

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	74
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs608-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE	TABLE 4-23: HIGH-SPEED PWM GENERATOR 7 REGISTER MAP (EXCLUDES dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES)																	
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON7	04E0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP		MTBS	CAM	XPRES	IUE	0000
IOCON7	04E2	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON7	04E4	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC7	04E6		PDC7<15:0> 0000															
PHASE7	04E8								PHAS	E7<15:0>								0000
DTR7	04EA	_	_							DTR	7<13:0>							0000
ALTDTR7	04EA	_	_							ALTDT	R7<13:0>							0000
SDC7	04EE								SDC	7<15:0>								0000
SPHASE7	04F0								SPHAS	SE7<15:0>								0000
TRIG7	04F2							TRGCMP<12	2:0>						_	_	_	0000
TRGCON7	04F4	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	-	-	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG7	04F6							STRGCMP<1	2:0>						_	_	_	0000
PWMCAP7	04F8							PWMCAP<12	2:0>						_	_	_	0000
LEBCON7	04FA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	-	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY7	04FC	—	_	—	_				L	EB<8:0>					_	_	—	0000
AUXCON7	04FE	HRPDIS	HRDDIS		—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: SPI1 REGISTER MAP

File Name	SFR Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	_	_	_	—	_	SPIROV		_	_	—	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	—	—	_	—	—	-	—	—	-	—	FRMDLY	—	0000
SPI1BUF	0248							SPI1 Tran	smit and R	eceive Buf	fer Registe	r						0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: SPI2 REGISTER MAP

File Name	SFR Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN	_	SPISIDL	—	_	_			-	SPIROV	_	_	_		SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	—	FRMDLY	_	0000
SPI2BUF	0268							SPI2 Tra	nsmit and F	Receive Bu	ffer Registe	r						0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 8000h and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during Table Reads/Writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction using PSV to access data, to execute in a single cycle.

When CORCON < 2 > = 1 and EA < 15 > = 1: **Program Space** Data Space **PSVPAG** 15 0 0x000000 0x0000 02 Data EA<14:0> 0x010000 0x018000 The data in the page designated by PSVPAG is mapped into the upper half of the data memory 0x8000 space... **PSV** Area ...while the lower 15 bits of the EA specify an exact address within 0xFFFF the PSV area. This corresponds exactly to the same lower 15 bits of the actual program space address. 0x800000

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

NOTES:

6.1 System Reset

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices have two types of Reset:

- Cold Reset
- Warm Reset

A Cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a Cold Reset, the FNOSCx Configuration bits in the FOSC Configuration register select the device clock source.

A Warm Reset is the result of all the other Reset sources, including the RESET instruction. On Warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is described in Figure 6-2.

Oscillator Mode	Oscillator Start-up Delay	Oscillator Start-up Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd ⁽¹⁾	—	_	Toscd ⁽¹⁾
FRCPLL	Toscd ⁽¹⁾	—	ТLОСК ⁽³⁾	Toscd + Tlock ^(1,3)
XT	Toscd ⁽¹⁾	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
HS	Toscd ⁽¹⁾	Tost ⁽²⁾		Toscd + Tost ^(1,2)
EC	—	—	—	—
XTPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	TLOCK ⁽³⁾	Toscd + Tost + Tlock ^(1,2,3)
HSPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	ТLОСК ⁽³⁾	Toscd + Tost + Tlock ^(1,2,3)
ECPLL	—	—	ТLОСК ⁽³⁾	ТLОСК ⁽³⁾
LPRC	Toscd ⁽¹⁾			Toscd ⁽¹⁾

Note 1: ToscD = Oscillator start-up delay (1.1 μs max. for FRC, 70 μs max. for LPRC). Crystal oscillator start-up times vary with the crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer (OST) delay (1024 oscillator clock period). For example, TOST = 102.4 μ s for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal) if PLL is enabled.

