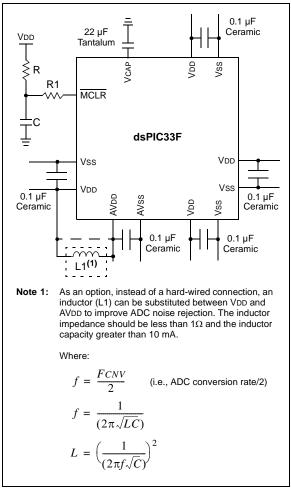


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	85
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs610-e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 Capacitor on Internal Voltage Regulator (VCAP)

A low-ESR (< 0.5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a minimum capacitor of 22 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 27.0 "Electrical Characteristics"** for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 24.2** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides for two specific device functions:

- Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

TABLE 4-30: SPI1 REGISTER MAP

File Name	SFR Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	_	_			—	SPIROV			_		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248		SPI1 Transmit and Receive Buffer Register 0000									0000						

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: SPI2 REGISTER MAP

File Name	SFR Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN	—	SPISIDL	—	—	_		—	_	SPIROV	_	_	_	_	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	-	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI2BUF	0268							SPI2 Tra	nsmit and F	Receive But	fer Registe	r						0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-66: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing
	mode specified in the instruction can differ
	for the source and destination EA. How-
	ever, the 4-bit Wb (Register Offset) field is
	shared by both source and destination
	(but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through Register Indirect tables.

The two-source operand, prefetch registers must be members of the set: {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the MAC class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- Upper boundary addresses for incrementing buffers
- Lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWMx bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing should not be enabled
	together. If an application attempts to do
	so, Bit-Reversed Addressing will assume
	priority when active for the X WAGU and X
	WAGU, and Modulo Addressing will be
	disabled. However, Modulo Addressing will
	continue to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "**Reset**" (DS70192) in the "*dsPIC33/PIC24 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: Software RESET Instruction
- WDTO: Watchdog Timer Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note:	Refer to the specific peripheral section or
	Section 3.0 "CPU" of this data sheet for
	register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_	_	_	—		DMA1IP2	DMA1IP1	DMA1IP0				
bit 15	·		-		•		bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	ADIP2	ADIP1	ADIP0		U1TXIP2	U1TXIP1	U1TXIP0				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
oit 15-11	Unimplomon	ted: Read as '	0'								
	-										
bit 10-8				=	e Interrupt Priori	ly bits					
	 111 = Interrupt is Priority 7 (highest priority interrupt) 										
	•										
	•										
		pt is Priority 1 pt source is dis	abled								
bit 7	000 = Interru										
bit 7 bit 6-4	000 = Interru Unimplemen	pt source is dis	0'	Interrupt Priori	ty bits						
	000 = Interru Unimplemen ADIP<2:0>: /	pt source is dis ited: Read as '	0' ion Complete	-	ty bits						
	000 = Interru Unimplemen ADIP<2:0>: /	pt source is dis Ited: Read as ' ADC1 Conversi	0' ion Complete	-	ty bits						
	000 = Interru Unimplemen ADIP<2:0>: /	pt source is dis Ited: Read as ' ADC1 Conversi	0' ion Complete	-	ty bits						
	000 = Interru Unimplemen ADIP<2:0>: / 111 = Interru • •	pt source is dis ited: Read as ' ADC1 Conversi pt is Priority 7 (0' ion Complete	-	ty bits						
	000 = Interru Unimplemen ADIP<2:0>: / 111 = Interru • • 001 = Interru	pt source is dis Ited: Read as ' ADC1 Conversi	^{0'} ion Complete (highest priorit	-	ty bits						
bit 6-4	000 = Interru Unimplemen ADIP<2:0>: / 111 = Interru • • 001 = Interru 000 = Interru	pt source is dis ited: Read as ' ADC1 Conversi pt is Priority 7 (pt is Priority 1 pt source is dis	^{0'} ion Complete (highest priorit abled	-	ty bits						
	000 = Interru Unimplemen ADIP<2:0>: / 111 = Interru • • 001 = Interru 000 = Interru Unimplemen	pt source is dis ited: Read as ' ADC1 Conversi pt is Priority 7 (pt is Priority 1	^{0'} ion Complete (highest priorit abled 0'	y interrupt)	ty bits						
bit 6-4 bit 3	000 = Interru Unimplemen ADIP<2:0>: / 111 = Interru • • 001 = Interru 000 = Interru Unimplemen U1TXIP<2:0>	pt source is dis ated: Read as ' ADC1 Conversi pt is Priority 7 (pt is Priority 1 pt source is dis ated: Read as '	0' ion Complete (highest priorit abled 0' smitter Interru	ty interrupt) pt Priority bits	ty bits						
bit 6-4 bit 3	000 = Interru Unimplemen ADIP<2:0>: / 111 = Interru • • 001 = Interru 000 = Interru Unimplemen U1TXIP<2:0>	pt source is dis ited: Read as ' ADC1 Conversi pt is Priority 7 (pt is Priority 1 pt source is dis ited: Read as ' >: UART1 Trans	0' ion Complete (highest priorit abled 0' smitter Interru	ty interrupt) pt Priority bits	ty bits						
bit 6-4 bit 3	000 = Interru Unimplemen ADIP<2:0>: / 111 = Interru • • 001 = Interru 000 = Interru Unimplemen U1TXIP<2:0>	pt source is dis ited: Read as ' ADC1 Conversi pt is Priority 7 (pt is Priority 1 pt source is dis ited: Read as ' >: UART1 Trans	0' ion Complete (highest priorit abled 0' smitter Interru	ty interrupt) pt Priority bits	ty bits						
bit 6-4 bit 3	000 = Interru Unimplemen ADIP<2:0>: / 111 = Interru • • 001 = Interru 000 = Interru Unimplemen U1TXIP<2:0> 111 = Interru • • • 001 = Interru	pt source is dis ited: Read as ' ADC1 Conversi pt is Priority 7 (pt is Priority 1 pt source is dis ited: Read as ' >: UART1 Trans	0' ion Complete (highest priorit abled 0' smitter Interru (highest priorit	ty interrupt) pt Priority bits	ty bits						

