

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                            |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                             |
| Core Size                  | 16-Bit                                                                            |
| Speed                      | 50 MIPs                                                                           |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, QEI, POR, PWM, WDT                                        |
| Number of I/O              | 85                                                                                |
| Program Memory Size        | 32KB (32K × 8)                                                                    |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 4K x 8                                                                            |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                         |
| Data Converters            | A/D 24x10b; D/A 1x10b                                                             |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                 |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 100-TQFP                                                                          |
| Supplier Device Package    | 100-TQFP (14x14)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs610-50i-pf |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610





NOTES:

# TABLE 4-16: HIGH-SPEED PWM REGISTER MAP

| File<br>Name | SFR<br>Addr | Bit 15   | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9    | Bit 8     | Bit 7     | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2   | Bit 1      | Bit 0   | All<br>Resets |
|--------------|-------------|----------|--------|--------|--------|--------|--------|----------|-----------|-----------|----------|----------|----------|----------|---------|------------|---------|---------------|
| PTCON        | 0400        | PTEN     | —      | PTSIDL | SESTAT | SEIEN  | EIPU   | SYNCPOL  | SYNCOEN   | SYNCEN    | SYNCSRC2 | SYNCSRC1 | SYNCSRC0 | SEVTPS3  | SEVTPS2 | SEVTPS1    | SEVTPS0 | 0000          |
| PTCON2       | 0402        | _        | _      | _      | _      | _      | _      | _        | _         | _         | _        | _        | _        | _        | F       | PCLKDIV<2: | )>      | 0000          |
| PTPER        | 0404        |          |        |        |        |        |        |          | PT        | PER<15:0> |          |          |          |          |         |            |         | FFF8          |
| SEVTCMP      | 0406        |          |        |        |        |        |        | SEVTCN   | IP<12:0>  |           |          |          |          |          | _       | _          | _       | 0000          |
| MDC          | 040A        |          |        |        |        |        |        |          | N         | IDC<15:0> |          |          |          |          |         |            |         | 0000          |
| STCON        | 040E        | —        | —      | _      | SESTAT | SEIEN  | EIPU   | SYNCPOL  | SYNCOEN   | SYNCEN    | SYNCSRC2 | SYNCSRC1 | SYNCSRC0 | SEVTPS3  | SEVTPS2 | SEVTPS1    | SEVTPS0 | 0000          |
| STCON2       | 0410        | —        | —      | _      | —      | _      | —      | _        | _         | -         | _        | _        | —        | -        | F       | PCLKDIV<2: | )>      | 0000          |
| STPER        | 0412        |          |        |        |        |        |        |          | ST        | PER<15:0> |          |          |          |          |         |            |         | FFF8          |
| SSEVTCMP     | 0414        |          |        |        |        |        |        | SSEVTCM  | /IP<15:3> |           |          |          |          |          | _       | _          | _       | 0000          |
| CHOP         | 041A        | CHPCLKEN | —      | —      | —      | _      | —      | CHOPCLK6 | CHOPCLK5  | CHOPCLK4  | CHOPCLK3 | CHOPCLK2 | CHOPCLK1 | CHOPCLK0 | —       | —          | —       | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### TABLE 4-17: HIGH-SPEED PWM GENERATOR 1 REGISTER MAP

| File<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13  | Bit 12  | Bit 11    | Bit 10    | Bit 9     | Bit 8     | Bit 7      | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | All<br>Resets |
|--------------|-------------|---------|---------|---------|---------|-----------|-----------|-----------|-----------|------------|----------|----------|----------|----------|----------|----------|----------|---------------|
| PWMCON1      | 0420        | FLTSTAT | CLSTAT  | TRGSTAT | FLTIEN  | CLIEN     | TRGIEN    | ITB       | MDCS      | DTC1       | DTC0     | DTCP     | —        | MTBS     | CAM      | XPRES    | IUE      | 0000          |
| IOCON1       | 0422        | PENH    | PENL    | POLH    | POLL    | PMOD1     | PMOD0     | OVRENH    | OVRENL    | OVRDAT1    | OVRDAT0  | FLTDAT1  | FLTDAT0  | CLDAT1   | CLDAT0   | SWAP     | OSYNC    | 0000          |
| FCLCON1      | 0424        | IFLTMOD | CLSRC4  | CLSRC3  | CLSRC2  | CLSRC1    | CLSRC0    | CLPOL     | CLMOD     | FLTSRC4    | FLTSRC3  | FLTSRC2  | FLTSRC1  | FLTSRC0  | FLTPOL   | FLTMOD1  | FLTMOD0  | 0000          |
| PDC1         | 0426        |         |         |         |         |           |           |           | PD        | C1<15:0>   |          |          |          |          |          |          |          | 0000          |
| PHASE1       | 0428        |         |         |         |         |           |           |           | PHA       | SE1<15:0>  |          |          |          |          |          |          |          | 0000          |
| DTR1         | 042A        | _       | —       |         |         |           |           |           |           | DTR        | 1<13:0>  |          |          |          |          |          |          | 0000          |
| ALTDTR1      | 042C        | _       | —       |         |         |           |           |           |           | ALTDT      | R1<13:0> |          |          |          |          |          |          | 0000          |
| SDC1         | 042E        |         |         |         |         |           |           |           | SD        | C1<15:0>   |          |          |          |          |          |          |          | 0000          |
| SPHASE1      | 0430        |         |         |         |         |           |           |           | SPHA      | ASE1<15:0> | •        |          |          |          |          |          |          | 0000          |
| TRIG1        | 0432        |         |         |         |         |           |           | TRGCMP<1  | 2:0>      |            |          |          |          |          |          | _        | _        | 0000          |
| TRGCON1      | 0434        | TRGDIV3 | TRGDIV2 | TRGDIV1 | TRGDIV0 | _         | _         | _         | _         | DTM        | —        | TRGSTRT5 | TRGSTRT4 | TRGSTRT3 | TRGSTRT2 | TRGSTRT1 | TRGSTRT0 | 0000          |
| STRIG1       | 0436        |         |         |         |         |           |           | STRGCMP<  | 12:0>     |            |          |          |          |          | _        | _        | _        | 0000          |
| PWMCAP1      | 0438        |         |         |         |         |           |           | PWMCAP<   | 2:0>      |            |          |          |          |          | _        | _        | _        | 0000          |
| LEBCON1      | 043A        | PHR     | PHF     | PLR     | PLF     | FLTLEBEN  | CLLEBEN   | _         | _         | —          | _        | BCH      | BCL      | BPHH     | BPHL     | BPLH     | BPLL     | 0000          |
| LEBDLY1      | 043C        | _       | —       | _       | _       |           |           |           | L         | EB<8:0>    |          |          |          |          | _        | _        | _        | 0000          |
| AUXCON1      | 043E        | HRPDIS  | HRDDIS  | _       | _       | BLANKSEL3 | BLANKSEL2 | BLANKSEL1 | BLANKSELC | ) —        | —        | CHOPSEL3 | CHOPSEL2 | CHOPSEL1 | CHOPSEL0 | CHOPHEN  | CHOPLEN  | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

