

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs606t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	_	_	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_	_	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	—	_	_	CN23IE	CN22IE	_	_	_	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_	_	CN23PUE	CN22PUE	_	_	_	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

																		1
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI		_	_	_	_	—	_		_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	DMA1IF	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS2	8800	_	_	_	_	_	_	_	_	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	008A	—	_	_	_	_	QEI1IF	PSEMIF	_	_	INT4IF	INT3IF	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	008C	—	_	_	_	QEI2IF	_	PSESMIF	_	_	C1TXIF	_	_	_	U2EIF	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	ADCP12IF	_	_	_	_	_	_	_	_	_	_	_	ADCP8IF	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	_	_	AC4IF	AC3IF	AC2IF	_	PWM8IF	PWM7IF	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	0092	—	_	_	_	_	_	_	_	_	_	ADCP7IF	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF	0000
IEC0	0094	—	DMA1IE	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_		_	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC2	0098	—	_		_	_	_	_	—	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	009A	—	_	_	_	_	QEI1IE	PSEMIE	—	_	INT4IE	INT3IE	_	_	MI2C2IE	SI2C2IE	—	0000
IEC4	009C	—	_	_	_	QEI2IE	_	PSESMIE	—	_	C1TXIE	_	_	_	U2EIE	U1EIE	—	0000
IEC5	009E	PWM2IE	PWM1IE	ADCP12IE	_	_	_	_	—	_		_	_	_	_	ADCP8IE	—	0000
IEC6	00A0	ADCP1IE	ADCP0IE	_	_	_	_	AC4IE	AC3IE	AC2IE	_	PWM8IE	PWM7IE	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	00A2	—	_	_	_	_	_	_	_	_	_	ADCP7IE	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE	0000
IPC0	00A4	—	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	—	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	_	DMA0IP2	DMA0IP1	DMA0IP0	4444
IPC2	00A8	—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	—			_	_	DMA1IP2	DMA1IP1	DMA1IP0	_	ADIP2	ADIP1	ADIP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4444
IPC4	00AC	—	CNIP2	CNIP1	CNIP0	_	AC1IP2	AC1IP1	AC1IP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	—			_	_	_	_	—	_		_	_	_	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	_	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	_	DMA2IP2	DMA2IP1	DMA2IP0	4444
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	—	C1IP2	C1IP1	C1IP0	_	C1RXIP2	C1RXIP1	C1RXIP0	_	SPI2IP2	SPI2IP1	SPI2IP0	_	SPI2EIP2	SPI2EIP1	SPI2EIP0	4444
IPC9	00B6	_		_	_	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	_	DMA3IP2	DMA3IP1	DMA3IP0	0444
IPC12	00BC	_		_	_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	—	_	—	0440
IPC13	00BE	_		_	_	_	INT4IP2	INT4IP1	INT4IP0	_	INT3IP2	INT3IP1	INT3IP0	_	_	_	—	0440
IPC14	00C0	_		_	_	_	QEI1IP2	QEI1IP0	QEI1IP0	_	PSEMIP2	PSEMIP1	PSEMIP0	_	_	_	—	0440
IPC16	00C4	—	_	—	_	—	U2EIP2	U2EIP1	U2EIP0	—	U1EIP2	U1EIP1	U1EIP0	_	_	—	—	0440
IPC17	00C6	—	—	—	_	_	C1TXIP2	C1TXIP1	C1TXIP0	—	—	—	—	—	_	—	_	0400
IPC18	00C8	—	QEI2IP2	QEI2IP1	QEI2IP0	_	—	_	—	_	PSESMIP2	PSESMIP1	PSESMIP0	_	_	_	_	4040

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS608 DEVICES

TABLE 4-39:	ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1 (CONTINUED)
-------------	--