REGISTER 7-24: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

11.2 Open-Drain Configuration

In addition to the PORTx, LATx and TRISx registers for data control, some digital only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (for example, 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to "**Pin Diagrams**" for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The ADPCFG and TRISx registers control the operation of the Analog-to-Digital port pins. The port pins that are to function as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADPCFG and ADPCFG2 registers have a default value of 0x000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORTx register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 11-1.

11.5 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 30 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-of-State.

Four control registers are associated with the Change Notification (CN) module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables an CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on Change Notification pins should always be disabled when the port pin is configured as a digital output.

MOV	0xFF00, W0	Configure PORTB<15:8> as	s inputs
MOV	W0, TRISBB	and PORTB<7:0> as output	ts
NOP		Delay 1 cycle	
BTSS	PORTB, #13	Next Instruction	

EQUATION 11-1: PORT WRITE/READ EXAMPLE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL					
bit 15	•	•	•				bit					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
OVRDAT1	OVRDAT0	FLTDAT1 ⁽²⁾	FLTDAT0 ⁽²⁾	CLDAT1 ⁽²⁾	CLDAT0 ⁽²⁾	SWAP	OSYNC					
bit 7	orribrito	1210/111	1212/110	020/01	0LB/110	01114	bit					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'						
-n = Value at I		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown					
	-											
bit 15		xH Output Pin										
		dule controls P dule controls P										
bit 14			•									
DIL 14		L Output Pin C dule controls P										
bit 13	 0 = GPIO module controls PWMxL pin POLH: PWMxH Output Pin Polarity bit 											
		oin is active-low										
	-	oin is active-hig										
pit 12	POLL: PWMxL Output Pin Polarity bit											
		oin is active-low oin is active-hig										
bit 11-10	PMOD<1:0>:	PWM # I/O Pir	n Mode bits ⁽¹⁾									
		D pin pair is in t			mode							
		D pin pair is in t D pin pair is in t										
		D pin pair is in t			node							
bit 9	OVRENH: OV	verride Enable	for PWMxH Pi	n bit								
	1 = OVRDAT	<1> provides d	ata for output	on PWMxH pir	ı							
	0	nerator provides			pin							
bit 8		erride Enable f										
		<0> provides d nerator provides										
bit 7-6	OVRDAT<1:0)>: Data for PV	/MxH, PWMxL	Pins if Overrie	de is Enabled b	its						
		= 1, OVRDAT< = 1, OVRDAT<										
bit 5-4	FLTDAT<1:0:	>: State for PW	MxH and PW	MxL Pins if FL1	MOD is Enable	ed bits ⁽²⁾						
		CLCONx<15>)										
		ve, then FLTDA ve, then FLTDA										
		ve, then FLIDA CLCONx<15>)										
					<u>.</u> ate for PWMxH.							
			AT<0> provide									

