ADCP1IE	ADCP0IE	_	_	_	_	AC4IE	AC3IE	AC2IE		_	—	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	00A2		_	_	_	_	_	—		—		ADCP7IE	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE	0000
IPC0	00A4		T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6		T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0	—	IC2IP2	IC2IP1	IC2IP0	—	_	—	—	4440
IPC2	00A8		U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0	—	SPI1EIP2	SPI1EIP1	SPI1EIP0	—	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	—	—	_	—	_	—	—		—	ADIP2	ADIP1	ADIP0	—	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC		CNIP2	CNIP1	CNIP0	-	AC1IP2	AC1IP1	AC1IP0	—	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	—	—	_	—	_	—	—		—	-	—	_	—	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	—	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	—	OC3IP2	OC3IP1	OC3IP0	—	_	—	—	4440
IPC7	00B2	—	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	—	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4		—	—	—	—	—	—		—	SPI2IP2	SPI2IP1	SPI2IP0	—	SPI2EIP2	SPI2EIP1	SPI2EIP0	0044
IPC9	00B6		_	_	_	_	IC4IP2	IC4IP1	IC4IP0	—	IC3IP2	IC3IP1	IC3IP0	—	_	—	—	0440
IPC12	00BC		_	_	_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	—	SI2C2IP2	SI2C2IP1	SI2C2IP0	—	_	—	—	0440
IPC13	00BE		_	_	_	_	INT4IP2	INT4IP1	INT4IP0	—	INT3IP2	INT3IP1	INT3IP0	—	_	—	—	0440
IPC14	00C0		—	_	—	—	QEI1IP2	QEI1IP1	QEI1IP0	_	PSEMIP2	PSEMIP1	PSEMIP0	—	_	—	—	0440
IPC16	00C4		_	_	—	—	U2EIP2	U2EIP1	U2EIP0	_	U1EIP2	U1EIP1	U1EIP0	—	_	—	—	0440
IPC18	00C8	_	QEI2IP2	QEI2IP1	QEI2IP0	_	_	_		_	PSESMIP2	PSESMIP1	PSESMIP0	_	—		—	4040
IPC21	00CE		_		_	—	_	_			ADCP12IP2	ADCP12IP1	ADCP12IP0	_			_	0040

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

TABLE 4-10: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS606 DEVICES

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Legend:

