

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	85
Program Memory Size	32KB (32K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs610-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICE[™].

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) (DS51765)
- "MPLAB[®] ICD 3 Design Advisory" (DS51764)
- "MPLAB[®] REAL ICE[™] In-Circuit Debugger User's Guide" (DS51616)
- *"Using MPLAB[®] REAL ICE™"* (poster) (DS51749)

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space. All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses (EAs) are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

4.2.6 DMA RAM

Some devices contain 1 Kbyte of dual ported DMA RAM, which is located at the end of Y data space. Memory locations that are part of Y data RAM and are in the DMA RAM space are accessible simultaneously by the CPU and the DMA Controller module. DMA RAM is utilized by the DMA Controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA Controller without having to steal cycles from the CPU.

When the CPU and the DMA Controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

TABLE 4-	·1:	CPU CO	RE REGIS	STER MA	Р													
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000						V	Vorking Regis	ter 0									0000
WREG1	0002						V	Vorking Regis	ter 1									0000
WREG2	0004						V	Vorking Regis	ter 2									0000
WREG3	0006						V	Vorking Regis	ter 3									0000
WREG4	0008						V	Vorking Regis	ter 4									0000
WREG5	000A						V	Vorking Regis	ter 5									0000
WREG6	000C						V	Vorking Regis	ter 6									0000
WREG7	000E						V	Vorking Regis	ter 7									0000
WREG8	0010						V	Vorking Regis	ter 8									0000
WREG9	0012						V	Vorking Regis	ter 9									0000
WREG10	0014						W	orking Regist	er 10									0000
WREG11	0016						W	orking Regist	er 11									0000
WREG12	0018						W	orking Regist	er 12									0000
WREG13	001A		Working Register 13 0000															
WREG14	001C		Working Register 14 0000															
WREG15	001E						W	orking Regist	er 15									0800
SPLIM	0020						Stack	Pointer Limit	Register									xxxx
ACCAL	0022							ACCAL										xxxx
ACCAH	0024							ACCAH										xxxx
ACCAU	0026	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>				ACCA	U				xxxx
ACCBL	0028			-				ACCBL		-								xxxx
ACCBH	002A							ACCBH										xxxx
ACCBU	002C	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>				ACCB	U				xxxx
PCL	002E			-			Program (Counter Low E	Byte Register									0000
PCH	0030	—	_	_	—	_	—	—	_			Program	n Counter Hig	gh Byte F	Register			0000
TBLPAG	0032	—	_	_	—	_	—	—	_			Table Pa	age Address	Pointer F	Register			0000
PSVPAG	0034	Program Memory Visibility Page Address Pointer Register 000								0000								
RCOUNT	0036			-			REPEAT	Loop Counte	er Register									xxxx
DCOUNT	0038							DCOUNT<15	:0>									xxxx
DOSTARTL	003A						DOS	TARTL<15:1>									0	XXXX
DOSTARTH	003C	—	—	—	—	—	—	—	—	—	—		DO	STARTH	l<5:0>			00xx
DOENDL	003E						DOE	ENDL<15:1>									0	xxxx
DOENDH	0040	—	—	—	—	—	—	—	—	—	—			DOEND	ЭН			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: UART1 REGISTER MAP

File Name	SFR Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR FERR OERR URXDA 012									0110
U1TXREG	0224	_	_	_	_	_						UART1	Transmit R	egister				xxxx
U1RXREG	0226	_	UART1 Receive Register 0									0000						
U1BRG	0228	8 Baud Rate Generator Prescaler 00											0000					

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: UART2 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	UARTEN		USIDL	IREN	RTSMD	-	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR FERR OERR URXDA 01							0110		
U2TXREG	0234	_	_	_	_	_	_	_				UART2	Transmit R	egister				xxxx
U2RXREG	0236	_	_	_	_	_	_	_	UART2 Receive Register 0							0000		
U2BRG	0238	Baud Rate Generator Prescaler 0000										0000						