| TABLE        | 4-25        | : HIG   | H-SPE   | ED PW   | /M GEI  | NERATO    | R 9 REG   | ISTER N   | IAP FOR   | dsPIC     | 33FJ32   | GS610 /  | AND dsF  | PIC33FJ  | 64GS610  | ) DEVIC  | ES       |               |
|--------------|-------------|---------|---------|---------|---------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|----------|----------|---------------|
| File<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13  | Bit 12  | Bit 11    | Bit 10    | Bit 9     | Bit 8     | Bit 7     | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | All<br>Resets |
| PWMCON9      | 0520        | FLTSTAT | CLSTAT  | TRGSTAT | FLTIEN  | CLIEN     | TRGIEN    | ITB       | MDCS      | DTC1      | DTC0     | DTCP     | —        | MTBS     | CAM      | XPRES    | IUE      | 0000          |
| IOCON9       | 0522        | PENH    | PENL    | POLH    | POLL    | PMOD1     | PMOD0     | OVRENH    | OVRENL    | OVRDAT1   | OVRDAT0  | FLTDAT1  | FLTDAT0  | CLDAT1   | CLDAT0   | SWAP     | OSYNC    | 0000          |
| FCLCON9      | 0524        | IFLTMOD | CLSRC4  | CLSRC3  | CLSRC2  | CLSRC1    | CLSRC0    | CLPOL     | CLMOD     | FLTSRC4   | FLTSRC3  | FLTSRC2  | FLTSRC1  | FLTSRC0  | FLTPOL   | FLTMOD1  | FLTMOD0  | 0000          |
| PDC9         | 0526        |         |         |         |         |           |           |           | PDC       | 9<15:0>   |          |          |          |          |          |          |          | 0000          |
| PHASE9       | 0528        |         |         |         |         |           |           |           | PHASE     | =9<15:0>  |          |          |          |          |          |          |          | 0000          |
| DTR9         | 052A        | _       | _       |         |         |           |           |           |           | DTR9      | <13:0>   |          |          |          |          |          |          | 0000          |
| ALTDTR9      | 052A        | _       | _       |         |         |           |           |           |           | ALTDTF    | 89<13:0> |          |          |          |          |          |          | 0000          |
| SDC9         | 052E        |         |         |         |         |           |           |           | SDC       | 9<15:0>   |          |          |          |          |          |          |          | 0000          |
| SPHASE9      | 0530        |         |         |         |         |           |           |           | SPHAS     | E9<15:0>  |          |          |          |          |          |          |          | 0000          |
| TRIG9        | 0532        |         |         |         |         |           |           |           | TRGC      | /IP<15:0> |          |          |          |          |          |          |          | 0000          |
| TRGCON9      | 0534        | TRGDIV3 | TRGDIV2 | TRGDIV1 | TRGDIV0 | _         | _         | _         | _         | DTM       | _        | TRGSTRT5 | TRGSTRT4 | TRGSTRT3 | TRGSTRT2 | TRGSTRT1 | TRGSTRT0 | 0000          |
| STRIG9       | 0536        |         |         |         |         |           |           |           | STRGC     | MP<15:0>  |          |          |          |          |          |          |          | 0000          |
| PWMCAP9      | 0538        |         |         |         |         |           |           | PWMCAP<12 | 2:0>      |           |          |          |          |          | _        | _        | _        | 0000          |
| LEBCON9      | 053A        | PHR     | PHF     | PLR     | PLF     | FLTLEBEN  | CLLEBEN   | _         | _         | _         | _        | BCH      | BCL      | BPHH     | BPHL     | BPLH     | BPLL     | 0000          |
| LEBDLY9      | 053C        | _       | _       | —       | —       |           |           |           | L         | EB<8:0>   |          |          |          |          | _        | —        | —        | 0000          |
| AUXCON9      | 053E        | HRPDIS  | HRDDIS  | _       | —       | BLANKSEL3 | BLANKSEL2 | BLANKSEL1 | BLANKSEL0 | _         | _        | CHOPSEL3 | CHOPSEL2 | CHOPSEL1 | CHOPSEL0 | CHOPHEN  | CHOPLEN  | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-49: PORTE REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES

| File<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9         | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|--------------|-------------|--------|--------|--------|--------|--------|--------|---------------|-------|-------|-------|-------|--------|-------|-------|-------|-------|---------------|
| TRISE        | 02E0        | —      | —      | —      | —      | —      | —      |               |       |       |       | TRIS  | E<9:0> |       |       |       |       | 03FF          |
| PORTE        | 02E2        | _      | —      | _      | _      | _      | _      | - RE<9:0> xx  |       |       |       |       |        |       | xxxx  |       |       |               |
| LATE         | 02E4        | _      | —      | _      | _      | _      | _      | LATE<9:0> 000 |       |       |       |       |        |       |       | 0000  |       |               |
| ODCE         | 02E6        | —      | —      | _      | _      | —      | _      | _             | _     |       |       |       | ODCE   | <7:0> |       |       |       | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### TABLE 4-50: PORTE REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES

| File<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7       | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|--------------|-------------|--------|--------|--------|--------|--------|--------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|-------|---------------|
| TRISE        | 02E0        | —      | -      | —      | —      | —      | -      | —     | —     |             |       |       | TRISE | <7:0> |       |       |       | 00FF          |
| PORTE        | 02E2        | _      | _      | _      | _      | _      | _      | _     | _     |             |       |       | RE<   | :7:0> |       |       |       | xxxx          |
| LATE         | 02E4        | _      | _      | _      | _      | _      | _      | _     | _     | LATE<7:0> 0 |       |       |       |       |       | 0000  |       |               |
| ODCE         | 02E6        | _      | _      | _      | _      | _      | _      | _     | _     | ODCE<7:0>   |       |       |       |       |       |       | 0000  |               |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-51: PORTF REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES

| File<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12  | Bit 11 | Bit 10 | Bit 9 | Bit 8       | Bit 7    | Bit 6 | Bit 5 | Bit 4     | Bit 3 | Bit 2    | Bit 1 | Bit 0 | All<br>Resets |
|--------------|-------------|--------|--------|--------|---------|--------|--------|-------|-------------|----------|-------|-------|-----------|-------|----------|-------|-------|---------------|
| TRISF        | 02E8        | _      |        | TRISF  | <13:12> | _      |        | _     |             |          |       |       | TRISF<8:0 | >     |          |       |       | 30FF          |
| PORTF        | 02EA        | _      | _      | RF<1   | 3:12>   | _      | _      | _     |             |          |       |       | RF<8:0>   |       |          |       |       | xxxx          |
| LATF         | 02EC        | _      | _      | LATF<  | :13:12> | _      | _      | _     | LATF<8:0> 0 |          |       |       |           |       |          | 0000  |       |               |
| ODCF         | 02EE        |        | _      | ODCF<  | <13:12> | _      | _      | _     |             | ODCF<8:6 | i>    | _     | _         | C     | DCF<3:1> |       | _     | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-52: PORTF REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES

| File<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8     | Bit 7    | Bit 6 | Bit 5 | Bit 4     | Bit 3 | Bit 2    | Bit 1 | Bit 0 | All<br>Resets |
|--------------|-------------|--------|--------|--------|--------|--------|--------|-------|-----------|----------|-------|-------|-----------|-------|----------|-------|-------|---------------|
| TRISF        | 02E8        | —      | —      | —      | —      | _      |        | _     |           |          |       |       | TRISF<8:0 | >     |          |       |       | 01FF          |
| PORTF        | 02EA        | _      | _      | _      | _      | _      | _      | —     | RF<8:0>   |          |       |       |           |       | xxxx     |       |       |               |
| LATF         | 02EC        | _      | _      | _      | _      | _      | _      | —     | LATF<8:0> |          |       |       |           |       | 0000     |       |       |               |
| ODCF         | 02EE        | _      | _      | _      | —      | _      | _      | _     |           | ODCF<8:6 | i>    |       | _         | C     | DCF<3:1> |       | _     | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### 4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- Upper boundary addresses for incrementing buffers
- Lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged.

# 4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

# 4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWMx bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is  $M = 2^N$  bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

| Note: | All bit-reversed EA calculations assume   |
|-------|-------------------------------------------|
|       | word-sized data (LSb of every EA is       |
|       | always clear). The XB value is scaled     |
|       | accordingly to generate compatible (byte) |
|       | addresses.                                |

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

| Note: | Modulo     | Addressing   | g and     | Bit-F  | Reversed   |
|-------|------------|--------------|-----------|--------|------------|
|       | Addressi   | ng should    | l not     | be     | enabled    |
|       | together.  | If an appli  | cation a  | attemp | ots to do  |
|       | so, Bit-R  | eversed Ad   | dressin   | g will | assume     |
|       | priority w | hen active f | or the X  | ( WAG  | SU and X   |
|       | WAGU,      | and Modul    | o Addr    | essing | , will be  |
|       | disabled.  | However, N   | /Iodulo / | Addre  | ssing will |
|       | continue   | to function  | in the X  | RAG    | J.         |

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.