TABLE 6-1: OSCILLATOR DELAY

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	_		_	_	QEI1IP2	QEI1IP1	QEI1IP0
bit 15				4			bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	PSEMIP2	PSEMIP1	PSEMIP0	_	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10-8	QEI1IP<2:0>	: QEI1 Interrup	t Priority bits				
	111 = Interru	ot is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interru	ot source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	PSEMIP<2:0	>: PWM Specia	al Event Matcl	n Interrupt Pric	ority bits		
	111 = Interru	ot is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interru	ot source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-33: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

	-0. 11 02-1						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	PWM6IP2	PWM6IP1	PWM6IP0	_	PWM5IP2	PWM5IP1	PWM5IP0
bit 15							bit 8
		D.M.C.	DAALO		D 444 4	DAM 0	DAALO
0-0	R/W-1	R/W-0	R/W-0	0-0	R/W-1	R/W-0	R/W-0
	PVVIVI4IP2	PWM4IP1	PWM4IP0	—	PWM3IP2	PWM3IP1	PVVM3IPU
Dit 7							bit U
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	PWM6IP<2:0	>: PWM6 Inter	rupt Priority bi	ts			
	111 = Interrup	pt is Priority 7 ((highest priority	()			
	•						
	•						
	001 = Interrup 000 = Interrup	pt is Priority 1 pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	PWM5IP<2:0	>: PWM5 Inter	rupt Priority bi	ts			
	111 = Interru	pt is Priority 7 ((highest priority	/)			
	•						
	•						
	001 = Interrup 000 = Interrup	pt is Priority 1 pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	PWM4IP<2:0	>: PWM4 Inter	rupt Priority bi	ts			
	111 = Interru	pt is Priority 7	highest priority	()			
	•			,			
	•						
	• 001 = Interrup	pt is Priority 1	abled				
hit 2		tod: Road as '					
bit 2-0		PWM3 Inter	v rupt Priority bi	te			
Dit 2-0	111 - Interru	>. F WW3 III.el	highest priority	15 /}			
	•	prist nonty /	(ingliest phone)	<i>(</i>)			
	•						
	•	at in Driamity 4					
	001 = Interrup	pt is Priority 1 of source is dis	abled				

REGISTER 7-40: IPC24: INTERRUPT PRIORITY CONTROL REGISTER 24

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	ILR3	ILR2	ILR1	ILR0
bit 15	·						bit 8
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cle	ared	x = Bit is unki	nown	
bit 15-12	Unimplemen	ted: Read as '	0'				
bit 11-8	ILR<3:0>: Ne	w CPU Interru	pt Priority Leve	el bits			
	1111 = CPU	Interrupt Priori	ty Level is 15				
	•						
	•						
	0001 = CPU	Interrupt Priori	ty Level is 1				
	0000 = CPU	Interrupt Priori	ty Level is 0				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-0	VECNUM<6:	0>: Vector Nun	nber of Pendin	ng Interrupt bits	3		
	0111111 = lr	nterrupt vector	pending is Nu	mber 135			
	•						
	•						
	0000001 = lr	nterrupt vector	pending is Nu	mber 9			
	0000000 = Ir	nterrupt vector	pending is Nu	mber 8			