TABLE 4-16: HIGH-SPEED PWM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0400	PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2	0402	_	_	_	_	_	_	_	_	_	_	_	_	_	F	PCLKDIV<2:)>	0000
PTPER	0404								PT	PER<15:0>								FFF8
SEVTCMP	0406							SEVTCN	IP<12:0>						_	_	_	0000
MDC	040A								N	IDC<15:0>								0000
STCON	040E	—	—	_	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
STCON2	0410	—	—	_	—	_	—	_	_	-	—	_	—	-	F	PCLKDIV<2:)>	0000
STPER	0412								ST	PER<15:0>								FFF8
SSEVTCMP	0414							SSEVTCM	/IP<15:3>						_	_	_	0000
CHOP	041A	CHPCLKEN	—	—	—	_	—	CHOPCLK6	CHOPCLK5	CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	—	—	—	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: HIGH-SPEED PWM GENERATOR 1 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0420	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON1	0422	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON1	0424	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC1	0426								PD	C1<15:0>								0000
PHASE1	0428								PHA	SE1<15:0>								0000
DTR1	042A	_	—							DTR	1<13:0>							0000
ALTDTR1	042C	_	—							ALTDT	R1<13:0>							0000
SDC1	042E								SD	C1<15:0>								0000
SPHASE1	0430								SPHA	ASE1<15:0>	•							0000
TRIG1	0432							TRGCMP<1	2:0>							_	_	0000
TRGCON1	0434	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	DTM	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG1	0436							STRGCMP<	12:0>						_	_	_	0000
PWMCAP1	0438							PWMCAP<	2:0>						_	_	_	0000
LEBCON1	043A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	—	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY1	043C	_	—	_	_				L	EB<8:0>					_	_	_	0000
AUXCON1	043E	HRPDIS	HRDDIS	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSELC) —	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE	4-19:	HIG	H-SPE	ED PW	M GEN	ERATO	R 3 REG	STER M	AP									
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0460	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP		MTBS	CAM	XPRES	IUE	0000
IOCON3	0462	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON3	0464	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC3	0466								PDC	23<15:0>								0000
PHASE3	0468								PHAS	SE3<15:0>								0000
DTR3	046C	—	—							DTR	3<13:0>							0000
ALTDTR3	046C	—	—							ALTDT	R3<13:0>							0000
SDC3	046E								SDC	23<15:0>								0000
SPHASE3	0470								SPHA	SE3<15:0>								0000
TRIG3	0472							TRGCMP<1	2:0>						_	_	_	0000
TRGCON3	0474	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	—	—	—	_	DTM	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG3	0476							STRGCMP<	12:0>						_	_	_	0000
PWMCAP3	0478							PWMCAP<1	2:0>						_	_	_	0000
LEBCON3	047A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	047C	—	—	—	—					LEB<8:0>					_	_	_	0000
AUXCON3	047E	HRPDIS	HRDDIS	—	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-63: PMD REGISTER MAP FOR dsPIC33FJ64GS606 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	ADCMD	0000
PMD2	0772	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	—	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	_	_	_	_	QEI2MD	_	_	_	I2C2MD	—	0000
PMD4	0776	—	_	_	—	—	—	_	—	_		—	—	REFOMD	_	—	—	0000
PMD6	077A	—	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_		—	—	_	_	—	—	0000
PMD7	077C	_	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-64: PMD REGISTER MAP FOR dsPIC33FJ32GS606 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	—	ADCMD	0000
PMD2	0772	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	_	_	_	_	QEI2MD	_	_	_	I2C2MD	_	0000
PMD4	0776	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	_	_	_	0000
PMD6	077A	_	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
PMD7	077C	_	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-65: PMD REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	_	ADCMD	0000
PMD2	0772	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	—	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	_	_	_	_	_	QEI2MD	_	_	_	I2C2MD	_	0000
PMD4	0776	_	_	_	_	_	_	_	_	_	_	—	_	REFOMD	_	_	_	0000
PMD6	077A	_	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	—	_	_	_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

DAVO	D 0		11.0		11.0	11.0	
R/VV-0	R-0	0-0	0-0	0-0	0-0	0-0	0-0
ALIIVI	DISI	—	_	_	—	—	
Dit 15							bit 8
			B 444 a	B 444 a	-	-	B M M A
0-0	<u> </u>	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	IN14EP	INT3EP	INT2EP	INT1EP	INTOEP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ALTIVT: Enab	ole Alternate In	terrupt Vector	Table bit			
	1 = Uses Alte	rnate Interrupt	Vector Table	ar Tabla			
hit 11			niteriupi vecii s bit				
Dit 14	1 – DISI inst	ruction is active	2 DIL				
	0 = DISI inst	ruction is not a	ctive				
bit 13-5	Unimplemen	ted: Read as '	0'				
bit 4	INT4EP: Exte	ernal Interrupt 4	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt o	on negative edg	ge				
	0 = Interrupt o	on positive edg	e				
bit 3	INT3EP: Exte	ernal Interrupt 3	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt o	on negative edg	ge				
	0 = Interrupt o	on positive edg	e				
bit 2	INT2EP: Exte	ernal Interrupt 2	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt of $0 = $ Interrupt of $0 =$	on negative ede	ge				
hit 1		an positive edg	Edge Detect	Delarity Selec	t hit		
DICT	1 - Interrupt (n negative ed		Folanty Selec			
	0 = Interrupt of	on positive edg	e				
bit 0	INT0EP: Exte	ernal Interrupt 0	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt of	on negative edg	ge	,			
	0 = Interrupt o	on positive edg	e				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
PWM2IE	PWM1IE	ADCP12IE	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		<u> </u>	—			<u> </u>	<u> </u>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown
bit 15	PWM2IE: PW	/M2 Interrupt E	nable bit				
	1 = Interrupt r	request is enab	led				
		request is not e	napled				
bit 14	PWM1IE: PW	/M1 Interrupt E	nable bit				
	1 = Interrupt r	request is enab	led				
		request is not e	napled				
bit 13	ADCP12IE: A	DC Pair 12 Co	nversion Don	e Interrupt Ena	able bit		
	1 = Interrupt r 0 = Interrupt r	request is enab request is not e	led nabled				
bit 12-0	Unimplemen	ted: Read as '	o'				