| IADLL | <b>4</b> -07. |       | VENOL    |         |    |    | NI)     |          |         |
|-------|---------------|-------|----------|---------|----|----|---------|----------|---------|
|       |               | Norma | al Addre | SS      |    |    | Bit-Rev | ersed Ac | ldress  |
| A3    | A2            | A1    | A0       | Decimal | A3 | A2 | A1      | A0       | Decimal |
| 0     | 0             | 0     | 0        | 0       | 0  | 0  | 0       | 0        | 0       |
| 0     | 0             | 0     | 1        | 1       | 1  | 0  | 0       | 0        | 8       |
| 0     | 0             | 1     | 0        | 2       | 0  | 1  | 0       | 0        | 4       |
| 0     | 0             | 1     | 1        | 3       | 1  | 1  | 0       | 0        | 12      |
| 0     | 1             | 0     | 0        | 4       | 0  | 0  | 1       | 0        | 2       |
| 0     | 1             | 0     | 1        | 5       | 1  | 0  | 1       | 0        | 10      |
| 0     | 1             | 1     | 0        | 6       | 0  | 1  | 1       | 0        | 6       |
| 0     | 1             | 1     | 1        | 7       | 1  | 1  | 1       | 0        | 14      |
| 1     | 0             | 0     | 0        | 8       | 0  | 0  | 0       | 1        | 1       |
| 1     | 0             | 0     | 1        | 9       | 1  | 0  | 0       | 1        | 9       |
| 1     | 0             | 1     | 0        | 10      | 0  | 1  | 0       | 1        | 5       |
| 1     | 0             | 1     | 1        | 11      | 1  | 1  | 0       | 1        | 13      |
| 1     | 1             | 0     | 0        | 12      | 0  | 0  | 1       | 1        | 3       |
| 1     | 1             | 0     | 1        | 13      | 1  | 0  | 1       | 1        | 11      |
| 1     | 1             | 1     | 0        | 14      | 0  | 1  | 1       | 1        | 7       |
| 1     | 1             | 1     | 1        | 15      | 1  | 1  | 1       | 1        | 15      |

### TABLE 4-67: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)



# © 2009-2014 Microchip Technology Inc.

# dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

| U-0             | U-0                                | U-0              | U-0             | U-0              | R/W-0            | R/W-0           | U-0   |
|-----------------|------------------------------------|------------------|-----------------|------------------|------------------|-----------------|-------|
| —               | —                                  | —                | —               | —                | QEI1IE           | PSEMIE          |       |
| bit 15          |                                    | •                |                 |                  | •                |                 | bit 8 |
|                 |                                    |                  |                 |                  |                  |                 |       |
| U-0             | R/W-0                              | R/W-0            | U-0             | U-0              | R/W-0            | R/W-0           | U-0   |
| —               | INT4IE                             | INT3IE           | —               | —                | MI2C2IE          | SI2C2IE         | -     |
| bit 7           |                                    |                  |                 |                  |                  |                 | bit 0 |
|                 |                                    |                  |                 |                  |                  |                 |       |
| Legend:         |                                    |                  |                 |                  |                  |                 |       |
| R = Readable I  | bit                                | W = Writable     | bit             | U = Unimpler     | mented bit, read | as '0'          |       |
| -n = Value at P | OR                                 | '1' = Bit is set |                 | '0' = Bit is cle | ared             | x = Bit is unkn | own   |
|                 |                                    |                  |                 |                  |                  |                 |       |
| bit 15-11       | Unimplemen                         | ted: Read as '   | כי              |                  |                  |                 |       |
| bit 10          | QEI1IE: QEI1                       | Event Interrup   | t Enable bit    |                  |                  |                 |       |
|                 | 1 = Interrupt r                    | equest is enab   | led             |                  |                  |                 |       |
|                 | 0 = Interrupt r                    | equest is not e  | nabled          |                  |                  |                 |       |
| bit 9           | PSEMIE: PW                         | M Special Ever   | nt Match Interi | rupt Enable bit  | I                |                 |       |
|                 | 1 = Interrupt r<br>0 = Interrupt r | equest is enab   | led<br>nabled   |                  |                  |                 |       |
| bit 8-7         | Unimplemen                         | ted: Read as '   | n'abioa         |                  |                  |                 |       |
| bit 6           | INT4IF: Exter                      | nal Interrupt 4  | -<br>Enable bit |                  |                  |                 |       |
|                 | 1 = Interrupt r                    | equest is enab   | led             |                  |                  |                 |       |
|                 | 0 = Interrupt r                    | equest is not e  | nabled          |                  |                  |                 |       |
| bit 6           | INT3IE: Exter                      | nal Interrupt 3  | Enable bit      |                  |                  |                 |       |
|                 | 1 = Interrupt r                    | equest is enab   | led             |                  |                  |                 |       |
|                 | 0 = Interrupt r                    | equest is not e  | nabled          |                  |                  |                 |       |
| bit 4-3         | Unimplemen                         | ted: Read as '   | כ'              |                  |                  |                 |       |
| bit 2           | MI2C2IE: I2C                       | 2 Master Even    | ts Interrupt En | able bit         |                  |                 |       |
|                 | 1 = Interrupt r                    | equest is enab   | led             |                  |                  |                 |       |
| hit 1           |                                    |                  |                 | hla hit          |                  |                 |       |
| DICI            | 1 = Interrupt r                    | 2 Slave Events   |                 |                  |                  |                 |       |
|                 | 0 = Interrupt r                    | equest is not e  | nabled          |                  |                  |                 |       |
| bit 0           | Unimplemen                         | ted: Read as '   | o'              |                  |                  |                 |       |
|                 | •                                  |                  |                 |                  |                  |                 |       |

### REGISTER 7-16: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

# 8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (DS70182) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., the UART Receive register and Input Capture 1 buffer) and buffers, or variables stored in RAM, with minimal CPU intervention. The DMA Controller (DMAC) can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA Controller uses a dedicated bus for data transfers and, therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

Note: The DMA module is not available on dsIPC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406 devices.

The peripherals that can utilize DMA are listed in Table 8-1 along with their associated Interrupt Request (IRQ) numbers.