REGISTER 7-46: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

11.0	11.0		11.0				
0-0	U-0	0-0	0-0	R/C-0	R/C-U	R/C-0	
—	—	—	_	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 15							bit 8
				D/0 0		D/0 0	
0-0	0-0	0-0	0-0	R/C-0	R/C-0	R/C-0	R/C-0
	—	—	—	XWCOL3	XWCOL2	XWCOL1	XWCOLO
Dit 7							bit 0
Logond		C – Cloarabla	hit				
R – Roadable	bit	C = Clearable	bit	II – Unimpler	mented bit read	1 26 (0)	
		1' = Rit is set	UIL	$0^{\circ} = 0^{\circ}$	arod	v – Ritic unkr	
	OR				aleu		101111
bit 15-12	Unimplemen	ted: Read as '	ז'				
bit 11	PWCOL3: Ch	hannel 3 Periph	eral Write Co	ollision Flag bit			
	1 = Write coll	lision is detecte	d				
	0 = No write	collision is dete	cted				
bit 10	PWCOL2: Cł	hannel 2 Periph	eral Write Co	ollision Flag bit			
	1 = Write coll	lision is detecte	d				
	0 = No write 0	collision is dete	cted				
bit 9	PWCOL1: Ch	hannel 1 Periph	eral Write Co	ollision Flag bit			
	1 = Write coll	lision is detected	d stod				
bit 8		hannel () Perinh	oral Write Co	ullision Flag hit			
bit o	1 – Write coll	lision is detected	d	nision riag bit			
	0 = No write 0	collision is dete	cted				
bit 7-4	Unimplemen	ted: Read as ')'				
bit 3	XWCOL3: CI	hannel 3 DMA F	RAM Write C	ollision Flag bit			
	1 = Write coll	lision is detecte	d				
	0 = No write	collision is dete	cted				
bit 2	XWCOL2: CI	hannel 2 DMA F	RAM Write C	ollision Flag bit			
	1 = Write coll	lision is detecte	d ata d				
h:4 d				ellicica Flor bit			
DIT		hannel 1 DiviA F	AIVI WITTE C	ollision Flag bit			
	0 = No write 0	collision is dete	cted				
bit 0	XWCOLO: CI	hannel 0 DMA F	RAM Write C	ollision Flag bit			
-	1 = Write coll	lision is detecte	d				
	0 = No write	collision is dete	cted				

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	—	—		—		PLLDIV8
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLDI	V<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-9	Unimplemen	ted: Read as ')'				
bit 8-0	PLLDIV<8:0>	: PLL Feedbac	k Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)	
	000000000 =	= 2					
	00000001 =	= 3					
	00000010 =	= 4					

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

NOTES:

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
HRPDIS	HRDDIS	_	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0						
bit 15							bit 8						
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN						
bit 7							bit 0						
Lonordi													
Legena:	hit	M = Mritabla	hit.	II – Unimplom	opted bit read								
R = Reauable		'1' = Rit is set	DIL	$0^{\circ} = 0^{\circ}$	ared	v – Bitis unkn							
-11 = value at r	OR	I = DILIS SEL			aleu	X = DIL IS UTKI	IOWII						
bit 15 bit 14	HRPDIS: Hig 1 = High-resc 0 = High-resc HRDDIS: Hig 1 = High-resc	h-Resolution P olution PWM pe olution PWM pe h-Resolution P olution PWM du	WM Period D eriod is disable eriod is enable WM Duty Cyc uty cycle is dis	isable bit ed to reduce po ed cle Disable bit abled to reduce	ower consumpti e power consu	on mption							
	0 = High-resolution PWM duty cycle is enabled												
bit 13-12		Unimplemented: Read as '0'											
hit 7.6	The selected BCH and BCI 1001 = PWM 0100 = PWM 0110 = PWM 0101 = PWM 0100 = PWM 0011 = PWM 0010 = PWM 0001 = PWM 0001 = PWM	state blank sig bits in the LE 9H is selected 8H is selected 7H is selected 6H is selected 5H is selected 4H is selected 3H is selected 2H is selected 1H is selected (no state blan)	nal will block t BCONx regist as state blank as state blank	he current limit er). < source < source < source < source < source < source < source < source < source < source	t and/or Fault ir	nput signals (if e	nabled via the						
bit 5-2		11EU. Reau as	U Do Clock Sour	ca Salact hits									
	The selected 1001 = PWM 1000 = PWM 0111 = PWM 0101 = PWM 0100 = PWM 0011 = PWM 0011 = PWM 0010 = PWM 0001 = PWM	signal will enal 19H is selected 18H is selected 17H is selected 16H is selected 15H is selected 14H is selected 13H is selected 12H is selected 11H is selected 11H is selected	ble and disabl as chop clock as chop clock	e (CHOPx) the source source source source source source source source source source source source source source	selected PWM	l outputs.							
bit 1	CHOPHEN: F	PWMxH Output	t Choppina Er	able bit									
	1 = PWMxH o $0 = PWMxH o$	chopping functi chopping functi	on is enabled on is disabled										
bit 0	CHOPLEN: F 1 = PWMxL c 0 = PWMxL c	WMxL Output chopping function chopping function	Chopping En on is enabled on is disabled	able bit									