REGISTER 16-19: IOCONX: PWM I/O CONTROL X REGISTER

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F15BP3	F15BP2	F15BP1	F15BP0	F14BP3	F14BP2	F14BP1	F14BP0			
bit 15					·		bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-12	1111 = Filter 1110 = Filter • • • • • • • • • • • • • • • • • • •	RX Buffer Ma hits received ir hits received ir hits received ir hits received ir	n RX FIFO but n RX Buffer 14 n RX Buffer 1 n RX Buffer 0	ffer 1						
bit 11-8	F14BP<3:0>	: RX Buffer Ma	sk for Filter 14	l bits (same va	lues as bits<15	:12>)				
bit 7-4	F13BP<3:0>	: RX Buffer Ma	sk for Filter 13	3 bits (same va	lues as bits<15	:12>)				
bit 3-0	F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bits<15:12>)									

REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0
bit 7							bit 0

REGISTER 21-22: CXRXFUL1: ECANX RECEIVE BUFFER FULL REGISTER 1

bit	7	

Legend:	C = Writeable, but only '0' can be written to clear the bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

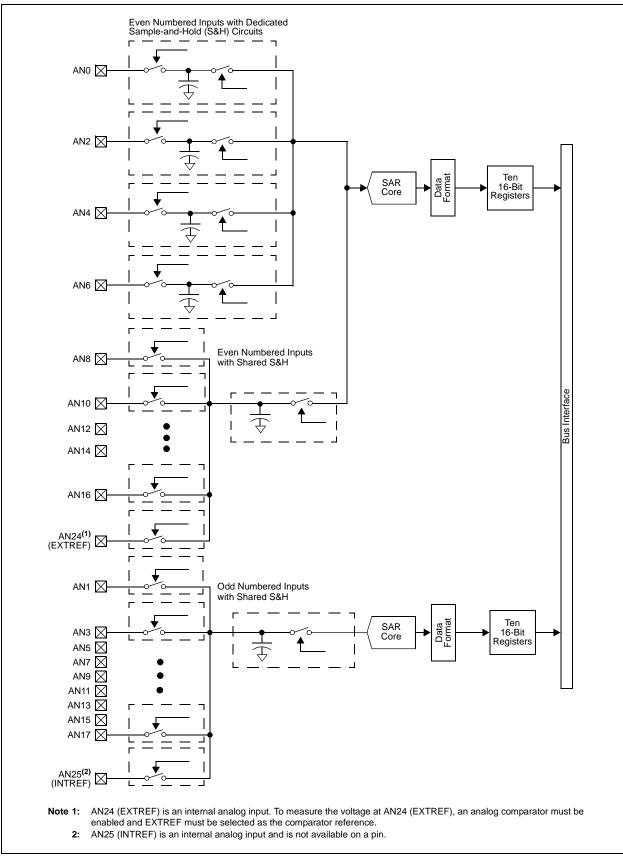
1 = Buffer is full (set by module)

0 = Buffer is empty

REGISTER 21-23: CxRXFUL2: ECANx RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |


Legend:	C = Writeable, but on	C = Writeable, but only '0' can be written to clear the bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

FIGURE 22-3: ADC BLOCK DIAGRAM FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES WITH TWO SARs

REGISTER 22-8: ADCPC2: ADC CONVERT PAIR CONTROL REGISTER 2 (CONTINUED)

