

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	74
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs608-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

IADLE	ABLE 4-7. INTERROFT CONTROLLER REGISTER MAP FOR USFIC53F32G3400 AND USFIC53F304G3400 DEVICES																	
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	_	_	—	_	_	_	_	_	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	—	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_	_	_	—	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	—	_	_	—	_	_	_	_	IC4IF	IC3IF	_	_	_	SPI2IF	SPI2EIF	0000
IFS3	008A	_	—	_	_	—	QEI1IF	PSEMIF	_	_	INT4IF	INT3IF	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	008C	_	—	_	_	—	_	PSESMIF	_	_	_	—	_	_	U2EIF	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	ADCP12IF	_	—	_	_	_	_	_	—	_	_	_	_	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	—	_	_	_	_	_	—	_	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	0092	_	—	_	_	—	_	_	_	_	_	ADCP7IF	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF	0000
IEC0	0094	_	—	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	_	_	_	—	INT1IE	CNIE	_	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	—	_	_	_	_	_		_	IC4IE	IC3IE	_	-	_	SPI2IE	SPI2EIE	0000
IEC3	009A	_	_	_	_	_	QEI1IE	PSEMIE		_	INT4IE	INT3IE	_		MI2C2IE	SI2C2IE	_	0000
IEC4	009C	_	_	_	_	_	_	PSESMIE		_		_	_		U2EIE	U1EIE	_	0000
IEC5	009E	PWM2IE	PWM1IE	ADCP12IE	_	—	_	_	_	_	_	—	_	_	_	_	_	0000
IEC6	00A0	_	ADCP0IE	—	_	_	_	_	—	_	_	—	_	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	00A2		_	_	_	_	_	_	_	_	_	ADCP7IE	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE	0000
IPC0	00A4		T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6		T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	_	_	_	_	4440
IPC2	00A8		U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA		_	_	_	_	_	_	_	_	ADIP2	ADIP1	ADIP0	_	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	_	_	_	_	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_	_	_	_	_	_	_	_	_	_	_	_	_	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0		T4IP2	T4IP1	T4IP0	—	OC4IP2	OC4IP1	OC4IP0	-	OC3IP2	OC3IP1	OC3IP0	-	—	—	—	4440
IPC7	00B2		U2TXIP2	U2TXIP1	U2TXIP0	—	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0		T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	_	_	_	_	_	_	_	_	_	SPI2IP2	SPI2IP1	SPI2IP0	_	SPI2EIP2	SPI2EIP1	SPI2EIP0	0044
IPC9	00B6	_	_	_	_	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	_	_	_	_	0440
IPC12	00BC	_	_	_	_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	_	_	_	0440
IPC13	00BE	_	—	_	_	—	INT4IP2	INT4IP1	INT4IP0	_	INT3IP2	INT3IP1	INT3IP0	_	_	_	_	0440
IPC14	00C0	_	—	_	_	_	QEI1IP2	QEI1IP1	QEI1IP0	_	PSEMIP2	PSEMIP1	PSEMIP0	_	—	—	_	0440
IPC16	00C4	_	—		_	—	U2EIP2	U2EIP1	U2EIP0	_	U1EIP2	U1EIP1	U1EIP0	—	_	—	—	0440
IPC18	00C8	_	—	_	_	_	_		—	_	PSESMIP2	PSESMIP1	PSESMIP0	_	—	—	_	0040
IPC23	00D2	_	PWM2IP2	PWM2IP1	PWM2IP0	_	PWM1IP2	PWM1IP1	PWM1IP0	_	—	—	—	_	—	—	_	4400

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES

© 2009-2014 Microchip Technology Inc.