REGISTER 16-25: AUXCONx: PWM AUXILIARY CONTROL x REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
SPIEN		SPISIDI	_	_		_	_					
bit 15		OFICIDE					bit 8					
bit 10							bit 0					
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0					
_	SPIROV		—	—	_	SPITBF	SPIRBF					
bit 7							bit 0					
Legend:		C = Clearable	bit									
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 15	SPIEN: SPIX	Enable bit										
	1 = Enables module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins											
h :4 4 4	0 = Disables module											
DIT 14	Unimplemen	ited: Read as 1). • • • • •									
bit 13	SPISIDL: SP	Ix Stop in Idle N	/lode bit									
	1 = Discontin0 = Continue	ues module opera	tion in Idle mo	device enters	Idle mode							
bit 12-7	Unimplemen	ited: Read as 'd)'									
bit 6	SPIROV: SPI	Ix Receive Over	rflow Flag bit									
	1 = A new b	oyte/word is co	mpletely rece	eived and disc	arded; the use	r software has	not read the					
	previous	data in the SPI	xBUF register	r								
hit 5-2		ted: Read as '	u v									
bit 1		v Transmit Buff	or Full Status	hit								
DIT	1 – Transmit	has not vet sta	rted SPIvTXI	R is full								
	0 = Transmit	has started, S	PIxTXB is er	npty. Automati	ically set in har	dware when C	PU writes the					
	SPIxBUF	- location, loadi	ng SPIxTXB.	Automatically	cleared in hard	ware when the	e SPIx module					
	transfers	data from SPI	TXB to SPIxS	SR.								
bit 0	SPIRBF: SPI	x Receive Buffe	er Full Status	bit								
	1 = Receive	is complete, SH	YIXRXB IS full	empty Autom	natically set in h	ardware when	SPly transfore					
	data fror	n SPIxSR to S	SPIxRXB. Aut	omatically cle	ared in hardwa	re when the c	ore reads the					
	SPIxBUF	location, readi	ng SPIxRXB.	,								

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

REGISTER 21-26: CxTRmnCON: ECANx TX/RX BUFFER mn CONTROL REGISTER (m = 0, 2, 4, 6; n = 1, 3, 5, 7)

DAVA	D A	DA	D O	DAMA		DAVA			
IXENn	IXABIn	TXLARBn	IXERRN	TXREQn	RIRENN	I XnPRI1	I XnPRI0		
bit 15							bit 8		
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI1	TXmPRI0		
bit 7									
r									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 15-8	See Definition	n for bits<7:0>,	Controls Buff	er n					
bit 7	TXENm: TX/	RX Buffer Seleo	ction bit						
	1 = Buffer TR	Bn is a transmi	t buffer						
	0 = Buffer IR	Bn is a receive	buffer						
bit 6 TXABTm: Message Aborted bit ⁽¹⁾									
	1 = Message	was aborted		a a a a fuille (
hit E			rhitration hit(1						
Dil 5 IALARDII: Message Lost Arbitration Dil ''									
	\perp = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent								
bit 4	TXERRm: Error Detected During Transmission bit ⁽¹⁾								
2	1 = A bus error occurred while the message was being sent								
	0 = A bus error did not occur while the message was being sent								
bit 3	TXREQm: Me	essage Send re	equest bit						
	1 = Requests that a message be sent; the bit automatically clears when the message is successfully sent								
	0 = Clears the	e bit to '0'; while	e set, request	s a message a	bort				
bit 2	RTRENm: Au	uto-Remote Tra	nsmit Enable	bit					
	1 = When a re	emote transmit	is received, T	XREQm will b	e set				
	0 = When a respectively.	emote transmit	is received, T	XREQm will b	e unaffected				
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pr	iority bits					
	11 = Highest	message priori	ty 						
	$\pm 0 = \Pi \text{ign intermediate}$	ermediate mess	age priority						
	00 = Lowest	message priorit	age priority						
		3	3						

Note 1: This bit is cleared when TXREQm is set.