REGISTER 7-18: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	T4IP2	T4IP1	T4IP0	—	OC4IP2	OC4IP1	OC4IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	OC3IP2	OC3IP1	OC3IP0	—	DMA2IP2	DMA2IP1	DMA2IP0
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	T4IP<2:0>: Ti	imer4 Interrupt	Priority bits				
	111 = Interrup	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	OC4IP<2:0>:	Output Compa	are Channel 4	Interrupt Prior	rity bits		
	111 = Interrup	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	OC3IP<2:0>:	Output Compa	are Channel 3	Interrupt Prior	rity bits		
	111 = Interrup	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	DMA2IP<2:0	>: DMA Chann	el 2 Data Trar	nsfer Complete	e Interrupt Priori	ty bits	
	111 = Interrup	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	pt source is dis	abled				

REGISTER 7-27: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
bit 15					I		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDAT1	OVRDAT0	FLTDAT1 ⁽²⁾	FLTDAT0 ⁽²⁾	CLDAT1 ⁽²⁾	CLDAT0 ⁽²⁾	SWAP	OSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
			·				
bit 15	PENH: PWM	xH Output Pin	Ownership bit				
	1 = PWM mo	dule controls P	WMxH pin				
hit 11							
Dit 14	1 = PWM mo	dule controls P	WMxL nin				
	0 = GPIO mo	dule controls F	WMxL pin				
bit 13	POLH: PWM	xH Output Pin	Polarity bit				
	1 = PWMxH p	oin is active-low	v				
	0 = PWMxH p	oin is active-hig	gh				
bit 12		xL Output Pin F	Polarity bit				
	1 = PWWXL p 0 = PWMxL p	oin is active-low	/ h				
bit 11-10	PMOD<1:0>:	PWM # I/O Pi	n Mode bits ⁽¹⁾				
	11 = PWM I/0	O pin pair is in	the True Indep	endent Output	t mode		
	10 = PWM I/0	D pin pair is in [·]	the Push-Pull	Output mode			
	01 = PWWI/(0) $00 = PWM I/(0)$	D pin pair is in D pin pair is in ⁻	the Compleme	entary Output r	node		
bit 9	OVRENH: O	verride Enable	for PWMxH P	in bit			
	1 = OVRDAT	<1> provides d	ata for output	on PWMxH pi	n		
	0 = PWM ger	nerator provide	s data for outp	out on PWMxH	pin		
bit 8	OVRENL: OV	verride Enable	for PWMxL Pi	n bit			
	1 = OVRDAT 0 = PWM der	<0> provides d perator provide	ata for output s data for outr	on PWMxL pir	ו nin		
bit 7-6	OVRDAT<1:	>: Data for PV	VMxH PWMxI	Pins if Overri	de is Enabled b	oits	
	If OVERENH	= 1, OVRDAT	<1> provides of	ata for PWMx	H		
	If OVERENL	= 1, OVRDAT<	<0> provides d	ata for PWMxI	-		
bit 5-4	FLTDAT<1:0	State for PW	/MxH and PW	MxL Pins if FL	TMOD is Enable	ed bits ⁽²⁾	
	IFLTMOD (FC	CLCONx<15>)	= 0: Normal F	ault mode:			
	If Fault is acti	ve, then FLID	AI <1> provide AT<0> provide	es the state for	PWMxH. PWMyI		
	IFLTMOD (FC	CLCONx<15>)	= 1: Independ	ent Fault mode			
	If current-limit	t is active, then	FLTDAT<1>	provides the st	<u></u> ate for PWMxH		
	If Fault is acti	ve, then FLTD	AT<0> provide	s the state for	PWMxL.		
Note 1. The	an hite chould	not ha abanaa	d offer the DW	M modulo io o	nobled (DTEN	1)	