### TABLE 8-1: DMA CONTROLLER CHANNEL TO PERIPHERAL ASSOCIATIONS

| Peripheral to DMA Association         | DMAxREQ Register<br>IRQSEL<6:0> Bits | DMAxPAD Register<br>Values to Read from<br>Peripheral | DMAxPAD Register<br>Values to Write to<br>Peripheral |  |  |
|---------------------------------------|--------------------------------------|-------------------------------------------------------|------------------------------------------------------|--|--|
| INT0 – External Interrupt 0           | 0000000                              | —                                                     | —                                                    |  |  |
| IC1 – Input Capture 1                 | 0000001                              | 0x0140 (IC1BUF)                                       | —                                                    |  |  |
| IC2 – Input Capture 2                 | 0000101                              | 0x0144 (IC2BUF)                                       | —                                                    |  |  |
| IC3 – Input Capture 3                 | 0100101                              | 0x0148 (IC3BUF)                                       | —                                                    |  |  |
| IC4 – Input Capture 4                 | 0100110                              | 0x014C (IC4BUF)                                       | —                                                    |  |  |
| OC1 – Output Compare 1 Data           | 0000010                              | —                                                     | 0x0182 (OC1R)                                        |  |  |
| OC1 – Output Compare 1 Secondary Data | 0000010                              | —                                                     | 0x0180 (OC1RS)                                       |  |  |
| OC2 – Output Compare 2 Data           | 0000110                              | —                                                     | 0x0188 (OC2R)                                        |  |  |
| OC2 – Output Compare 2 Secondary Data | 0000110                              | —                                                     | 0x0186 (OC2RS)                                       |  |  |
| OC3 – Output Compare 3 Data           | 0011001                              | —                                                     | 0x018E (OC3R)                                        |  |  |
| OC3 – Output Compare 3 Secondary Data | 0011001                              | —                                                     | 0x018C (OC3RS)                                       |  |  |
| OC4 – Output Compare 4 Data           | 0011010                              | —                                                     | 0x0194 (OC4R)                                        |  |  |
| OC4 – Output Compare 4 Secondary Data | 0011010                              | —                                                     | 0x0192 (OC4RS)                                       |  |  |
| TMR2 – Timer2                         | 0000111                              | —                                                     | —                                                    |  |  |
| TMR3 – Timer3                         | 0001000                              | —                                                     | —                                                    |  |  |
| TMR4 – Timer4                         | 0011011                              | —                                                     | —                                                    |  |  |
| TMR5 – Timer5                         | 0011100                              | —                                                     | —                                                    |  |  |
| SPI1 – Transfer Done                  | 0001010                              | 0x0248 (SPI1BUF)                                      | 0x0248 (SPI1BUF)                                     |  |  |
| SPI2 – Transfer Done                  | 0100001                              | 0x0268 (SPI2BUF)                                      | 0x0268 (SPI2BUF)                                     |  |  |
| UART1RX – UART1 Receiver              | 0001011                              | 0x0226 (U1RXREG)                                      | —                                                    |  |  |
| UART1TX – UART1 Transmitter           | 0001100                              | —                                                     | 0x0224 (U1TXREG)                                     |  |  |
| UART2RX – UART2 Receiver              | 0011110                              | 0x0236 (U2RXREG)                                      | —                                                    |  |  |
| UART2TX – UART2 Transmitter           | 0011111                              | —                                                     | 0x0234 (U2TXREG)                                     |  |  |
| ECAN1 – RX Data Ready                 | 0100010                              | 0x0640 (C1RXD)                                        | —                                                    |  |  |
| ECAN1 – TX Data Request               | 1000110                              | —                                                     | 0x0642 (C1TXD)                                       |  |  |

© 2009-2014 Microchip Technology Inc.

# 9.1 CPU Clocking System

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices provide six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS, or EC) Oscillator
- Primary Oscillator with PLL
- Low-Power RC (LPRC) Oscillator
- FRC Oscillator with Postscaler
- Secondary (LP) Oscillator

### 9.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 50 MHz. The crystal is connected to the OSC1 and OSC2 pins
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The LPRC internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3 "PLL Configuration"**.

The FRC frequency depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator Tuning register (see Register 9-4).

### 9.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 24.1 "Configuration Bits"** for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected), FOSC, is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device and speeds up to 50 MIPS are supported by the device architecture.

Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.

# EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

#### TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

| Oscillator Mode                                 | Oscillator Source | POSCMD<1:0> | FNOSC<2:0> | See Notes |
|-------------------------------------------------|-------------------|-------------|------------|-----------|
| Fast RC Oscillator with Divide-by-N (FRCDIVN)   | Internal          | xx          | 111        | 1, 2      |
| Fast RC Oscillator with Divide-by-16 (FRCDIV16) | Internal          | xx          | 110        | 1         |
| Low-Power RC Oscillator (LPRC)                  | Internal          | xx          | 101        | 1         |
| Secondary Oscillator (SOSC)                     | Secondary         | xx          | 100        | —         |
| Primary Oscillator (HS) with PLL (HSPLL)        | Primary           | 10          | 011        | —         |
| Primary Oscillator (XT) with PLL (XTPLL)        | Primary           | 01          | 011        | —         |
| Primary Oscillator (EC) with PLL (ECPLL)        | Primary           | 00          | 011        | 1         |
| Primary Oscillator (HS)                         | Primary           | 10          | 010        | —         |
| Primary Oscillator (XT)                         | Primary           | 01          | 010        | —         |
| Primary Oscillator (EC)                         | Primary           | 00          | 010        | 1         |
| Fast RC Oscillator with PLL (FRCPLL)            | Internal          | xx          | 001        | 1         |
| Fast RC Oscillator (FRC)                        | Internal          | xx          | 000        | 1         |