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-60: PMD REGISTER MAP FOR dsPIC33FJ32GS610 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD		I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	ADCMD	0000
PMD2	0772	_	—	_		IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	—	_		_	CMPMD	_	_	_	_	QEI2MD	_	_	_	I2C2MD	_	0000
PMD4	0776	_	—	_		—	_	-					_	REFOMD		_	_	0000
PMD6	077A	PWM8MD	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD				_	—		_	_	0000
PMD7	077C	_	_	_	-	CMP4MD	CMP3MD	CMP2MD	CMP1MD	—		-	_	_	_	_	PWM9MD	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-61: PMD REGISTER MAP FOR dsPIC33FJ64GS608 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD		C1MD	ADCMD	0000
PMD2	0772	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	—	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	_	_	_	_	QEI2MD	—	_	_	I2C2MD	_	0000
PMD4	0776	_	_	_	_	_	_	_	_	_	_	_	—	REFOMD	_	_	_	0000
PMD6	077A	PWM8MD	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	—	_	_	_	_	0000
PMD7	077C	_	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	_	_		_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-62: PMD REGISTER MAP FOR dsPIC33FJ32GS608 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD		I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	ADCMD	0000
PMD2	0772	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	_	_	_	_	QEI2MD	_	_	_	I2C2MD	_	0000
PMD4	0776	_			_	_		-		_	—	_	—	REFOMD	—	_		0000
PMD6	077A	PWM8MD	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	—	_	—		_	_		0000
PMD7	077C	_	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

NOTES:

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

One row of program Flash memory can be programmed at a time. To achieve this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat Steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON	for block erase operation	
MOV #	#0x4042, W0 ;	
MOV W	W0, NVMCON	Initialize NVMCON
; Init pointer t	to row to be ERASED	
MOV ‡	<pre>#tblpage(PROG_ADDR), W0 ;</pre>	
MOV W	W0, TBLPAG	Initialize PM Page Boundary SFR
MOV #	<pre>#tbloffset(PROG_ADDR), W0 ;</pre>	Initialize in-page EA[15:0] pointer
TBLWTL W	WO, [WO] ;	Set base address of erase block
DISI ‡	#5 ;	Block all interrupts with priority <7
	;	for next 5 instructions
MOV #	#0x55, W0	
MOV W	WO, NVMKEY ;	Write the 55 key
MOV #	#0xAA, W1 ;	
MOV W	W1, NVMKEY ;	Write the AA key
BSET N	NVMCON, #WR ;	Start the erase sequence
NOP	;	Insert two NOPs after the erase
NOP	;	command is asserted

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—			
bit 7							bit 0			
Legend:	L:4		L:4		a a vata al la itu ya a a					
R = Readable		vv = vvritable	DIT	0 = 0	nented bit, read	1 as U x – Pitio unkn	0000			
-n = value at P	OR	I = DILIS SEL		0 = Dit is cies	areu		IOWI			
bit 15	NSTDIS: Inte	rrunt Nestina F)isahle hit							
Sit 10	1 = Interrupt r	nesting is disab	oled							
	0 = Interrupt r	nesting is enab	led							
bit 14	bit 14 OVAERR: Accumulator A Overflow Trap Flag bit									
	1 = Trap was caused by an overflow of Accumulator A									
	0 = Irap was	not caused by	an overflow o	f Accumulator	A					
bit 13	OVBERR: Ac	cumulator B O	verflow I rap H	-lag bit						
	1 = Trap was 0 = Trap was	not caused by and	an overflow of AC	f Accumulator	В					
bit 12	COVAERR: A	Accumulator A	Catastrophic (Overflow Trap F	-lag bit					
	1 = Trap was	caused by a ca	atastrophic ov	erflow of Accur	mulator A					
	0 = Trap was	not caused by	a catastrophic	c overflow of A	ccumulator A					
bit 11	COVBERR: A	Accumulator B	Catastrophic (Overflow Trap F	-lag bit					
	1 = Trap was	caused by a ca	atastrophic ov	erflow of Accur	nulator B					
bit 10	0 = Trap was	not caused by	rflow Trop En	covernow of A	Comulator B					
bit TO	1 = Trap over	flow of Accum	illator A							
	0 = Trap is dis	sabled								
bit 9	OVBTE: Accu	umulator B Ove	erflow Trap En	able bit						
	1 = Trap over	flow of Accumu	ulator B							
	0 = Trap is dis	sabled								
bit 8	COVTE: Cata	astrophic Overf	low Trap Enat	ble bit	D · · · · ·					
	1 = Irap on a 0 = Trap is dist	catastrophic o sabled	verflow of Acc	cumulator A or	B is enabled					
bit 7	SFTACERR:	Shift Accumula	tor Error Statu	us bit						
2	1 = Math erro	or trap was caus	sed by an inva	alid accumulato	or shift					
	0 = Math erro	or trap was not	caused by an	invalid accumu	lator shift					
bit 6	DIV0ERR: Ar	ithmetic Error S	Status bit							
	1 = Math erro	or trap was caus	sed by a divid caused by a d	e-by-zero livide-by-zero						
bit 5	DMACERR:	DMA Controller	Error Status	bit						
	1 = DMA Con	troller error tra	p has occurre	d						
	0 = DMA Con	troller error tra	p has not occu	urred						
bit 4	MATHERR: A	Arithmetic Error	Status bit							
	1 = Math erro 0 = Math erro	or trap has occu or trap has not c	irred occurred							