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	066E								EID	0<15:0>								xxxx
C1RXF12SID	0670	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF12EID	0672								EID	0<15:0>								xxxx
C1RXF13SID	0674	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF13EID	0676								EID	0<15:0>								xxxx
C1RXF14SID	0678	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF14EID	067A								EID	0<15:0>								xxxx
C1RXF15SID	067C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF15EID	067E								EID	0<15:0>								xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: ANALOG COMPARATOR CONTROL REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMPCON1	0540	CMPON	—	CMPSIDL	—	—	_	—	DACOE	INSEL1	INSEL0	EXTREF	—	CMPSTAT		CMPPOL	RANGE	0000
CMPDAC1	0542	_	_	-	_	_	_					CMR	EF<9:0>					0000
CMPCON2	0544	CMPON	_	CMPSIDL	_	_	_	_	DACOE	INSEL1	INSEL0	EXTREF	—	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC2	0546	_	_	-	_	_	_					CMR	EF<9:0>					0000
CMPCON3	0548	CMPON	_	CMPSIDL	_	_	_	_	DACOE	INSEL1	INSEL0	EXTREF	—	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC3	054A	_	_	-	_	_	_					CMR	EF<9:0>					0000
CMPCON4	054C	CMPON	_	CMPSIDL	_	_	_	_	DACOE	INSEL1	INSEL0	EXTREF	—	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC4	054E	_	_	_	_	_	_					CMR	EF<9:0>					0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

5.2 RTSP Operation

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 27-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the Table Write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 27-12).

EQUATION 5-1: PROGRAMMING TIME

 $\frac{T}{7.37 \text{ MHz} \times (FRC \text{ Accuracy})\% \times (FRC \text{ Tuning})\%}$

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 2\%$. If the TUN<5:0> bits (see Register 9-4) are set to `b000000, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

Tow -	11064 Cycles	- 1 173 ms
IKW —	$\overline{7.37 MHz} \times (1 + 0.02) \times (1 - 0.000938)$	-1.4/3 ms

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

Tow -	11064 Cycles	- 1 533 ms
1KW -	$7.37 MHz \times (1 - 0.02) \times (1 - 0.000938)$	– 1.555 ms

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	—	—	—	—	
bit 15							bit 8
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	ERASE	_	—	NVMOP3(2)	NVMOP2 ⁽²⁾	NVMOP1 ⁽²⁾	NVMOP0 ⁽²⁾
bit 7							bit 0
-							
Legend:		SO = Settal	ole Only bit				
R = Readable	bit	W = Writabl	e bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is s	et	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	WR: Write Cont 1 = Initiates a F cleared by I 0 = Program or	rol bit ⁽¹⁾ Flash memor hardware on r erase opera	y program or ce operation i tion is comple	erase operations complete and inactive	on; the operatio	on is self-timed	and the bit is
bit 14	WREN: Write En 1 = Enables Fla 0 = Inhibits Flas	nable bit ⁽¹⁾ ash program/ sh program/e	erase operati erase operatio	ons Ins			
bit 13	WRERR: Write 1 = An improperation automatical 0 = The program	Sequence El er program Ily on any se m or erase o	rror Flag bit ⁽¹⁾ or erase sec tattempt of th peration comp	quence attemple WR bit) bleted normally	ot or terminatio	on has occurre	ed (bit is set
bit 12-7	Unimplemente	d: Read as ')'				
bit 6	ERASE: Erase/	Program Ena	able bit ⁽¹⁾				
	1 = Performs th 0 = Performs th	ne erase ope ne program o	ration specifie peration spec	ed by the NVM ified by the N∖	OP<3:0> bits or /MOP<3:0> bits	the next WR of on the next W	command R command
bit 5-4	Unimplemente	d: Read as ')'				
bit 3-0	NVMOP<3:0>:	NVM Operati	on Select bits	₃ (1,2)			
	If ERASE = 1: 1111 = Memory 101 = Erases 0011 = No oper 0000 = Memory 0000 = Erases If ERASE = 0: 1111 = No oper 1001 = Memory 0010 = Memory 0001 = No oper 0011 = No oper 1011 = No oper 0010 = No oper 0011 = Memory 0001 = Memory 0000 = Program	v bulk erase of General Seg ration v page erase ration a single Con ration v word progra ration v row program ns a single C	operation ment (GS) operation figuration regi am operation n operation onfiguration regi	ster byte egister byte			
Note 1: The	ese bits can only b	be reset on a	Power-on Re	eset.			