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

| R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/W-0                                                                                                                                                                                                                                                                                                                         | R/W-0                                           | R/W-0                                              | U-0                                                           | U-0                                                          | U-0                                                   | U-0                                        |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|--|--|--|
| TRGDIV3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TRGDIV2                                                                                                                                                                                                                                                                                                                       | TRGDIV1                                         | TRGDIV0                                            | —                                                             | —                                                            | —                                                     | —                                          |  |  |  |
| bit 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                               |                                                 |                                                    |                                                               |                                                              |                                                       | bit 8                                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                               |                                                 |                                                    |                                                               |                                                              |                                                       |                                            |  |  |  |
| R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U-0                                                                                                                                                                                                                                                                                                                           | R/W-0                                           | R/W-0                                              | R/W-0                                                         | R/W-0                                                        | R/W-0                                                 | R/W-0                                      |  |  |  |
| DTM <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | —                                                                                                                                                                                                                                                                                                                             | TRGSTRT5                                        | TRGSTRT4                                           | TRGSTRT3                                                      | TRGSTRT2                                                     | TRGSTRT1                                              | TRGSTRT0                                   |  |  |  |
| bit 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                               |                                                 |                                                    |                                                               |                                                              |                                                       | bit 0                                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                               |                                                 |                                                    |                                                               |                                                              |                                                       |                                            |  |  |  |
| Legend:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                               |                                                 |                                                    |                                                               |                                                              | (0)                                                   |                                            |  |  |  |
| R = Readable I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bit                                                                                                                                                                                                                                                                                                                           | W = Writable                                    | bit                                                |                                                               | nented bit, read                                             | as '0'                                                |                                            |  |  |  |
| -n = Value at P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OR                                                                                                                                                                                                                                                                                                                            | $1^{\prime} = Bit is set$                       |                                                    | 0' = Bit is cle                                               | ared                                                         | x = Bit is unkr                                       | nown                                       |  |  |  |
| bit 15-12 <b>TRGDIV&lt;3:0&gt;:</b> Trigger # Output Divider bits<br>1111 = Trigger output for every 16th trigger event<br>1100 = Trigger output for every 15th trigger event<br>1001 = Trigger output for every 14th trigger event<br>1000 = Trigger output for every 13th trigger event<br>1010 = Trigger output for every 12th trigger event<br>1010 = Trigger output for every 11th trigger event<br>1000 = Trigger output for every 9th trigger event<br>1000 = Trigger output for every 9th trigger event<br>1011 = Trigger output for every 8th trigger event<br>0110 = Trigger output for every 7th trigger event<br>0110 = Trigger output for every 6th trigger event<br>0101 = Trigger output for every 5th trigger event<br>0111 = Trigger output for every 3th trigger event<br>0112 = Trigger output for every 3th trigger event<br>0113 = Trigger output for every 3th trigger event<br>0114 = Trigger output for every 3th trigger event<br>0115 = Trigger output for every 3th trigger event<br>0116 = Trigger output for every 3th trigger event<br>0117 = Trigger output for every 3th trigger event<br>0118 = Trigger output for every 3th trigger event<br>0119 = Trigger output for every 3th trigger event<br>0109 = Trigger output for every 2th trigger event |                                                                                                                                                                                                                                                                                                                               |                                                 |                                                    |                                                               |                                                              |                                                       |                                            |  |  |  |
| bit 11-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unimplement                                                                                                                                                                                                                                                                                                                   | ted: Read as '                                  | )'<br>'1)                                          |                                                               |                                                              |                                                       |                                            |  |  |  |
| dit 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>DTM: Dual Trigger Mode bit<sup>(1)</sup></li> <li>1 = Secondary trigger event is combined with the primary trigger event to create the PWM trigger</li> <li>0 = Secondary trigger event is not combined with the primary trigger event to create the PWM trigger; two separate PWM triggers are generated</li> </ul> |                                                 |                                                    |                                                               |                                                              |                                                       |                                            |  |  |  |
| bit 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unimplement                                                                                                                                                                                                                                                                                                                   | ted: Read as '                                  | כי                                                 |                                                               |                                                              |                                                       |                                            |  |  |  |
| bit 5-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TRGSTRT<5:                                                                                                                                                                                                                                                                                                                    | <b>0&gt;:</b> Trigger Po                        | stscaler Start                                     | Enable Select                                                 | bits                                                         |                                                       |                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 111111 <b>=</b> Wa                                                                                                                                                                                                                                                                                                            | iits 63 PWM cy                                  | cles before ge                                     | enerating the fi                                              | rst trigger event                                            | after the mode                                        | ule is enabled                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                             |                                                 |                                                    |                                                               |                                                              |                                                       |                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                             |                                                 |                                                    |                                                               |                                                              |                                                       |                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000010 = Wa<br>000001 = Wa<br>000000 = Wa                                                                                                                                                                                                                                                                                     | its 2 PWM cyc<br>its 1 PWM cyc<br>its 0 PWM cyc | les before ger<br>le before gene<br>les before ger | nerating the first<br>erating the first<br>nerating the first | st trigger event a<br>trigger event al<br>st trigger event a | after the modul<br>iter the module<br>after the modul | e is enabled<br>is enabled<br>e is enabled |  |  |  |