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0						
PWM2IF	PWM1IF	ADCP12IF	—	—	_	_	—						
bit 15	•			•			bit 8						
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0						
_	—	—	ADCP11IF	ADCP10IF	ADCP9IF	ADCP8IF	—						
bit 7							bit 0						
Legend:													
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own						
bit 15	PWM2IF: PW	M2 Interrupt Fl	ag Status bit										
	1 = Interrupt r	request has occ	curred .										
	0 = Interrupt r	request has not	occurred										
bit 14	PWM1IF: PW	M1 Interrupt FI	ag Status bit										
	1 = Interrupt r	equest has occ											
hit 13		DC Pair 12 Co	nversion Don	a Interrunt Flag	n Status hit								
bit 15		request has occ			y Status bit								
	0 = Interrupt r	request has not	occurred										
bit 12-5	Unimplemen	ted: Read as ')'										
bit 4	ADCP111F: A	DC Pair 11 Co	nversion Done	e Interrupt Flag	g Status bit								
	1 = Interrupt r	equest has occ	curred										
	0 = Interrupt r	request has not	occurred										
bit 3	ADCP10IF: A	DC Pair 10 Co	nversion Don	e Interrupt Flag	g Status bit								
	1 = Interrupt r	request has occ	curred										
1	0 = Interrupt r	request has not	occurred		х., н.,								
bit 2	ADCP9IF: AL	DC Pair 9 Conv	ersion Done II	nterrupt Flag S	status bit								
	\perp = interrupt r	equest has occ											
bit 1		C Pair 8 Conv	ersion Done li	nterrunt Flag S	status hit								
Dit 1	ADCP8IF: ADC Pair 8 Conversion Done Interrupt Flag Status bit												
	0 = Interrupt request has not occurred												
bit 0	Unimplemen	ted: Read as ')'										
	-												

REGISTER 7-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

		-					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	ADCP5IP2	ADCP5IP1	ADCP5IP0		ADCP4IP2	ADCP4IP1	ADCP4IP0
bit 15						- -	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	ADCP3IP2	ADCP3IP1	ADCP3IP0	—	ADCP2IP2	ADCP2IP1	ADCP2IP0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	ADCP5IP<2:0	0>: ADC Pair 5	Conversion L	Jone Interrupt	Priority bits		
	111 = Interrup	pt is Priority 7	nignest priority	y interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1	chlad				
L:1.44		pt source is als					
DIT 11		ted: Read as			Dui - uitu - hitu		
DIT 10-8		U>: ADC Pair 4		vinterrupt	Priority bits		
		puis Phonity 7	nignest priority	y interrupt)			
	•						
	•						
	001 = Interrup	pt is Priority 1	ablad				
hit 7		tod: Bood on '					
DIL 7			U Conversion F)ono Intorrunt	Driarity bita		
DIL 0-4	111 - Interru	$\mathbf{0>}$. ADC Fall 3	bighest priority	v interrunt)	FIIOIILY DILS		
	•			y interrupt)			
	•						
	•						
	001 = Interrup	pt is Priority 1	abled				
hit 2		tod: Bood os '					
bit 2.0			0 Conversion F)ono Intorrunt	Priority bite		
Dit 2-0		ot is Priority 7	bighest priority	v interrunt)	Filonity bits		
	•	prist nonty /	ingriest priority	y interrupt)			
	•						
	•	at la Dui-situ d					
	001 = Interrup	pt is Priority 1 of source is dis	abled				

REGISTER 7-44: IPC28: INTERRUPT PRIORITY CONTROL REGISTER 28

REGISTER 16-23: LEBCONX: LEADING-EDGE BLANKING CONTROL x REGISTER (CONTINUED)

bit 1	BPLH: Blanking in PWMxL High Enable bit
	 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high
bit 0	BPLL: Blanking in PWMxL Low Enable bit
	 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low 0 = No blanking when PWMxL output is low

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

P/M/O	11.0	R/M 0		R/M O	D/M/O	P/M 0	P/M O		
120FN			SCI REI		A10M		SMEN		
hit 15		IZCOIDE	SOLIVEL		ATOM	DISSER	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC		
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN		
bit 7 bi									
Legend: HC = Hardware Clearable bit									
R = Readable	bit	W = Writable	e bit	U = Unimplem	ented bit, read as	s 'O'			
-n = Value at P	OR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkno	own		
6:4 7									
DIT 15	1 – Enable	s the 12Cy mo	dule and con	figures the SD	Av and SCI v nins	e as serial port p	ins		
	0 = Disable	es the I2Cx mo	odule; all I ² C	pins are contro	lled by port functi	ons	115		
bit 14	Unimplem	ented: Read a	as '0'						
bit 13	I2CSIDL: 12	2Cx Stop in Id	le Mode bit						
	1 = Discon	tinues module	operation wh	nen device ente	ers Idle mode				
		ues module op	peration in Idle	e mode	1 ² 0 1)				
bit 12	SCLREL: S	SCLX Release	Control bit (v	vnen operating	as I-C slave)				
	1 = Releas 0 = Holds S	SCLX Clock Iov	v (clock streto)	ch)					
	If STREN = 1:								
	Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware is clear								
	at beginning of slave transmission. Hardware is clear at end of slave reception.								
	Bit is R/S (i.e., software	can only write	e '1' to release	clock). Hardware	e is clear at beg	inning of slave		
	transmission.								
bit 11	IPMIEN: In	telligent Perip	heral Manage	ement Interface	(IPMI) Enable bi	t			
	1 = IPMI m	ode is enable	d; all address	es are Acknow	ledged				
bit 10	0 = 11 with those is ababied A10M \cdot 10-Bit Slave Address bit								
Sit To	1 = I2CxAE	DD is a 10-bit	slave address	5					
	0 = I2CxAE	DD is a 7-bit sl	ave address						
bit 9	DISSLW: D	isable Slew F	Rate Control b	bit					
	1 = Slew rate	ate control is d	lisabled						
bit 8	SMEN SM	IRus Innut I ev	vels hit						
Sit 0	1 = Enable	s I/O pin three	sholds complia	ant with SMBus	s specification				
	0 = Disable	es SMBus inpu	ut thresholds		·				
bit 7	GCEN: Ge	neral Call Ena	able bit (when	operating as I	² C™ slave)				
	1 = Enable	es interrupt wh	nen a general	call address is	received in the I2	CxRSR (module	e is enabled for		
	0 = Genera	al call address	s is disabled						
bit 6	STREN: SO	CLx Clock Stre	etch Enable b	it (when operat	ting as I ² C slave)				
	Used in cor	njunction with	the SCLREL	bit.	5				
	1 = Enable	s software or	receives clocl	k stretching					
	0 = Disable	es software or	receives cloc	K stretching					

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

REGISTER	20-1: UXMO	DE: UARTX N	IODE REGI	SIER						
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
UARTEN ⁽¹	1)	USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0			
bit 15							bit 8			
R/W-0, H0	C R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL			
bit 7 bit 0										
Legend:		HC = Hardwa	re Clearable b	bit						
R = Readab	ole bit	W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value a	at POR	'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared x = Bit is unknow							
bit 15	UARTEN: UA 1 = UARTx is 0 = UARTx is minimal	RTx Enable bi enabled; all U disabled; all U	_t (1) IARTx pins are JARTx pins ar	e controlled by re controlled b	v UARTx as defi y port latches,	ined by UEN<1:0 UARTx power co)> onsumption is			
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	USIDL: UART	x Stop in Idle I	Mode bit							
	1 = Discontin 0 = Continue	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 								
bit 12	IREN: IrDA® E	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾								
	1 = IrDA enco	oder and deco	der are enable der are disable	ed ad						
bit 11	RTSMD: Mod	$\sigma = \pi D A$ encoder and decoder are disabled RTSMD: Mode Selection for UXRTS Pin bit								
	$1 = \frac{UxRTS}{UxRTS} p$ $0 = UxRTS p$	in is in Simple> in is in Flow Co	c mode ontrol mode							
bit 10	Unimplemen	ted: Read as '	0'							
bit 9-8	bit 9-8 UEN<1:0>: UARTx Pin Enable bits 11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin is controlled by port latches 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by port latches 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins are controlled by 10 port latches									
bit 7	WAKE: Wake	-up on Start bit	Detect During	g Sleep Mode	Enable bit					
	1 = UARTx w in hardwa 0 = No wake-	 1 = UARTx will continue to sample the UxRX pin; interrupt is generated on falling edge, bit is cleared in hardware on following rising edge 0 = No wake-up is enabled 								
bit 6	LPBACK: UA 1 = Enables I 0 = Loopback	LPBACK: UARTx Loopback Mode Select bit 1 = Enables Loopback mode 0 = Loopback mode is disabled								
bit 5	ABAUD: Auto-Baud Enable bit									
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or completed 									
Note 1: F e N	Refer to " UART" (enabling the UART ⁄licrochip web site	DS70188) in th module for rec www.microch	ne <i>"dsPIC33/P</i> ceive or transn ip.com.	PIC24 Family F nit operation. 1	Reference Manu That section of t	<i>ual"</i> for informatic he manual is ava	on on ailable on the			

MODELLADT. MODE DECISTED 010TI ~~

2: This feature is only available for the 16x BRG mode (BRGH = 0).

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0		
	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN		
bit 15	bit 15 bit 8								
	5/2.2			D /0.0	5/2.2				
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0		R/C-0		
	WAKIF	ERRIF	—	FIFUIF	RBOVIE	RBIF	I BIF		
							DILO		
Legend:		C = Writable.	but only '0' ca	n be written to	clear the bit				
R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'$									
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	x = Bit is unkn	x = Bit is unknown			
bit 15-14	Unimplemen	ted: Read as ')'						
bit 13	TXBO: Trans	mitter in Error S	State Bus Off I	oit					
	1 = Transmitter	er is in Bus Off	state						
1:040	0 = Transmitte	er is not in Bus	Off state						
bit 12	IXBP: Iransr	mitter in Error S	tate Bus Pass	Sive bit					
	1 = Transmitte 0 = Transmitte	er is not in Bus	Passive state	1					
bit 11	RXBP: Recei	ver in Error Sta	te Bus Passiv	e bit					
	1 = Receiver	is in Bus Passi [,]	ve state						
	0 = Receiver	is not in Bus Pa	assive state						
bit 10	TXWAR: Trar	nsmitter in Erro	r State Warnin	ig bit					
	1 = Transmitte	er is in Error W er is not in Erro	arning state r Warning sta	tο					
bit 9	0 - mansmiller is not in Error Warning state								
bito	1 = Receiver	is in Error Warr	ning state						
	0 = Receiver	is not in Error V	Varning state						
bit 8	EWARN: Trar	nsmitter or Rec	eiver in Error	State Warning	bit				
1 = Transmitter or receiver is in Error Warning state									
hit 7	0 = I ransmitter or receiver is not in Error Warning state								
	1 = Interrupt r	request has occ	eiveu interrup surred	I Flag Dit					
	0 = Interrupt r	equest has not	occurred						
bit 6	WAKIF: Bus	Wake-up Activit	y Interrupt Fla	ag bit					
	1 = Interrupt r	equest has occ	curred						
	0 = Interrupt r	equest has not	occurred						
bit 5	ERRIF: Error	Interrupt Flag b	oit (multiple so	ources in CxIN	TF<13:8> regis	ter bits)			
	1 = Interrupt r 0 = Interrupt r	equest has occ	occurred						
bit 4	Unimplemented: Read as '0'								
bit 3	FIFOIF: FIFO Almost Full Interrupt Flag bit								
	1 = Interrupt r	equest has occ	curred						
	0 = Interrupt r	equest has not	occurred						
bit 2	RBOVIF: RX	Buffer Overflow	v Interrupt Fla	g bit					
	1 = Interrupt r	equest has occ	curred						
	o = merrupt r	equest has not	occurred						

REGISTER 21-6: CXINTF: ECANX INTERRUPT FLAG REGISTER

REGISTER 22-7: ADCPC1: ADC CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)

hit 10 0	TRCCRC2 .4.0 Trigger 2 Course Coloction bits
bit 12-8	TRGSRC3<4:0>: Trigger 3 Source Selection bits Selects trigger source for conversion of analog channels AN7 and AN6. 11111 = Timer2 period match 11110 = PWM Generator 8 current-limit ADC trigger 11101 = PWM Generator 7 current-limit ADC trigger 11011 = PWM Generator 6 current-limit ADC trigger 11010 = PWM Generator 5 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger 11011 = PWM Generator 2 current-limit ADC trigger 10110 = PWM Generator 1 current-limit ADC trigger 10110 = PWM Generator 3 secondary trigger is selected 10101 = PWM Generator 7 secondary trigger is selected 10101 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10011 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 1 secondary trigger is selected 10010 = PWM Generator 1 secondary trigger is selected 10111 = PWM Generator 1 secondary trigger is selected 10110 = PWM Generator 1 secondary trigger is selected 10110 = PWM Generator 7 primary trigger is selected 10100 = Timer1 period match 10101 = PWM Generator 7 primary trigger is selected 10100 = PWM Generator 7 primary trigger is selected 10101 = PWM Generator 5 primary trigger is selected 10100 = PWM Generator 7 primary trigger is selected 10101 = PWM Generator 7 primary trigger is selected
	00111 = PWM Generator 4 primary trigger is selected 00110 = PWM Generator 3 primary trigger is selected 00101 = PWM Generator 2 primary trigger is selected 00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected 00010 = Global software trigger is selected 00001 = Individual software trigger is selected
	00000 = No conversion is enabled
bit 7	IRQEN2: Interrupt Request Enable 2 bit 1 = Enables IRQ generation when requested conversion of Channels AN5 and AN4 is completed 0 = IRQ is not generated
bit 6	PEND2: Pending Conversion Status 2 bit 1 = Conversion of Channels AN5 and AN4 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	 SWTRG2: Software Trigger 2 bit 1 = Starts conversion of AN5 and AN4 (if selected by the TRGSRCx<4:0> bits)⁽¹⁾ This bit is automatically cleared by hardware when the PEND2 bit is set. 0 = Conversion has not started

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

REGISTER 22-12: ADCPC6: ADC CONVERT PAIR CONTROL REGISTER 6⁽²⁾ (CONTINUED)

- bit 4-0 TRGSRC12<4:0>: Trigger 12 Source Selection bits Selects trigger source for conversion of analog channels AN25 and AN24. 11111 = Timer2 period match 11110 = PWM Generator 8 current-limit ADC trigger 11101 = PWM Generator 7 current-limit ADC trigger 11100 = PWM Generator 6 current-limit ADC trigger 11011 = PWM Generator 5 current-limit ADC trigger 11010 = PWM Generator 4 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger 10111 = PWM Generator 1 current-limit ADC trigger 10110 = PWM Generator 9 secondary trigger selected 10101 = PWM Generator 8 secondary trigger selected 10100 = PWM Generator 7 secondary trigger selected 10011 = PWM Generator 6 secondary trigger selected 10010 = PWM Generator 5 secondary trigger selected 10001 = PWM Generator 4 secondary trigger selected 10000 = PWM Generator 3 secondary trigger selected 01111 = PWM Generator 2 secondary trigger selected 01110 = PWM Generator 1 secondary trigger selected 01101 = PWM secondary Special Event Trigger selected 01100 = Timer1 period match 01011 = PWM Generator 8 primary trigger selected 01010 = PWM Generator 7 primary trigger selected 01001 = PWM Generator 6 primary trigger selected 01000 = PWM Generator 5 primary trigger selected 00111 = PWM Generator 4 primary trigger selected 00110 = PWM Generator 3 primary trigger selected 00101 = PWM Generator 2 primary trigger selected 00100 = PWM Generator 1 primary trigger selected 00011 = PWM Special Event Trigger selected 00010 = Global software trigger selected 00001 = Individual software trigger selected 00000 = No conversion is enabled
- **Note 1:** The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.
 - 2: This register is not available on dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices.

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.40 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

U Universal Asynchronous Receiver

	Transr	nitter	(UAF	RT)	 	 	279
v							
	-		10	<u> </u>			

W

Watchdog Timer (WDT)	349, 353
Programming Considerations	
Watchdog Timer Time-out Reset (WDTO)	121
WWW Address	455
WWW, On-Line Support	14