TABLE 4-39: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0600- 061E	See definition when WIN = x																
C1BUFPNT1	0620	F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0	F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0	0000
C1BUFPNT2	0622	F7BP3	F7BP2	F7BP1	F7BP0	F6BP3	F6BP2	F6BP1	F6BP0	F5BP3	F5BP2	F5BP1	F5BP0	F4BP3	F4BP2	F4BP1	F4BP0	0000
C1BUFPNT3	0624	F11BP3	F11BP2	F11BP1	F11BP0	F10BP3	F10BP2	F10BP1	F10BP0	F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0	0000
C1BUFPNT4	0626	F15BP3	F15BP2	F15BP1	F15BP0	F14BP3	F14BP2	F14BP1	F14BP0	F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0	0000
C1RXM0SID	0630	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	MIDE	_	EID17	EID16	xxxx
C1RXM0EID	0632		EID<15:0> x:								xxxx							
C1RXM1SID	0634	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	MIDE	_	EID17	EID16	xxxx
C1RXM1EID	0636								EID	0<15:0>								xxxx
C1RXM2SID	0638	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	MIDE	_	EID17	EID16	xxxx
C1RXM2EID	063A								EID	0<15:0>								xxxx
C1RXF0SID	0640	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF0EID	0642	EID<15:0>									xxxx							
C1RXF1SID	0644	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0		EXIDE	—	EID17	EID16	xxxx
C1RXF1EID	0646	EID<15:0>									xxxx							
C1RXF2SID	0648	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0		EXIDE	—	EID17	EID16	xxxx
C1RXF2EID	064A								EID	0<15:0>								xxxx
C1RXF3SID	064C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF3EID	064E								EID	0<15:0>								xxxx
C1RXF4SID	0650	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF4EID	0652								EID	0<15:0>								xxxx
C1RXF5SID	0654	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF5EID	0656								EID	0<15:0>								xxxx
C1RXF6SID	0658	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	_	EID17	EID16	xxxx
C1RXF6EID	065A								EIC	0<15:0>								xxxx
C1RXF7SID	065C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	_	EID17	EID16	xxxx
C1RXF7EID	065E								EIC	0<15:0>								xxxx
C1RXF8SID	0660	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	_	EID17	EID16	xxxx
C1RXF8EID	0662								EIC	0<15:0>								xxxx
C1RXF9SID	0664	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	_	EID17	EID16	xxxx
C1RXF9EID	0666								EIC	0<15:0>								xxxx
C1RXF10SID	0668	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF10EID	066A								EIC	0<15:0>								xxxx
C1RXF11SID	066C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	—	EID17	EID16	xxxx

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 27-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the Table Write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 27-12).

EQUATION 5-1: PROGRAMMING TIME

 $\frac{T}{7.37 \text{ MHz} \times (FRC \text{ Accuracy})\% \times (FRC \text{ Tuning})\%}$

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 2\%$. If the TUN<5:0> bits (see Register 9-4) are set to `b000000, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

Tow -	11064 Cycles	- 1 173 ms
IKW —	$\overline{7.37 MHz} \times (1 + 0.02) \times (1 - 0.000938)$	-1.4/3 ms

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

Tow -	11064 Cycles	- 1 533 ms
1KW -	$7.37 MHz \times (1 - 0.02) \times (1 - 0.000938)$	– 1.555 ms

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
ADCP1IE	ADCP0IE	—	—	—	_	AC4IE	AC3IE				
bit 15							bit 8				
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
AC2IE		—		PWM6IE	PWM5IE	PWM4IE	PWM3IE				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	ADCP1IE: AI	DC Pair 1 Conve	ersion Done	Interrupt Enable	e bit						
	1 = Interrupt	request is enabl	ed								
h :+ 4 4	0 = Interrupt request is not enabled										
DIT 14	ADCPUIE: AL	JC Pair 0 Conve	ad	Interrupt Enable	e bit						
	1 = Interrupt 0 = Interrupt	request is enabl	eu nabled								
bit 13-10	Unimplemented: Read as '0'										
bit 9	AC4IE: Analog Comparator 4 Interrupt Enable bit										
	1 = Interrupt	request is enabl	ed								
	0 = Interrupt	request is not ei	nabled								
bit 8	AC3IE: Analo	og Comparator 3	3 Interrupt Er	nable bit							
	1 = Interrupt request is enabled										
h it 7		request is not ei	habled								
DIT /	AC2IE: Analog Comparator 2 Interrupt Enable bit										
	 Interrupt request is enabled Interrupt request is not enabled 										
bit 6-4	Unimplemen	ted: Read as '0)'								
bit 3	PWM6IE: PW	/M6 Interrupt Er	nable bit								
	1 = Interrupt request is enabled										
	0 = Interrupt request is not enabled										
bit 2	PWM5IE: PW	/M5 Interrupt Er	nable bit								
	1 = Interrupt request is enabled										
	0 = Interrupt	request is not er	nabled								
bit 1	PWM4IE: PW	/M4 Interrupt Er	hable bit								
	$\perp = \text{Interrupt}$	request is enabl	ed nabled								
bit 0		/M3 Interrunt Fr	nable hit								
	1 = Interrupt	request is enabl	ed								
	0 = Interrupt	request is not er	nabled								

REGISTER 7-19: IEC6: INTERRUPT ENABLE CONTROL REGISTER 6

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	ILR3	ILR2	ILR1	ILR0
bit 15	·						bit 8
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-12	Unimplemen	ted: Read as '	0'				
bit 11-8	ILR<3:0>: Ne	ew CPU Interru	pt Priority Leve	el bits			
	1111 = CPU	Interrupt Priori	ty Level is 15				
	•						
	•						
	0001 = CPU	Interrupt Priori	ty Level is 1				
	0000 = CPU	Interrupt Priori	ty Level is 0				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-0	VECNUM<6:	0>: Vector Nun	nber of Pendin	ng Interrupt bits	3		
	0111111 = lr	nterrupt vector	pending is Nu	mber 135			
	•						
	•						
	0000001 = lr	nterrupt vector	pending is Nu	mber 9			
	0000000 = Ir	nterrupt vector	pending is Nu	mber 8			

REGISTER 7-46: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
	—	—	—		—		PLLDIV8				
bit 15							bit 8				
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0				
			PLLDI	V<7:0>							
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	t U = Unimplemented bit, read as '0'							
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown					
bit 15-9	Unimplemen	ted: Read as ')'								
bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)											
	00000000 = 2										
	00000001 =	= 3									
	00000010 =	= 4									

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

The Timer2/3/4/5 modules can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous Counter mode, the input clock is derived from the external clock input at the TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 13-1.

Mode	TCS	TGATE		
Timer	0	0		
Gated Timer	0	1		
Synchronous Counter	1	x		

TABLE 13-1: TIMER MODE SETTINGS

13.1 16-Bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

13.2 32-Bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control (TxCON<3>) register must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

When configured for 32-bit operation, only the Type B Timerx Control (TxCON) register bits are required for setup and control while the Type C Timer Control register bits are ignored (except the TSIDL bit).

For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The timers that can be combined to form a 32-bit timer are listed in Table 13-2.

	TABLE	13-2:	32-BIT	TIMER
--	-------	-------	--------	-------

Type B Timer (Isw)	Type C Timer (msw)
Timer2	Timer3
TImer4	Timer5

A block diagram representation of the 32-bit timer module is shown in Figure 13-3. The 32-timer module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode

To configure the timer features for 32-bit operation:

- 1. Set the T32 control bit.
- 2. Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 contains the most significant word of the value, while PR2 contains the least significant word.
- 5. If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits, T3IP<2:0>, to set the interrupt priority. While Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the corresponding TON bit.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	—	_	
bit 15							bit 8	
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
DTM ⁽¹⁾	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	
bit 7							bit 0	
Legend:	- 14		L 14	11 11				
R = Readable I		VV = VVritable	DIt	U = Unimpler	nented bit, read			
-n = value at P	OR	1° = Bit is set		$0^{\circ} = Bit is cle$	ared	X = Bit is unkr	nown	
bit 15-12 TRGDIV<3:0>: Trigger # Output Divider bits 1111 = Trigger output for every 16th trigger event 1110 = Trigger output for every 15th trigger event 1101 = Trigger output for every 14th trigger event 1000 = Trigger output for every 13th trigger event 1011 = Trigger output for every 12th trigger event 1001 = Trigger output for every 12th trigger event 1001 = Trigger output for every 10th trigger event 1000 = Trigger output for every 9th trigger event 1011 = Trigger output for every 8th trigger event 0111 = Trigger output for every 8th trigger event 0110 = Trigger output for every 6th trigger event 0101 = Trigger output for every 5th trigger event 0100 = Trigger output for every 9th trigger event 0101 = Trigger output for every 9th trigger event 0100 = Trigger output for every 9th trigger event 0101 = Trigger output for every 9th trigger event 0100 = Trigger output for every 9th trigger event 0111 = Trigger output for every 9th trigger event 0110 = Trigger output for every 9th trigger event 0111 = Trigger output for every 9th trigger e								
bit 11-8	Unimplement	ted: Read as ')'					
bit 7	DTM: Dual Tri	igger Mode bit	נז) 	·a a ·				
	 ⊥ = Secondai 0 = Secondai two sepai 	ry trigger event ry trigger event rate PWM trigg	is combined is is not combination pers are generation	with the primai ed with the prir ated	ny trigger event i mary trigger eve	to create the P ent to create the	vvivi trigger PWM trigger;	
bit 6	Unimplement	ted: Read as '	כ'					
bit 5-0	TRGSTRT<5:	0>: Trigger Po	stscaler Start	Enable Select	bits			
	111111 = Wa	its 63 PWM cy	cles before ge	enerating the fi	rst trigger event	after the modu	ule is enabled	
	•							
	•							
	000010 = Wa 000001 = Wa 000000 = Wa	its 2 PWM cyc its 1 PWM cyc its 0 PWM cyc	les before gen le before gene les before gen	nerating the first erating the first nerating the first	st trigger event a trigger event al st trigger event a	after the modul fter the module after the modul	e is enabled is enabled e is enabled	

REGISTER 16-18: TRGCONx: PWM TRIGGER CONTROL x REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
bit 15					I		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDAT1	OVRDAT0	FLTDAT1 ⁽²⁾	FLTDAT0 ⁽²⁾	CLDAT1 ⁽²⁾	CLDAT0 ⁽²⁾	SWAP	OSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
			·				
bit 15	PENH: PWM	xH Output Pin	Ownership bit				
	1 = PWM mo	dule controls P	WMxH pin				
hit 11							
Dit 14	1 = PWM mo	dule controls P	WMxL nin				
	0 = GPIO mo	dule controls F	WMxL pin				
bit 13	POLH: PWM	xH Output Pin	Polarity bit				
	1 = PWMxH p	oin is active-low	v				
	0 = PWMxH p	oin is active-hig	gh				
bit 12		xL Output Pin F	Polarity bit				
	1 = PWWXL p 0 = PWMxL p	oin is active-low	/ h				
bit 11-10	PMOD<1:0>:	PWM # I/O Pi	n Mode bits ⁽¹⁾				
	11 = PWM I/0	O pin pair is in	the True Indep	endent Output	t mode		
	10 = PWM I/0	D pin pair is in [·]	the Push-Pull	Output mode			
	01 = PWWI/(0) $00 = PWM I/(0)$	D pin pair is in D pin pair is in ⁻	the Compleme	entary Output r	node		
bit 9	OVRENH: O	verride Enable	for PWMxH P	in bit			
	1 = OVRDAT	<1> provides d	ata for output	on PWMxH pi	n		
	0 = PWM ger	nerator provide	s data for outp	out on PWMxH	pin		
bit 8	OVRENL: OV	verride Enable	for PWMxL Pi	n bit			
	1 = OVRDAT 0 = PWM der	<0> provides d perator provide	ata for output s data for outr	on PWMxL pir	ו nin		
bit 7-6	OVRDAT<1:	>: Data for PV	VMxH PWMxI	Pins if Overri	de is Enabled b	oits	
	If OVERENH	= 1, OVRDAT	<1> provides of	ata for PWMx	H		
	If OVERENL	= 1, OVRDAT<	<0> provides d	ata for PWMxI	-		
bit 5-4	FLTDAT<1:0	State for PW	/MxH and PW	MxL Pins if FL	TMOD is Enable	ed bits ⁽²⁾	
	IFLTMOD (FC	CLCONx<15>)	= 0: Normal F	ault mode:			
	If Fault is acti	ve, then FLID	AI <1> provide AT<0> provide	es the state for	PWMxH. PWMyI		
	IFLTMOD (FC	CLCONx<15>)	= 1: Independ	ent Fault mode			
	If current-limit	t is active, then	FLTDAT<1>	provides the st	<u></u> ate for PWMxH		
	If Fault is acti	ve, then FLTD	AT<0> provide	s the state for	PWMxL.		
Note 1. The	an hite chould	not ha abanaa	d offer the DW	M modulo io o	nobled (DTEN	1)	

REGISTER 16-19: IOCONX: PWM I/O CONTROL X REGISTER

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

19.0 INTER-INTEGRATED CIRCUIT (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 dsPIC33FJ64GS406/606/608/610 and families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit[™] (I²C[™])" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C Interface Supporting Both Master and Slave modes of Operation
- I²C Slave mode Supports 7-Bit and 10-Bit Addressing
- I²C Master mode Supports 7-Bit and 10-Bit Addressing
- I²C Port allows Bidirectional Transfers Between Master and Slaves
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control)
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates Accordingly

19.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, refer to the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest "*dsPIC33/PIC24 Family Reference Manual*" sections.