## REGISTER 16-18: TRGCONx: PWM TRIGGER CONTROL x REGISTER



| R/W-0           | R/W-0                                                                                                                                      | R/W-0            | U-0           | R/W-0, HC         | R/W-0                | R-0                | R-1   |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|-------------------|----------------------|--------------------|-------|--|--|
| UTXISEL1        | UTXINV                                                                                                                                     | UTXISEL0         | —             | UTXBRK            | UTXEN <sup>(1)</sup> | UTXBF              | TRMT  |  |  |
| bit 15          |                                                                                                                                            |                  |               |                   |                      |                    | bit 8 |  |  |
|                 |                                                                                                                                            |                  |               |                   |                      |                    |       |  |  |
| R/W-0 R/W-0     |                                                                                                                                            | R/W-0            | R-1           | R-0               | R-0 R-0              |                    | R-0   |  |  |
| URXISEL1        | URXISEL0                                                                                                                                   | ADDEN            | RIDLE         | PERR              | FERR                 | OERR               | URXDA |  |  |
| bit 7           |                                                                                                                                            |                  |               |                   |                      |                    | bit 0 |  |  |
|                 |                                                                                                                                            |                  |               |                   |                      |                    |       |  |  |
| Legend:         |                                                                                                                                            | HC = Hardware    | Clearable bit | C = Clearable bit |                      |                    |       |  |  |
| R = Readable    | bit                                                                                                                                        | W = Writable bit |               | U = Unimpler      | nented bit, rea      | id as '0'          |       |  |  |
| -n = Value at P | OR                                                                                                                                         | '1' = Bit is set |               | '0' = Bit is cle  | ared                 | x = Bit is unknown |       |  |  |
|                 |                                                                                                                                            |                  |               |                   |                      |                    |       |  |  |
| bit 15,13       | bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits                                                                   |                  |               |                   |                      |                    |       |  |  |
|                 | 11 = Reserved; do not use                                                                                                                  |                  |               |                   |                      |                    |       |  |  |
|                 | 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result,<br>the transmit buffer becomes empty |                  |               |                   |                      |                    |       |  |  |

## REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

|     | line trains | mit bui  | lei r | ecoi  | nes empty |    |         |     |    |     |          |       |           |     |          |
|-----|-------------|----------|-------|-------|-----------|----|---------|-----|----|-----|----------|-------|-----------|-----|----------|
| 01= | Interrupt   | when     | the   | last  | character | is | shifted | out | of | the | Transmit | Shift | Register; | all | transmit |
|     | operation   | ns are ( | comi  | olete | d         |    |         |     |    |     |          |       |           |     |          |

00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

| UTXINV: UARTx Transmit Polarity Inversion bit                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| If IREN = 0:                                                                                                                                                                                                                     |
| 1 = UxTX Idle state is '0'                                                                                                                                                                                                       |
| 0 = UxTX Idle state is '1'                                                                                                                                                                                                       |
| If $IREN = 1$ :                                                                                                                                                                                                                  |
| $1 = IrDA^{(e)}$ encoded UxTX Idle state is '1'                                                                                                                                                                                  |
| 0 = IrDA encoded UxTX Idle state is '0'                                                                                                                                                                                          |
| Unimplemented: Read as '0'                                                                                                                                                                                                       |
| UTXBRK: UARTx Transmit Break bit                                                                                                                                                                                                 |
| <ul> <li>1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion</li> <li>2 Product transmission is dischard as here completed.</li> </ul> |
| 0 = Sync Break transmission is disabled or has completed                                                                                                                                                                         |
| UTXEN: UARTx Transmit Enable bit <sup>(1)</sup>                                                                                                                                                                                  |
| 1 = Transmit is enabled, UxTX pin is controlled by UARTx                                                                                                                                                                         |
| 0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is controlled by the port                                                                                                        |
| UTXBF: UARTx Transmit Buffer Full Status bit (read-only)                                                                                                                                                                         |
| 1 = Transmit buffer is full                                                                                                                                                                                                      |
| 0 = Transmit buffer is not full; at least one more character can be written                                                                                                                                                      |
| TRMT: Transmit Shift Register Empty bit (read-only)                                                                                                                                                                              |
| <ul> <li>1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)</li> <li>0 = Transmit Shift Register is not empty, a transmission is in progress or queued</li> </ul>           |
| URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits                                                                                                                                                                        |
| 11 = Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has 4 data characters)                                                                                                                            |
| 10 = Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)                                                                                                                        |
| 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive<br>buffer; receive buffer has one or more characters                                                                          |
|                                                                                                                                                                                                                                  |

**Note 1:** Refer to "**UART**" (DS70188) in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UART module for transmit operation. That section of the manual is available on the Microchip web site: www.microchip.com.