REGISTER 16-19: IOCONX: PWM I/O CONTROL X REGISTER

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware is set or clear after reception of an I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit in progress, I2CxTRN is full 0 = Transmit is complete, I2CxTRN is empty Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of the data transmission.

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x			
_	WAKFIL		—	—	SEG2PH2	SEG2PH1	SEG2PH0			
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x R/W-x		R/W-x			
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	PH1 SEG1PH0 PRSEG2 PRSEG1 PRSE						
bit 7										
r										
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	IOWN			
bit 15	Unimplemen	ted: Read as '	0' ••• •••							
bit 14	WAKFIL: Sel	ect ECAN Bus	Line Filter for	Wake-up bit						
	$1 = 0 \sec ECA$ 0 = ECAN but	s line filter is no	of used for wake-up	ke-up						
bit 13-11	Unimplemen	ted: Read as '	0'							
bit 10-8	SEG2PH<2:0	>: Phase Segr	nent 2 bits							
	111 = Length	is 8 x Tq								
	•									
	•									
	000 = Length	is 1 x Tq								
bit 7	SEG2PHTS:	Phase Segmer	nt 2 Time Sele	ect bit						
	1 = Freely pro	ogrammable								
	0 = Maximum	of SEG1PHx I	oits or Informa	tion Processin	ng Time (IPT), w	hichever is gre	ater			
bit 6	SAM: Sample	e of the ECAN I	Bus Line bit							
	1 = Bus line is	s sampled three	e times at the	sample point						
hit 5 2			e at the sampi mont 1 bits	e point						
bit 5-5	111 - Length	is 8 x To								
	•	130 X 10								
	•									
	•	is 1 x To								
hit 2-0	PRSEG-2.0	Propagation	Time Seamen	t hite						
Dit 2-0	111 = 1 end	is 8 x To	nine Geginen							
	•									
	•									
	• $000 - length$	is 1 v To								
	000 = Lengin									

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15	•			•			bit 8
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	—	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-10	EID<5:0>: E>	ktended Identifi	er bits				
bit 9	RTR: Remote	e Transmission	Request bit				
	1 = Message 0 = Normal m	will request rei nessage	mote transmi	ssion			

BUFFER 21-3: ECANx MESSAGE BUFFER WORD 2

	User must set this bit to '0' per ECAN™ protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per ECAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

RB1: Reserved Bit 1

bit 8

BUFFER 21-4: ECANx MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			B	yte 1			
bit 15				-			bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			B	yte 0			
bit 7							bit 0
L							
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15-8	Byte 1<15:8	B>: ECANx Mess	sage Byte 1				
bit 7-0	Byte 0<7:0>	ECANx Messa	age Byte 0				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IRQEN5	IRQEN5 PEND5		TRGSRC54	TRGSRC53	TRGSRC52	TRGSRC51	TRGSRC50		
bit 15		·					bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IRQEN4	PEND4	SWTRG4	TRGSRC44	TRGSRC43	TRGSRC42	TRGSRC41	TRGSRC40		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15	IRQEN5: Inte	rrupt Request	Enable 5 bit						
	1 = Enables I	RQ generation	when request	ed conversion	of Channels Al	N11 and AN10	is completed		
	0 = IRQ is no	t generated							
bit 14	PEND5: Pending Conversion Status 5 bit								
1 = Conversion of Channels AN11 and AN10 is pending; set when selected trigger is asserted							sserted		
	0 = Conversion is complete								
bit 13	SWTRG5: Software Trigger 5 bit								
	1 = Starts co	nversion of AN	11 and AN10	(if selected by	the TRGSRCx<	:4:0> bits) ⁽¹⁾			
		s automatically	cleared by ha	rdware when t	he PEND5 bit is	s set.			
	0 = Conversi	on has not stal	lieu						