19.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it.
- I2CxRCV is the receive buffer and the register to which data bytes are written or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- The I2CxADD register holds the slave address.
- A status bit, ADD10, indicates 10-Bit Addressing mode.
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated.

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware is set or clear after reception of an I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit in progress, I2CxTRN is full 0 = Transmit is complete, I2CxTRN is empty Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of the data transmission.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15							bit 8
	5/2.2			D /0.0	5/2.2		
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
	WAKIF	ERRIF	—	FIFUIF	RBOVIE	RBIF	I BIF
							DILO
Legend:		C = Writable.	but only '0' ca	n be written to	clear the bit		
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as ')'				
bit 13	TXBO: Trans	mitter in Error S	State Bus Off I	oit			
	1 = Transmitte	er is in Bus Off	state				
h:40	0 = Iransmitte	er is not in Bus	Off state				
DIT 12	1 - Transmitte	nitter in Error S	otate Bus Pass	sive bit			
	0 = Transmitte	er is not in Bus	Passive state	•			
bit 11	RXBP: Recei	ver in Error Sta	te Bus Passiv	e bit			
	1 = Receiver	is in Bus Passi [,]	ve state				
	0 = Receiver	is not in Bus Pa	assive state				
bit 10	TXWAR: Tran	smitter in Erro	r State Warnir	ig bit			
	1 = Transmitte 0 = Transmitte	er is in Error W er is not in Erro	arning state r Warning sta	te			
bit 9	RXWAR: Rec	eiver in Error S	State Warning	bit			
	1 = Receiver	is in Error Warr	ning state				
	0 = Receiver	is not in Error V	Varning state				
bit 8	EWARN: Tran	nsmitter or Rec	eiver in Error	State Warning	bit		
	1 = Transmitte	er or receiver is er or receiver is	in Error Warı	ning state Marning state			
bit 7	IVRIF: Invalid	Message Rec	eived Interrup	t Flag bit			
bit i	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 6	WAKIF: Bus	Wake-up Activit	ty Interrupt Fla	ag bit			
	1 = Interrupt r	equest has occ	curred				
ь: <i>н г</i>	0 = Interrupt r	equest has not				han hita)	
DIT 5	1 - Interrupt r	Interrupt Flag t	bit (multiple sc	ources in CXIN	1F<13:8> regis	ter bits)	
	1 = Interrupt r 0 = Interrupt r	equest has not	occurred				
bit 4	Unimplemen	ted: Read as ')'				
bit 3	FIFOIF: FIFO	Almost Full Int	errupt Flag bi	t			
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 2	RBOVIF: RX	Buffer Overflov	v Interrupt Fla	g bit			
	\perp = interrupt r 0 = Interrupt r	equest has occ	occurred				
	on apri						

REGISTER 21-6: CXINTF: ECANX INTERRUPT FLAG REGISTER

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0
bit 7							bit 0

REGISTER 21-22: CxRXFUL1: ECANx RECEIVE BUFFER FULL REGISTER 1

bit	7	

Legend:	C = Writeable, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

REGISTER 21-23: CxRXFUL2: ECANx RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writeable, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

REGISTER 22-1: ADCON: ADC CONTROL REGISTER (CONTINUED)

- bit 4 ASYNCSAMP: Asynchronous Dedicated S&H Sampling Enable bit⁽¹⁾
 - 1 = The dedicated S&H is constantly sampling and then terminates sampling as soon as the trigger pulse is detected
 - 0 = The dedicated S&H starts sampling when the trigger event is detected and completes the sampling process in two ADC clock cycles
- bit 3 Unimplemented: Read as '0'
- bit 2-0 ADCS<2:0>: Analog-to-Digital Conversion Clock Divider Select bits⁽¹⁾
 - 111 = FADC/8 110 = FADC/7 101 = FADC/6 100 = FADC/5
 - 011 = FADC/4 (default)
 - 011 = FADC/4
 - 010 = FADC/3001 = FADC/2
 - 000 = FADC/1
- **Note 1:** This control bit can only be changed while the ADC is disabled (ADON = 0).
 - 2: This control bit is only active on devices that have one SAR.

REGISTER 22-3: AD	BASE: ADC BASE REGISTER ^(1,2)
-------------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADBAS	E<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			ADBASE<7:1>	>			
bit 7							bit 0
l egend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 ADBASE<15:1>: ADC Base Address bits

This register contains the base address of the user's ADC Interrupt Service Routine jump table. This register, when read, contains the sum of the ADBASE register contents and the encoded value of the PxRDY status bits.

The encoder logic provides the bit number of the highest priority PxRDY bits where P0RDY is the highest priority and P6RDY is the lowest priority.

bit 0 Unimplemented: Read as '0'

- Note 1: The encoding results are shifted left two bits so bits 1-0 of the result are always zero.
 - 2: As an alternative to using the ADBASE register, the ADCP0-ADCP12 ADC pair conversion complete interrupts can be used to invoke Analog-to-Digital conversion completion routines for individual ADC input pairs.

24.8 Code Protection and CodeGuard™ Security

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices offer the intermediate implementation of CodeGuard[™] Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on a single chip. The code protection features are controlled by the Configuration registers: FBS and FGS.

Secure segment and RAM protection is not implemented in dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices.

Note:	Refer	to	"CodeGuard™	Security"
	(DS701	199)	in the "dsPIC33/	PIC24 Family
	Refere	nce l	Manual" for furthe	er information
	on usa	ge, d	configuration and	operation of
	CodeG	uard	Security.	

TABLE 24-3: CODE FLASH SECURITY SEGMENT SIZES FOR 64-KBYTE DEVIC	TABLE 24-3:	CODE FLASH SECURITY SEGMENT SIZES FOR 64-KBYTE DEVICES
--	-------------	--

BSS<2:0> = x11, 0K	BSS<2:0> = x10, 1K	BSS<2:0> = x01, 4K	BSS<2:0> = x00, 8K	
VS = 256 IW 00000h 0001FEh 000200h	VS = 256 IW 000000h BS = 768 IW 000200h 0007FEh 000800h	VS = 256 IW 000000h 0001FEh 000200h BS = 3840 IW 001FFEh 002000h	VS = 256 IW 000000h BS = 7936 IW 000200h 003FFEh 004000h	
GS = 21760 IW	GS = 20992 IW	GS = 17920 IW	GS = 13824 IW	
00ABFEh	00ABFEh	00ABFEh	00ABFEh	

TABLE 24-4: CODE FLASH SECURITY SEGMENT SIZES FOR 32-KBYTE DEVICES

BSS<2:0> = x11, 0K	BSS<2:0> = x10, 1K	BSS<2:0> = x01, 4K	BSS<2:0> = x00, 8K
VS = 256 IW 000000h 0001FEh 000200h	VS = 256 IW 000000h BS = 768 IW 000200h 0007FEh 000800h	VS = 256 IW 000000h 0001FEh 000200h BS = 3840 IW 001FFEh 002000h	VS = 256 IW 000000h BS = 7936 IW 000200h
GS = 11008 IW 0057FEh	GS = 10240 IW 0057FEh	GS = 7168 IW 0057FEh	003FFEh 004000h 0057FEh
00ABFEh	00ABFEh	00ABFEh	00ABFEh

27.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 AC characteristics and timing parameters.

TABLE 27-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)			
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Operating voltage VDD range as described in Section 27.0 "Electrical Characteristics ".			

FIGURE 27-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 27-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	Cio	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	СКЕ	СКР	SMP
15 MHz	Table 27-31	_	_	0,1	0,1	0,1
10 MHz	_	Table 27-32	—	1	0,1	1
10 MHz	—	Table 27-33	—	0	0,1	1
15 MHz	—	—	Table 27-34	1	0	0
11 MHz		—	Table 27-35	1	1	0
15 MHz		_	Table 27-36	0	1	0
11 MHz		_	Table 27-37	0	0	0

TABLE 27-30: SPIX MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 27-11: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

FIGURE 27-12: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

30.0 PACKAGING INFORMATION

30.1 Package Marking Information

64-Lead QFN (9x9x0.9mm)

○ S
 33FJ32GS
 406-I/MR (€3)
 1210017

64-Lead TQFP (10x10x1mm)

80-Lead TQFP (12x12x1mm)

Example

Example

Example

Legend	: XXX Y YY WW NNN @3	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	If the full N line, thus I	licrochip part number cannot be marked on one line, it is carried over to the next imiting the number of available characters for customer-specific information.