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

2: All other combinations of NVMOP<3:0> are unimplemented.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—		—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMKI	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown

REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register bits (write-only)

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	PWM2IP2	PWM2IP1	PWM2IP0		PWM1IP2	PWM1IP1	PWM1IP0
bit 15	·						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		<u> </u>				—	<u> </u>
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	PWM2IP<2:0	>: PWM2 Inter	rupt Priority bit	S			
	111 = Interrup	pt is Priority 7 (highest priority	()			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	PWM1IP<2:0	>: PWM1 Inter	rupt Priority bit	S			
	111 = Interrup	pt is Priority 7 (highest priority	/)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	pt source is dis	abled				
bit 7-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-39: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

Complete the following steps to configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note:	At a devic	e Rese	et, the	PC	Cx reg	isters are
	initialized	such	that	all	user	interrupt
	sources a	re assi	gned	to P	riority	Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development toolsuite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, program will re-enter the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

The following steps outline the procedure to disable all user interrupts:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, EOh, with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(Level 8-Level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
_	_	—	—	_	—	CNT<	9:8> (2)		
bit 15									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CNT<7:0> ⁽²⁾									
bit 7							bit 0		

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

-										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PWM8MD	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	PWM8MD: P	WM Generator	8 Module Disa	ble bit						
	1 = PWM Ger	nerator 8 modu	le is disabled							
	0 = PWM Ger	nerator 8 modu	le is enabled							
bit 14	PWM7MD: P	WM Generator	7 Module Disa	ble bit						
	1 = PWM Ger	nerator 7 modu	le is disabled							
	0 = PWM Ger	nerator 7 modu	le is enabled							
bit 13	PWM6MD: P	WM Generator	6 Module Disa	ble bit						
	1 = PWM Ger	nerator 6 modu	le is disabled							
hit 10				bla bit						
DIL 12	P V V I V J V U C r	www.Generator	o inicialization							
	1 = PWM Ger	herator 5 modu	le is enabled							
bit 11	PWM4MD: PWM Generator 4 Module Disable bit									
	1 = PWM Ger	1 - PWM Generator 4 module is disabled								
	0 = PWM Ger	nerator 4 modu	le is enabled							
bit 10	PWM3MD: P	WM Generator	3 Module Disa	ble bit						
	1 = PWM Ger	nerator 3 modu	le is disabled							
	0 = PWM Ger	nerator 3 modu	le is enabled							
bit 9	PWM2MD: PWM Generator 2 Module Disable bit									
	1 = PWM Generator 2 module is disabled									
	0 = PWM Ger	nerator 2 modu	le is enabled							
bit 8	PWM1MD: P	WM Generator	1 Module Disa	ble bit						
	1 = PWM Ger	nerator 1 modu	le is disabled							
hit 7 0										
	Unimplemen	ieu: Read as (J							

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

16.3 Control Registers

The following registers control the operation of the high-speed PWM module.

- PTCON: PWM Time Base Control Register
- PTCON2: PWM Clock Divider Select Register 2
- PTPER: PWM Primary Master Time Base Period Register^(1,2)
- SEVTCMP: PWM Special Event Compare Register⁽¹⁾
- STCON: PWM Secondary Master Time Base Control Register
- STCON2: PWM Secondary Clock Divider Select Register 2
- STPER: PWM Secondary Master Time Base Period Register
- SSEVTCMP: PWM Secondary Special Event Compare Register
- CHOP: PWM Chop Clock Generator Register(1)
- MDC: PWM Master Duty Cycle Register(1,2)
- PWMCONx: PWM Control x Register
- PDCx: PWM Generator Duty Cycle x Register(1,2,3)
- PHASEx: PWM Primary Phase-Shift x Register(1,2)
- DTRx: PWM Dead-Time x Register
- ALTDTRx: PWM Alternate Dead-Time x Register
- SDCx: PWM Secondary Duty Cycle x Register(1,2,3)
- SPHASEx: PWM Secondary Phase-Shift x Register(1,2)
- TRGCONx: PWM Trigger Control x Register
- IOCONx: PWM I/O Control x Register
- FCLCONx: PWM Fault Current-Limit Control x Register
- TRIGx: PWM Primary Trigger x Compare Value Register
- STRIGx: PWM Secondary Trigger x Compare Value Register⁽¹⁾
- LEBCONx: Leading-Edge Blanking Control x Register
- LEBDLYx: Leading-Edge Blanking Delay x Register
- AUXCONx: PWM Auxiliary Control x Register
- PWMCAPx: Primary PWM Time Base Capture x Register

					= 1 01 2)		
R/W-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
CNTERR	¹⁾ —	QEISIDL	INDX	UPDN ⁽²⁾	QEIM2	QEIM1	QEIM0
bit 15			-	·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWPAB	PCDOUT	TQGATE	TQCKPS1 ⁽³⁾	TQCKPS0 ⁽³⁾	POSRES ⁽⁴⁾	TQCS	UPDN_SRC ⁽⁵⁾
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15	CNTERR: Co	ount Error Stat	us Flag bit ⁽¹⁾				
	1 = Position	count error has	occurred				
	0 = No positi	on count error	has occurred				
bit 14	Unimplemen	nted: Read as	.0,				
bit 13	QEISIDL: QE	Elx Stop in Idle	Mode bit				
	$\perp = Discontinue$	nues module oper	ation in Idle mo	device enters id	die mode		
hit 12		Pin State Stat	us bit (read-only				
	1 = Index pin	is high		y)			
	0 = Index pin	n is low					
bit 11	UPDN: Posit	ion Counter Di	rection Status I	oit (2)			
	1 = Position	counter directi	on is positive (+	+)			
	0 = Position	counter directi	on is negative (-)			
bit 10-8	QEIM<2:0>:	Quadrature Er	ncoder Interfac	e Mode Select	bits	. ,	
	111 = Quad	rature Encode	r Interface is er	iabled (x4 mode	e) with the posit	ion counter re	set by the match
	110 = Quad count	rature Encode	r Interface is e	nabled (x4 mod	de) with the Inde	ex Pulse Rese	et of the position
	101 = Quad (MAX	rature Encode xCNT)	r Interface is er	abled (x2 mode	e) with the posit	ion counter re	set by the match
	100 = Quad count	rature Encode	r Interface is e	nabled (x2 mod	le) with the Inde	ex Pulse Rese	et of the position
	011 = Unus	ed (module dis	abled)				
	010 = Unuse	ed (module dis	abled)				
	001 = Starts 000 = Quad	rature Encode	r Interface/time	r off			
bit 7	SWPAB: Pha	ase A and Pha	se B Input Swa	ap Select bit			
	1 = Phase A	and Phase B i	nputs are swap	oped			
	0 = Phase A	and Phase B i	nputs are not s	wapped			
bit 6	PCDOUT: Po	osition Counter	Direction State	e Output Enable	e bit		
	1 = Position	counter directi	on status outpu	it is enabled (Q	El logic controls	s state of I/O p	oin)
	0 = Position	counter direction	on status outpu	it is disabled (n	ormal I/O pin op	peration)	
Note 1:	CNTERR flag on	nly applies whe	n QEIM<2:0> =	= 110 or 100.			
2:	Read-only bit wh	nen QEIM<2:0>	> = 1xx; read/w	vrite bit when Q	EIM<2:0> = 00	1.	
3:	Prescaler utilized	d for 16-Bit Tim	er mode only.				
4:	This bit applies o	only when QEI	M<2:0> = 100	or 110.			

5: When configured for QEI mode, this control bit is a 'don't care'.

REGISTER 21-8: CxEC: ECANx TRANSMIT/RECEIVE ERROR COUNT REGISTER

| R-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| TERRCNT7 | TERRCNT6 | TERRCNT5 | TERRCNT4 | TERRCNT3 | TERRCNT2 | TERRCNT1 | TERRCNT0 |
| bit 15 | • | | • | | | • | bit 8 |

| R-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| RERRCNT7 | RERRCNT6 | RERRCNT5 | RERRCNT4 | RERRCNT3 | RERRCNT2 | RERRCNT1 | RERRCNT0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8	TERRCNT<7:0>:	Transmit Error	Count bits
	TEBBANTE = A		

bit 7-0 RERRCNT<7:0>: Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x TQ
	10 = Length is 3 x TQ
	01 = Length is 2 x TQ
	00 = Length is 1 x TQ
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits
	11 1111 = TQ = 2 x 64 x 1/FCAN
	•
	•
	•
	00 0010 = TQ = 2 x 3 x 1/FCAN
	00 0001 = TQ = 2 x 2 x 1/FCAN
	00 0000 = Tq = 2 x 1 x 1/Fcan

26.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

26.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

26.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

26.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

26.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min.	Min. Typ. Max. Units Condit			Conditions
DO20A	DO20A VOH1 Output High Voltage I/O Pins: 4x Sink Driver Pins – RA0-		1.5			V	Іон ≥ -12 mA, Voo = 3.3V (See Note 1)
		RA14, RA15, RB0-RB15, RC1-RC4, RC12-RC14, RD0-RD2,	2.0	—	—	V	ІОн ≥ -11 mA, VDD = 3.3V (See Note 1)
RD8-RD12, RD RE9, RF0-RF8, RG0-RG3, RG6	RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15	3.0	_	_	V	IOH ≥ -3 mA, VDD = 3.3V (See Note 1)	
	Output High Voltage I/O Pins: 8x Sink Driver Pin – RC15		1.5	_	_	V	Іон ≥ -16 mA, Voo = 3.3V (See Note 1)
		2.0	—	—	V	$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3\text{V}$ (See Note 1)	
			3.0	—	—	V	$IOH \ge -4 \text{ mA}, \text{ VDD} = 3.3\text{V}$ (See Note 1)
		Output High Voltage I/O Pins: 16x Sink Driver Pins – RA9, RA10,	1.5	_	_	V	Іон ≥ -30 mA, Voo = 3.3V (See Note 1)
		RD3-RD7, RD13, RE0-RE7, RG12, RG13	2.0	—	—	V	$IOH \ge -25 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$ (See Note 1)
			3.0	—	_	V	$IOH \ge -8 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ (See Note 1)

TABLE 27-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)

Note 1: Parameters are characterized, but not tested.

TABLE 27-11: ELECTRICAL CHARACTERISTICS: BROWN-OUT RESET (BOR)

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to $3.6V^{(3)}$ (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low		2.6	—	2.95	V	See Note 2

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The device will operate as normal until the VDDMIN threshold is reached.

3: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.

				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$			
Param.	Symbol	Charac	teristic	Min	Мах	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μs	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	S25 TSU:DAT	Data Input	100 kHz mode	250		ns	
	Setup Time	400 kHz mode	100		ns		
		1 MHz mode ⁽¹⁾	100	_	ns		
IS26	IS26 THD:DAT	Data Input Hold Time	100 kHz mode	0		μs	
			400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽¹⁾	0	0.3	μs	
IS30	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7		μS	Only relevant for Repeated
			400 kHz mode	0.6		μS	Start condition
			1 MHz mode ⁽¹⁾	0.25		μS	
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μS	After this period, the first
		Hold Time	400 kHz mode	0.6		μs	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25	—	μs	
IS33	TSU:STO	Stop Condition	100 kHz mode	4.7	—	μs	
		Setup Time	400 kHz mode	0.6	—	μs	
			1 MHz mode ⁽¹⁾	0.6	—	μS	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	
		Hold lime	400 kHz mode	600	—	ns	
			1 MHz mode ⁽¹⁾	250		ns	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	4
		From Clock	400 kHz mode	0	1000	ns	4
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	perore a new transmission
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS50	Св	Bus Capacitive Loading		—	400	pF	

TABLE 27-39: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

AC CHARACTERISTICS			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
Clock Parameters							
AD50b	TAD	ADC Clock Period	35.8	—	_	ns	
		Con	version F	late			
AD55b	tCONV	Conversion Time	_	14 Tad		—	
AD56b	FCNV	Throughput Rate					
		Devices with Single SAR	_	—	2.0	Msps	
		Devices with Dual SARs	_	—	4.0	Msps	
	Timing Parameters						
AD63b	AD63b tDPU Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾		1.0	_	10	μS	

TABLE 27-41: 10-BIT, HIGH-SPEED ADC MODULE TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Overall functional device operation at VBOR < VDD < VDDMIN is guaranteed but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN.

FIGURE 27-23: ANALOG-TO-DIGITAL CONVERSION TIMING PER INPUT

Section Name	Update Description
Section 27.0 "Electrical Characteristics" (Continued)	Updated the Timer1, Timer2, and Timer3 External Clock Timing Requirements (see Table 27-23, Table 27-24, and Table 27-25).
	Updated the Simple OC/PWM Mode Timing Requirements (see Table 27-28).
	Updated all SPI Timing specifications (see Figure 27-11-Figure 27-18 and Table 27-30-Table 27-37).
	Added Note 2 to the 10-bit High-Speed ADC Module Specifications (see Table 27-40).
	Added Note 2 to the 10-bit High-Speed ADC Module Timing Requirements (see Table 27-41).
	Added parameter DA08 to the DAC Module Specifications (see Table 27-43).
	Updated parameter DA16 in the DAC Output Buffer Specifications (see Table 27-44).
	Added DMA Read/Write Timing Requirements (see Table 27-49).
Section 28.0 "50 MIPS Electrical Characteristics"	Added new chapter with electrical specifications for 50 MIPS devices.
Section 29.0 "DC and AC Device Characteristics Graphs"	Added new chapter.

TABLE B-3: MAJOR SECTION UPDATES (CONTINUED)

Revision E (October 2012)

This revision removes the Preliminary watermark and includes minor typographical and formatting changes throughout the data sheet.

Revision F (July 2014)

Changes CHOP bit to CHOPCLK in the High Speed PWM Register Map and CHOPCLK PWMCHOP Clock Generator Register (see Register 4-16 and Register 16-9).

Changes values in the Minimum Row Write Time and Maximum Row Write time equation examples (see Equation 5-2 and Equation 5-3).

Adds the Oscillator Delay table (see Table 6-2).

Updates TUN bit ranges in the OSCTUN: Oscillator Tuning Register (see Register 9-4).

Updates the Type C Timer Block Diagram (see Figure 13-2).

Adds Note 1 to the CxFCTRL: ECANx FIFO Control Register (see Register 21-4).

Adds Note 10 to the DC Characteristics: I/O Pin Input Specifications (see Table 27-9).

Updates values in the DC Characteristics: Program Memory Table (see Table 27-12).

Adds Register 29-7 through Register 29-12 to Section 29.0 "DC and AC Device Characteristics Graphs"

Also includes minor typographical and formatting changes throughout the data sheet.