REGISTER 22-8: ADCPC2: ADC CONVERT PAIR CONTROL REGISTER 2

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
	_	—	—	_		CMRE	F<9:8>	
bit 15		•		•		•	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CMRE	F<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at F	POR	'1' = Bit is set	1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-10 bit 9-0	Unimplemen CMREF<9:0> 111111111	ted: Read as ' : Comparator I = (CMREF * RANGE bit	^{0'} Reference Vo INTREF/102 or (CMREF *	ltage Select bit 4) or (CMREF EXTREF/1024	s [:] * (AV _{DD} /2)/10 4) if EXTREF is	24) volts depe set	ending on the	
	000000000000000000000000000000000000000	= 0.0 Volts						

REGISTER 23-2: CMPDACx: COMPARATOR DAC CONTROL x REGISTER

24.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33/PIC24 Family Reference Manual" sections. The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

24.1 Configuration Bits

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices provide non-volatile memory implementations for device Configuration bits. Refer to "**Device Configuration**" (DS70194) in the "*dsPIC33/PIC24 Family Reference Manual*" for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 24-2.

Note that address, 0xF80000, is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using Table Reads and Table Writes.

To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written again. Changing a device configuration requires that power to the device be cycled.

The device Configuration register map is shown in Table 24-1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS			—			BSS<2:0> BW		BWRP
0xF80002	RESERVED	_	—	—	—	_			—
0xF80004	FGS	_	—	—	—	_	GSS<1:0> GWR		GWRP
0xF80006	FOSCSEL	IESO	—	—	_	-	FNOSC<2:0>		
0xF80008	FOSC	FCKS	VI<1:0>	—	—	_	OSCIOFNC	POSCN	1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	—	WDTPRE		WDTPOST	<3:0>	
0xF8000C	FPOR	_	ALTQIO	ALTSS1	—	—	— FPWRT<2:0>		
0xF8000E	FICD	Reserved ⁽¹⁾	Reserved ⁽¹⁾	JTAGEN	—	_	—	ICS<	:1:0>
0xF80010	FCMP	_	_	CMPPOL1(2)	HYST1<	:1:0> (2)	CMPPOL0(2)	HYST0	<1:0> (2)

TABLE 24-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, read as '0'.

Note 1: These bits are reserved for use by development tools and must be programmed as '1'.

2: These bits are reserved on dsPIC33FJXXXGS406 devices and always read as '1'.

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection bit
			1 = Boot segment can be written
R66 (2)();	ГРО	Immediate	0 = Bool segment is white-protected
855<2:0>	FB2	Immediate	Boot Segment Program Flash Code Protection Size bits
			XII = No boot program Flash segment
			110 = Standard security; boot program Flash segment ends at 0x0003FE
			010 = High security; boot program Flash segment ends at 0x0003FE
			Boot Space is 768 Instruction Words (except interrupt vectors):
			101 = Standard security; boot program Flash segment ends at 0x0007FE
			001 = High security; boot program Flash segment ends at 0x0007FE
			Boot Space is 1792 Instruction Words (except interrupt vectors):
			0x000FFE
			000 = High security; boot program Flash segment ends at 0x000FFE
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bits
			11 = User program memory is not code-protected
			10 = Standard security
	FCS	Immediate	0x = Fligh Security
GWKF	FGS	Inneciate	1 - User program memory is not write-protected
			1 = 0 set program memory is not write-protected
IESO	FOSCSEL	Immediate	Two-Speed Oscillator Start-up Enable bit
			1 = Start-up device with FRC, then automatically switch to the user
			selected oscillator source when ready
			0 = Start-up device with user selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch	Initial Oscillator Source Selection bits
		is enabled,	111 = Internal Fast RC (FRC) Oscillator with Postscaler
		KISP effect	110 = Internal Fast RC (FRC) Oscillator with Divide-by-16
		device Reset:	101 = LPRC Oscillator 100 - Secondary (LP) Oscillator
		otherwise,	011 = Primary (XT, HS, EC) Oscillator with PLL
		immediate	010 = Primary (XT, HS, EC) Oscillator
			001 = Internal Fast RC (FRC) Oscillator with PLL
			000 = FRC Oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits
			1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
			$01 = \text{Clock switching is enabled. Fail-Sale Clock Monitor is disabled 00 = \text{Clock switching is enabled. Fail-Safe Clock Monitor is enabled}$
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes)
			1 = OSC2 is the clock output
			0 = OSC2 is the general purpose digital I/O pin
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits
			11 = Primary Oscillator is disabled
			10 = HS Crystal Oscillator mode
			01 = XT Crystal Oscillator mode
1	1	1	UU = EC (External Clock) Mode