## FIGURE 21-1: ECANx MODULE BLOCK DIAGRAM



#### FIGURE 22-4: ADC BLOCK DIAGRAM FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES WITH TWO SARs



#### **REGISTER 22-11: ADCPC5: ADC CONVERT PAIR CONTROL REGISTER 5 (CONTINUED)**

| bit 4-0 | TRGSRC10<4:0>: Trigger 10 Source Selection bits                         |
|---------|-------------------------------------------------------------------------|
|         | Selects trigger source for conversion of analog channels AN21 and AN20. |
|         | 11111 = Timer2 period match                                             |
|         | 11110 = PWM Generator 8 current-limit ADC trigger                       |
|         | 11101 = PWM Generator 7 current-limit ADC trigger                       |
|         | 11100 = PWM Generator 6 current-limit ADC trigger                       |
|         | 11011 = PWM Generator 5 current-limit ADC trigger                       |
|         | 11010 = PWM Generator 4 current-limit ADC trigger                       |
|         | 11001 = PWM Generator 3 current-limit ADC trigger                       |
|         | 11000 = PWM Generator 2 current-limit ADC trigger                       |
|         | 10111 = PWM Generator 1 current-limit ADC trigger                       |
|         | 10110 = PWM Generator 9 secondary trigger selected                      |
|         | 10101 = PWM Generator 8 secondary trigger selected                      |
|         | 10100 = PWM Generator 7 secondary trigger selected                      |
|         | 10011 = PWM Generator 6 secondary trigger selected                      |
|         | 10010 = PWM Generator 5 secondary trigger selected                      |
|         | 10001 = PWM Generator 4 secondary trigger selected                      |
|         | 10000 = PWM Generator 3 secondary trigger selected                      |
|         | 01111 = PWM Generator 2 secondary trigger selected                      |
|         | 01110 = PWM Generator 1 secondary trigger selected                      |
|         | 01101 = PWM secondary Special Event Trigger selected                    |
|         | 01100 = limer1 period match                                             |
|         | 01011 = PWM Generator 8 primary trigger selected                        |
|         | 01010 = PWM Generator 7 primary trigger selected                        |
|         | 01001 = PWM Generator 6 primary trigger selected                        |
|         | 01000 = PWM Generator 5 primary trigger selected                        |
|         | 00111 = PWM Generator 4 primary trigger selected                        |
|         | 00110 = PWM Generator 3 primary trigger selected                        |
|         | 00101 = PWM Generator 2 primary trigger selected                        |
|         | 00100 = PWM Generator 1 primary trigger selected                        |
|         | 00011 = PWM Special Event Trigger selected                              |
|         | 00010 = Global software trigger selected                                |
|         | 00001 = Individual software trigger selected                            |
|         | 00000 = No conversion enabled                                           |
|         |                                                                         |

**Note 1:** The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.



# FIGURE 27-13: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

# TABLE 27-32:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING<br/>REQUIREMENTS

| АС СНА       | RACTERIST             | ICS                                           | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |            |    |     |                                         |  |  |
|--------------|-----------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|-----|-----------------------------------------|--|--|
| Param<br>No. | Symbol                | Characteristic <sup>(1)</sup>                 | Min                                                                                                                                                                                                  | Conditions |    |     |                                         |  |  |
| SP10         | TscP                  | Maximum SCKx Frequency                        | —                                                                                                                                                                                                    | —          | 10 | MHz | See Note 3                              |  |  |
| SP20         | TscF                  | SCKx Output Fall Time                         | —                                                                                                                                                                                                    | —          | _  | ns  | See Parameter DO32<br>and <b>Note 4</b> |  |  |
| SP21         | TscR                  | SCKx Output Rise Time                         | —                                                                                                                                                                                                    |            | _  | ns  | See Parameter DO31<br>and <b>Note 4</b> |  |  |
| SP30         | TdoF                  | SDOx Data Output Fall Time                    | —                                                                                                                                                                                                    |            | _  | ns  | See Parameter DO32<br>and <b>Note 4</b> |  |  |
| SP31         | TdoR                  | SDOx Data Output Rise Time                    | —                                                                                                                                                                                                    |            | _  | ns  | See Parameter DO31<br>and <b>Note 4</b> |  |  |
| SP35         | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge     | —                                                                                                                                                                                                    | 6          | 20 | ns  |                                         |  |  |
| SP36         | TdoV2sc,<br>TdoV2scL  | SDOx Data Output Setup to<br>First SCKx Edge  | 30                                                                                                                                                                                                   |            | _  | ns  |                                         |  |  |
| SP40         | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data<br>Input to SCKx Edge | 30                                                                                                                                                                                                   | —          | _  | ns  |                                         |  |  |
| SP41         | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge     | 30                                                                                                                                                                                                   | —          | _  | ns  |                                         |  |  |

**Note 1:** These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

| АС СН             | ARACTE | RISTICS                                                                 | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V^{(2)}} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |        |       |            |  |  |  |  |
|-------------------|--------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------------|--|--|--|--|
| Param<br>No.      | Symbol | ymbol Characteristic Min Typ <sup>(1)</sup> Max Uni                     |                                                                                                                                                                                                                                                                                               |        | Units | Conditions |  |  |  |  |
| Clock Parameters  |        |                                                                         |                                                                                                                                                                                                                                                                                               |        |       |            |  |  |  |  |
| AD50b             | TAD    | ADC Clock Period 35.8 — — ns                                            |                                                                                                                                                                                                                                                                                               |        |       |            |  |  |  |  |
|                   |        | Con                                                                     | version F                                                                                                                                                                                                                                                                                     | late   |       |            |  |  |  |  |
| AD55b             | tCONV  | Conversion Time                                                         | _                                                                                                                                                                                                                                                                                             | 14 Tad |       | —          |  |  |  |  |
| AD56b             | FCNV   | Throughput Rate                                                         |                                                                                                                                                                                                                                                                                               |        |       |            |  |  |  |  |
|                   |        | Devices with Single SAR                                                 | _                                                                                                                                                                                                                                                                                             | —      | 2.0   | Msps       |  |  |  |  |
|                   |        | Devices with Dual SARs                                                  | _                                                                                                                                                                                                                                                                                             | —      | 4.0   | Msps       |  |  |  |  |
| Timing Parameters |        |                                                                         |                                                                                                                                                                                                                                                                                               |        |       |            |  |  |  |  |
| AD63b             | tDPU   | Time to Stabilize Analog Stage<br>from ADC Off to ADC On <sup>(1)</sup> | 1.0                                                                                                                                                                                                                                                                                           | _      | 10    | μS         |  |  |  |  |

#### TABLE 27-41: 10-BIT, HIGH-SPEED ADC MODULE TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Overall functional device operation at VBOR < VDD < VDDMIN is guaranteed but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN.

#### FIGURE 27-23: ANALOG-TO-DIGITAL CONVERSION TIMING PER INPUT



# 64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



TOP VIEW



Microchip Technology Drawing C04-085C Sheet 1 of 2

NOTES: