

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs606t-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	Description
AN0-AN23	I	Analog	Analog input channels.
CLKI CLKO	I O	ST/CMOS —	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	I/O	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI SOSCO	I O	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise. 32.768 kHz low-power oscillator crystal output.
CN0-CN23	Ι	ST	Change Notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
C1RX	I	ST	ECAN1 bus receive pin.
C1TX	0	—	ECAN1 bus transmit pin.
IC1-IC4	I	ST	Capture Inputs 1 through 4.
INDX1, INDX2, AINDX1	I	ST	Quadrature Encoder Index Pulse input.
QEA1, QEA2, AQEA1	I	ST	Quadrature Encoder Phase A input in QEI mode.
QEB1, QEB2, AQEB1	Ι	ST	Auxiliary Timer External Clock/Gate input in Timer mode. Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External Clock/Gate input in Timer mode.
UPDN1	0	CMOS	Position Up/Down Counter Direction State.
OCFA	I	ST	Compare Fault A input.
OC1-OC4	0	—	Compare Outputs 1 through 4.
INT0	I	ST	External Interrupt 0.
INT1	I	ST	External Interrupt 1.
INT2	I	ST	External Interrupt 2.
INT3	1	SI	External Interrupt 3.
	1	51 0T	External Interrupt 4.
RAU-RA15	1/0	51 0T	PORTA is a bidirectional I/O port.
	1/0	51 9T	PORTE is a bidirectional I/O port.
R00-R015	1/0	ST	PORTD is a bidirectional I/O port
	1/0	ST	PORTE is a bidirectional I/O port
RE0-RE13	1/0	ST ST	PORTE is a bidirectional I/O port
RG0-RG15	1/0	ST	PORTG is a bidirectional I/O port
T1CK	., C	ST	Timer1 external clock input
T2CK	I I	ST	Timer2 external clock input.
T3CK	I	ST	Timer3 external clock input.
T4CK	I	ST	Timer4 external clock input.
T5CK	I	ST	Timer5 external clock input.
Legend: $CMOS = CMO$)S.comp	atible input	or output Analog = Analog input I = Input

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-Transistor Logic

P = Power

0 = Output

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space. All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses (EAs) are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

4.2.6 DMA RAM

Some devices contain 1 Kbyte of dual ported DMA RAM, which is located at the end of Y data space. Memory locations that are part of Y data RAM and are in the DMA RAM space are accessible simultaneously by the CPU and the DMA Controller module. DMA RAM is utilized by the DMA Controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA Controller without having to steal cycles from the CPU.

When the CPU and the DMA Controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

TABLE	4-25	: HIG	H-SPE	ED PW	/M GEI	NERATO	R 9 REG	ISTER N	IAP FOR	dsPIC	33FJ32	GS610 /	AND dsF	PIC33FJ	64GS610) DEVIC	ES	
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON9	0520	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON9	0522	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON9	0524	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC9	0526								PDC	9<15:0>								0000
PHASE9	0528								PHASE	=9<15:0>								0000
DTR9	052A	_	_							DTR9	<13:0>							0000
ALTDTR9	052A	_	_							ALTDTF	89<13:0>							0000
SDC9	052E								SDC	9<15:0>								0000
SPHASE9	0530								SPHAS	E9<15:0>								0000
TRIG9	0532								TRGC	/IP<15:0>								0000
TRGCON9	0534	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG9	0536		STRGCMP<15:0> 0000						0000									
PWMCAP9	0538							PWMCAP<12	2:0>						_	_	_	0000
LEBCON9	053A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY9	053C	_	_	—	—				L	EB<8:0>					_	—	—	0000
AUXCON9	053E	HRPDIS	HRDDIS	_	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-66: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing
	mode specified in the instruction can differ
	for the source and destination EA. How-
	ever, the 4-bit Wb (Register Offset) field is
	shared by both source and destination
	(but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through Register Indirect tables.

The two-source operand, prefetch registers must be members of the set: {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the MAC class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

NOTES:

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

One row of program Flash memory can be programmed at a time. To achieve this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat Steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON	for block erase operation	
MOV #	#0x4042, W0 ;	
MOV W	W0, NVMCON	Initialize NVMCON
; Init pointer t	to row to be ERASED	
MOV ‡	<pre>#tblpage(PROG_ADDR), W0 ;</pre>	
MOV W	W0, TBLPAG	Initialize PM Page Boundary SFR
MOV #	<pre>#tbloffset(PROG_ADDR), W0 ;</pre>	Initialize in-page EA[15:0] pointer
TBLWTL W	WO, [WO] ;	Set base address of erase block
DISI ‡	#5 ;	Block all interrupts with priority <7
	;	for next 5 instructions
MOV #	#0x55, W0	
MOV W	WO, NVMKEY ;	Write the 55 key
MOV #	#0xAA, W1 ;	
MOV W	W1, NVMKEY ;	Write the AA key
BSET N	NVMCON, #WR ;	Start the erase sequence
NOP	;	Insert two NOPs after the erase
NOP	;	command is asserted

7.3 Interrupt Control and Status Registers

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices implement 44 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

7.3.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit is found in IEC0<0> and the INT0IP bits are found in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user can change the current CPU Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, indicates the current CPU Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-46 in the following pages.