Note: The buffers, SID, EID, DLC, Data Field, and Receive Status registers are located in DMA RAM.

22.0 HIGH-SPEED, 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed 10-Bit ADC" (DS70000321) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices provide high-speed successive approximation Analog-to-Digital conversions to support applications, such as AC/DC and DC/DC power converters.

22.1 Features Overview

The ADC module incorporates the following features:

- 10-Bit Resolution
- Unipolar Inputs
- Up to Two Successive Approximation Registers (SARs)
- Up to 24 External Input Channels
- Two Internal Analog Inputs
- Dedicated Result Register for each Analog Input
- ±1 LSB Accuracy at 3.3V
- Single Supply Operation
- 4 Msps Conversion Rate at 3.3V (devices with two SARs)
- 2 Msps Conversion Rate at 3.3V (devices with one SAR)
- Low-Power CMOS Technology

22.2 Module Description

This ADC module is designed for applications that require low latency between the request for conversion and the resultant output data. Typical applications include:

- AC/DC Power Supplies
- DC/DC Converters
- Power Factor Correction (PFC)

This ADC works with the High-Speed PWM module in power control applications that require high-frequency control loops. This module can Sample-and-Convert two analog inputs in a 0.5 microsecond when two SARs are used. This small conversion delay reduces the "phase lag" between measurement and control system response.

Up to five inputs may be sampled at a time (four inputs from the dedicated Sample-and-Hold circuits and one from the shared Sample-and-Hold circuit). If multiple inputs request conversion, the ADC will convert them in a sequential manner, starting with the lowest order input.

This ADC design provides each pair of analog inputs (AN1, AN0), (AN3, AN2),..., the ability to specify its own trigger source out of a maximum of sixteen different trigger sources. This capability allows this ADC to Sample-and-Convert analog inputs that are associated with PWM generators operating on independent time bases.

The user application typically requires synchronization between analog data sampling and PWM output to the application circuit. The very high-speed operation of this ADC module allows "data on demand".

In addition, several hardware features have been added to the peripheral interface to improve real-time performance in a typical DSP-based application.

- Result Alignment Options
- Automated Sampling
- External Conversion Start Control
- Two Internal Inputs to Monitor the INTREF and EXTREF Input Signals

Block diagrams of the ADC module for the family devices are shown in Figure 22-1 through Figure 22-4.

22.3 Module Functionality

The High-Speed, 10-Bit ADC is designed to support power conversion applications when used with the High-Speed PWM module. The ADC may have one or two SAR modules, depending on the device variant. If two SARs are present on a device, two conversions can be processed at a time, yielding 4 Msps conversion rate. If only one SAR is present on a device, only one conversion can be processed at a time, yielding 2 Msps conversion rate. The High-Speed, 10-Bit ADC produces two 10-bit conversion results in a 0.5 microsecond.

The ADC module supports up to 24 external analog inputs and two internal analog inputs. To monitor reference voltage, two internal inputs, AN24 and AN25, are connected to EXTREF and INTREF, respectively.

The analog reference voltage is defined as the device supply voltage (AVDD/AVSS).

The ADC module uses the following control and status registers:

- ADCON: ADC Control Register
- ADSTAT: ADC Status Register
- ADBASE: ADC Base Register^(1,2)
- ADPCFG: ADC Port Configuration Register
- ADPCFG2: ADC Port Configuration Register 2
- ADCPC0: ADC Convert Pair Control Register 0
- ADCPC1: ADC Convert Pair Control Register 1
- ADCPC2: ADC Convert Pair Control Register 2
- ADCPC3: ADC Convert Pair Control Register 3
- ADCPC4: ADC Convert Pair Control Register 4
- ADCPC5: ADC Convert Pair Control Register 5
- ADCPC6: ADC Convert Pair Control Register 6(2)

The ADCON register controls the operation of the ADC module. The ADSTAT register displays the status of the conversion processes. The ADPCFG registers configure the port pins as analog inputs or as digital I/O. The ADCPCx registers control the triggering of the ADC conversions. See Register 22-1 through Register 22-12 for detailed bit configurations.