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S Wm,Wn S		Signed 16/16-Bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-Bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-Bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-Bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-Bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO #lit14,Expr C		Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to Address	2	2	None
		GOTO	Wn	Go to Indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10.Wn	Wd = lit10 .IOR. Wd	1	1	N.Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N.Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	AWB Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB,
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N.Z
		MOV	- f.WREG	Move f to WREG	1	1	None
		MOV	#lit16.Wn	Move 16-Bit Literal to Wn	1	1	None
		MOV h	#lit8.Wn	Move 8-Bit Literal to Wn	1	1	None
		MOV	Wn f	Move Wn to f	1	1	None
		MOM	WSO Wdo	Move Ws to Wd	1	1	None
		MOV	WDEC f		1	1	None
		MOV	What Wd	Move Double from W/pc):W/pc + 1) to W/d	1	2	None
		MON D	WIIS, WQ	Move Double from We to Wind + 1):Wind	1	2	None
47		110V.D					None

	TABLE 25-2:	INSTRUCTION SET OVERVIEW ((CONTINUED)
--	-------------	----------------------------	-------------

TABLE 27-21: I/O TIMING REQUIREMENTS

AC CHAR		rics	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DO31	TIOR	Port Output Rise Time						
		4x Source Driver Pins – RA0-RA7, RA14, RA15, RB0-RB15, RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15		10	25	ns	Refer to Figure 27-1 for test conditions	
		8x Source Driver Pins – RC15	—	8	20	ns		
		16x Source Driver Pins – RE0-RE7, RG12, RG13	—	6	15	ns		
DO32	TIOF	Port Output Fall Time						
		4x Source Driver Pins – RA0-RA7, RA14, RA15, RB0-RB15, RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15	_	10	25	ns	Refer to Figure 27-1 for test conditions	
		8x Source Driver Pins – RC15	—	8	20	ns		
		16x Source Driver Pins – RE0-RE7, RG12, RG13	—	6	15	ns		
DI35	TINP	INTx Pin High or Low Time (input)	20	—	—	ns		
DI40	TRBP	CNx High or Low Time (input)	2	—	_	TCY		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 27-37:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	_	_	11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time				ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time				ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120		_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_		ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock, generated by the master, must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic ⁽¹⁾		Тур ⁽²⁾	Мах	Units	Conditions			
TQ30	TQUL	Quadrature Input Low Time		6 Tcy	_	ns				
TQ31	ΤουΗ	Quadrature Input High Time		6 Tcy	—	ns				
TQ35	ΤουΙΝ	Quadrature Input Period		12 TCY	—	ns				
TQ36	ΤουΡ	Quadrature Phase Period		3 TCY	—	ns				
TQ40	TQUFL	Filter Time to Recognize Low with Digital Filter	V,	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)			
TQ41	TqufH	Filter Time to Recognize Hig with Digital Filter	h,	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)			

TABLE 27-45: QUADRATURE DECODER TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70208) in the "dsPIC33/PIC24 Family Reference Manual".

FIGURE 27-25: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS