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1	
—	—	—	—	LSTCH3	LSTCH2	LSTCH1	LSTCH0	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
			_	PPST3	PPST2	PPST1	PPST0	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-12	Unimplemen	ted: Read as '	כ'					
bit 11-8	LSTCH<3:0>	: Last DMA Ch	annel Active	bits				
	1111 = No D	MA transfer has	s occurred si	nce system Res	set			
	1110 = Rese	rvea						
	•							
	•							
	0100 = Reserved 0011 = Last data transfer was by DMA Channel 3 0010 = Last data transfer was by DMA Channel 2 0001 = Last data transfer was by DMA Channel 1 0000 = Last data transfer was by DMA Channel 2							
bit 7-4	Unimplemen	ted: Read as '	כי					
bit 3	PPST3: Char	nnel 3 Ping-Por	ng Mode Stat	us Flag bit				
	1 = DMA3ST 0 = DMA3ST	1 = DMA3STB register is selected 0 = DMA3STA register is selected						
bit 2	PPST2: Char	nnel 2 Ping-Por	ng Mode Stat	us Flag bit				
	1 = DMA2STB register is selected 0 = DMA2STA register is selected							
bit 1	PPST1: Channel 1 Ping-Pong Mode Status Flag bit							
	1 = DMA1STB register is selected 0 = DMA1STA register is selected							
bit 0	PPST0: Char	nnel 0 Ping-Por	ng Mode Stat	us Flag bit				
	1 = DMA0ST 0 = DMA0ST	B register is sel A register is sel	lected ected	J				

REGISTER 8-8: DMACS1: DMA CONTROLLER STATUS REGISTER 1

REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER (CONTINUED)

bit 3-0 SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits⁽¹⁾ 1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event •

0001 = 1:2 Postscaler generates Special Event Trigger on every second compare match event 0000 = 1:1 Postscaler generates Special Event Trigger on every compare match event

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

	REGISTER 16-5:	STCON: PWM SECONDARY MASTER TIME BASE CONTROL REGISTER
--	----------------	--

U-0	U-0	U-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL	SYNCOEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	SESTAT: Special Event Interrupt Status bit
	1 = Secondary special event interrupt is pending
	0 = Secondary special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Secondary special event interrupt is enabled0 = Secondary special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	1 = Active Secondary Period register is updated immediately0 = Active Secondary Period register updates occur on PWM cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit
	1 = SYNCIx/SYNCO2 polarity is inverted (active-low)
	0 = SYNCIx/SYNCO2 polarity is active-high
bit 8	SYNCOEN: Secondary Master Time Base Synchronization Enable bit
	1 = SYNCO2 output is enabled.0 = SYNCO2 output is disabled
bit 7	SYNCEN: External Secondary Master Time Base Synchronization Enable bit
	 1 = External synchronization of secondary time base is enabled 0 = External synchronization of secondary time base is disabled
bit 6-4	SYNCSRC<2:0>: PWM Secondary Time Base Synchronization Source Selection bits
	111 = Reserved
	101 = Reserved
	010 = SYNCI3
	001 = SYNCI2
	000 = SYNCI1
bit 3-0	SEVTPS<3:0>: PWM Secondary Special Event Trigger Output Postscaler Select bits
	1111 = 1:16 Postcale
	0001 = 1:2 Postcale
	-
	0000 = 1.1 FUSISCALE

Note 1: This bit only applies to the secondary master time base period.

^{© 2009-2014} Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
_	_	_	_	_	IMV1	IMV0	CEID				
bit 15 bit 8											
R/W-0	R/W-0 R/W-0 R/W-0 U-0 U-0		U-0	U-0	U-0						
QEOUT	QECK2	QECK1	QECK0	—							
bit 7 bit 0											
											
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at P	POR	'1' = Bit is set		0' = Bit is cle	eared	x = Bit is unkr	nown				
hit 15 11	Unimplomon	tod. Bood on '	,								
bit 10-9		dev Match Valu	o hits								
bit 10-3	These bits all	ow the user ap	olication to sp	ecify the state	of the QEAx a	nd QEBx input i	oins during an				
	index pulse w	hen the POSx0	CNT register i	s to be reset.							
	In x4 Quadrat	ure Count Mod	<u>e:</u>								
	IMV1 = Requi	ired state of Ph ired state of Ph	ase B input si ase A input si	ignal for match	n on index pulse a on index pulse						
	In x2 Quadrat	ure Count Mod	e:	ignarior mator							
	IMV1 = Select	ts phase input	signal for inde	ex state match	(0 = Phase A, 2	L = Phase B)					
	IMV0 = Requi	ired state of the	selected pha	ase input signa	Il for match on i	ndex pulse					
bit 8	CEID: Count	Error Interrupt	Disable bit								
	1 = Interrupts 0 = Interrupts	due to count e	rrors are disa rrors are enat	bled							
bit 7	QEOUT: QEA	x/QEBx/INDXx	Pin Digital Fi	ilter Output En	able bit						
	1 = Digital filte	er outputs are e	enabled								
	0 = Digital filte	er outputs are c	lisabled (norn	nal pin operatio	on)						
bit 6-4	QECK<2:0>: QEAx/QEBx/INDXx Digital Filter Clock Divide Select Bits										
	111 = 1:256 c	clock divide									
	110 = 1.128 c 101 = 1:64 c	ock divide									
	100 = 1:32 clock divide										
	011 = 1:16 cl	ock divide									
	010 = 1:4 clock divide										
	0.01 = 1.2 close	ck divide									
bit 3-0		ted: Read as ')'								
			-								

REGISTER 17-2: DFLTxCON: DIGITAL FILTER x CONTROL REGISTER

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70005185) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters and so on. The SPI module is compatible with the Motorola[®] SPI and SIOP modules.

The SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of these four pins:

- SDIx (Serial Data Input)
- SDOx (Serial Data Output)
- SCKx (Shift Clock Input Or Output)
- SSx (Active-Low Slave Select)

In Master mode operation, SCK is a clock output; in Slave mode, it is a clock input.

FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

NOTES:

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
—	—	—	—	—	—	AMSK<9:8>				
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
AMSK<7:0>										
bit 7 bit 0										
Legend:										
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Mask for Address bit x Select bits

1 = Enables masking for bit x of incoming message address; bit match is not required in this position 0 = Disables masking for bit x; bit match is required in this position

REGISTER 22-9: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3 (CONTINUED)

bit 4-0	TRGSRC6<4:0>: Trigger 6 Source Selection bits
	Selects trigger source for conversion of Analog Channels AN13 and AN12.
	11111 = Timer2 period match
	11110 = PWM Generator 8 current-limit ADC trigger
	11101 = PWM Generator 7 current-limit ADC trigger
	11100 = PWM Generator 6 current-limit ADC trigger
	11011 = PWM Generator 5 current-limit ADC trigger
	11010 = PWM Generator 4 current-limit ADC trigger
	11001 = PWM Generator 3 current-limit ADC trigger
	11000 = PWM Generator 2 current-limit ADC trigger
	10111 = PWM Generator 1 current-limit ADC trigger
	10110 = PWM Generator 9 secondary trigger selected
	10101 = PWM Generator 8 secondary trigger selected
	10100 = PWM Generator 7 secondary trigger selected
	10011 = PWM Generator 6 secondary trigger selected
	10010 = PWM Generator 5 secondary trigger selected
	10001 = PWM Generator 4 secondary trigger selected
	10000 = PWM Generator 3 secondary trigger selected
	01111 = PWM Generator 2 secondary trigger selected
	01110 = PWM Generator 1 secondary trigger selected
	01101 = PWM secondary Special Event Trigger selected
	01100 = Timer1 period match
	01011 = PWM Generator 8 primary trigger selected
	01010 = PWM Generator 7 primary trigger selected
	01001 = PWM Generator 6 primary trigger selected
	01000 = PWM Generator 5 primary trigger selected
	00111 = PWM Generator 4 primary trigger selected
	00110 = PWM Generator 3 primary trigger selected
	00101 = PWM Generator 2 primary trigger selected
	00100 = PWM Generator 1 primary trigger selected
	00011 = PWM Special Event Trigger selected
	00010 = Global software trigger selected
	00001 = Individual software trigger selected
	00000 = No conversion is enabled

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq T_A \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq T_A \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic		Min ⁽¹⁾ Max		Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)		μs			
			400 kHz mode	Tcy/2 (BRG + 1)		μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs			
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)		μs			
			400 kHz mode	Tcy/2 (BRG + 1)		μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs			
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	—	100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	—	300	ns			
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns			
			400 kHz mode	100		ns			
			1 MHz mode ⁽²⁾	40		ns			
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0		μS			
			400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽²⁾	0.2		μS			
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)		μs	Only relevant for		
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	condition		
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	After this period, the		
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	generated		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs			
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	ns			
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	ns			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns			
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns			
		from Clock	400 kHz mode	—	1000	ns			
			1 MHz mode ⁽²⁾	—	400	ns			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be		
			400 kHz mode	1.3	—	μS	free before a new		
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start		
IM50	Св	Bus Capacitive L	oading	—	400	pF			
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	See Note 3		

TABLE 27-38: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l²CTM Baud Rate Generator. Refer to "Inter-Integrated CircuitTM (l²CTM)" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

FIGURE 27-27: ECAN™ MODULE I/O TIMING CHARACTERISTICS

TABLE 27-48: ECAN™ MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
CA10	TioF	Port Output Fall Time		—	_	ns	See Parameter DO32
CA11	TioR	Port Output Rise Time		—		ns	See Parameter DO31
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120	—		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 27-49: DMA READ/WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Indus $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extermination				3.6V °C for Industrial 5°C for Extended
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions
DM1	DMA Read/Write Cycle Time	—	_	1 Tcy	ns	

30.1 Package Marking Information (Continued)

100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1mm)

Example

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B