Note: A unique feature of the ADC module is its ability to sample inputs in an asynchronous manner. Individual Sample-and-Hold circuits can be triggered independently of each other.

FIGURE 22-3: ADC BLOCK DIAGRAM FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES WITH TWO SARs

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IRQEN9	PEND9	SWTRG9	TRGSRC94	TRGSRC93	TRGSRC92	TRGSRC91	TRGSRC90	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IRQEN8	PEND8	SWTRG8	TRGSRC84	TRGSRC83	TRGSRC82	TRGSRC81	TRGSRC80	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15 IRQEN9: Inte		rrupt Request	Enable 9 bit					
	1 = Enable IR	Q generation v	when requeste	d conversion o	of channels AN1	19 and AN18 is	completed	
		t generated	.					
bit 14	PEND9: Pend	ding Conversio	n Status 9 bit					
	1 = Conversio	on of channels	AN19 and AN	18 is pending;	set when selec	ted trigger is as	sserted	
bit 13	SWTRG9: So	oftware Trigger	9 bit			(1)		
	1 = Starts col	nversion of AN	19 and AN18	(if selected by	the TRGSRCx<	(1) (1) (4:0> bits		
	0 = Conversi	on is not starte	d	iuware when t	THE PEIND9 DIT IS	sel.		
	2 20110101							

REGISTER 22-10: ADCPC4: ADC CONVERT PAIR CONTROL REGISTER 4

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

TADLE 23-2.									
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected		
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB		
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z		
			f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z		
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z		
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z		
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z		
		ADD	Wso,#Slit4,Acc	16-Bit Signed Add to Accumulator	1	1	OA,OB,SA,SB		
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z		
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z		
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z		
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z		
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z		
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z		
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z		
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z		
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z		
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z		
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z		
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z		
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z		
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z		
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z		
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None		
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None		
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None		
		BRA	GE, Expr	Branch if Greater Than or Equal	1	1 (2)	None		
		BRA	GEU, Expr	Branch if Unsigned Greater Than or Equal	1	1 (2)	None		
		BRA	GT,Expr	Branch if Greater Than	1	1 (2)	None		
		BRA	GTU, Expr	Branch if Unsigned Greater Than	1	1 (2)	None		
		BRA	LE, Expr	Branch if Less Than or Equal	1	1 (2)	None		
		BRA	LEU,Expr	Branch if Unsigned Less Than or Equal	1	1 (2)	None		
		BRA	LT,Expr	Branch if Less Than	1	1 (2)	None		
		BRA	LTU, Expr	Branch if Unsigned Less Than	1	1 (2)	None		
		BRA	N,Expr	Branch if Negative	1	1 (2)	None		
		BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None		
		BRA	NN,Expr	Branch if Not Negative	1	1 (2)	None		
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None		
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None		
		BRA	OA,Expr	Branch if Accumulator A Overflow	1	1 (2)	None		
		BRA	OB,Expr	Branch if Accumulator B Overflow	1	1 (2)	None		
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None		
		BRA	SA, Expr	Branch if Accumulator A Saturated	1	1 (2)	None		
		BRA	SB,Expr	Branch if Accumulator B Saturated	1	1 (2)	None		
		BRA	Expr	Branch Unconditionally	1	2	None		
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None		
		BRA	Wn	Computed Branch	1	2	None		
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None		
		BSET	Ws,#bit4	Bit Set Ws	1	1	None		
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None		
		DCW 7	Wa Wb	Write Z hit to Ws <wh></wh>	1	1	None		

TABLE 25-2: INSTRUCTION SET OVERVIE	TABLE 25-2:	INSTRUCTION SET OVERVIEW
-------------------------------------	-------------	--------------------------

FIGURE 27-8: OUTPUT COMPARE x/PWMx MODULE TIMING CHARACTERISTICS

TABLE 27-28: SIMPLE OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
OC15	Tfd	Fault Input to PWM I/O Change	_		Tcy + 20	ns		
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.