bit 12-8	TRGSRC5<4:0>: Trigger 5 Source Selection bits
	Selects trigger source for conversion of Analog Channels AN11 and AN10.
	11111 = Timer2 period match
	11110 = PWM Generator 8 current-limit ADC trigger 11101 = PWM Generator 7 current-limit ADC trigger
	11100 = PWM Generator 6 current-limit ADC trigger
	11001 = PWM Generator 5 current-limit ADC trigger
	11010 = PWM Generator 4 current-limit ADC trigger
	11001 = PWM Generator 3 current-limit ADC trigger
	11000 = PWM Generator 2 current-limit ADC trigger
	10111 = PWM Generator 1 current-limit ADC trigger
	10110 = PWM Generator 9 secondary trigger selected
	10101 = PWM Generator 8 secondary trigger selected
	10100 = PWM Generator 7 secondary trigger selected
	10011 = PWM Generator 6 secondary trigger selected
	10010 = PWM Generator 5 secondary trigger selected
	10001 = PWM Generator 4 secondary trigger selected
	10000 = PWM Generator 3 secondary trigger selected
	01111 = PWM Generator 2 secondary trigger selected
	01110 = PWM Generator 1 secondary trigger selected
	01101 = PWM secondary Special Event Trigger selected
	01100 = Timer1 period match
	01011 = PWM Generator 8 primary trigger selected
	01010 = PWM Generator 7 primary trigger selected
	01001 = PWM Generator 6 primary trigger selected 01000 = PWM Generator 5 primary trigger selected
	00111 = PWM Generator 4 primary trigger selected
	00110 = PWM Generator 3 primary trigger selected
	00101 = PWM Generator 2 primary trigger selected
	00100 = PWM Generator 1 primary trigger selected
	00011 = PWM Special Event Trigger selected
	00010 = Global software trigger selected
	00001 = Individual software trigger selected
	00000 = No conversion is enabled
bit 7	IRQEN4: Interrupt Request Enable 4 bit
	1 = Enables IRQ generation when requested conversion of Channels AN9 and AN8 is completed
	0 = IRQ is not generated
bit 6	PEND4: Pending Conversion Status 4 bit
	1 = Conversion of Channels AN9 and AN8 is pending; set when selected trigger is asserted
	0 = Conversion is complete
bit 5	SWTRG4: Software Trigger 4 bit
	1 = Starts conversion of AN9 and AN8 (if selected by the TRGSRCx<4:0> bits) ⁽¹⁾
	This bit is automatically cleared by hardware when the PEND4 bit is set.
	0 = Conversion has not started

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IRQEN7	PEND7	SWTRG7	TRGSRC74	TRGSRC73	TRGSRC72	TRGSRC71	TRGSRC70		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IRQEN6	PEND6	SWTRG6	TRGSRC64	TRGSRC63	TRGSRC62	TRGSRC61	TRGSRC60		
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15	IRQEN7: Inte	errupt Request	Enable 7 bit						
	1 = Enables I 0 = IRQ is no	•	when request	ed conversion	of Channels Al	N15 and AN14	is completed		
bit 14	PEND7: Pen	ding Conversio	n Status 7 bit						
	 1 = Conversion of Channels AN15 and AN14 is pending; set when selected trigger is asserted 0 = Conversion is complete 					sserted			
bit 13	SWTRG7: So	WTRG7: Software Trigger 7 bit							
	1 = Starts co This bit i	nversion of AN	15 and AN14 cleared by ha	•	the TRGSRCx< he PEND7 bit is	,			

REGISTER 22-9: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

REGISTER 22-11: ADCPC5: ADC CONVERT PAIR CONTROL REGISTER 5 (CONTINUED)

bit 4-0	TRGSRC10<4:0>: Trigger 10 Source Selection bits Selects trigger source for conversion of analog channels AN21 and AN20. 11111 = Timer2 period match
	11110 = PWM Generator 8 current-limit ADC trigger
	11101 = PWM Generator 7 current-limit ADC trigger
	11100 = PWM Generator 6 current-limit ADC trigger
	11011 = PWM Generator 5 current-limit ADC trigger
	11010 = PWM Generator 4 current-limit ADC trigger
	11001 = PWM Generator 3 current-limit ADC trigger
	11000 = PWM Generator 2 current-limit ADC trigger
	10111 = PWM Generator 1 current-limit ADC trigger
	10110 = PWM Generator 9 secondary trigger selected
	10101 = PWM Generator 8 secondary trigger selected
	10100 = PWM Generator 7 secondary trigger selected
	10011 = PWM Generator 6 secondary trigger selected
	10010 = PWM Generator 5 secondary trigger selected
	10001 = PWM Generator 4 secondary trigger selected
	10000 = PWM Generator 3 secondary trigger selected
	01111 = PWM Generator 2 secondary trigger selected
	01110 = PWM Generator 1 secondary trigger selected
	01101 = PWM secondary Special Event Trigger selected
	01100 = Timer1 period match
	01011 = PWM Generator 8 primary trigger selected
	01010 = PWM Generator 7 primary trigger selected
	01001 = PWM Generator 6 primary trigger selected
	01000 = PWM Generator 5 primary trigger selected
	00111 = PWM Generator 4 primary trigger selected
	00110 = PWM Generator 3 primary trigger selected
	00101 = PWM Generator 2 primary trigger selected
	00100 = PWM Generator 1 primary trigger selected
	00011 = PWM Special Event Trigger selected
	00010 = Global software trigger selected
	00001 = Individual software trigger selected
	00000 = No conversion enabled

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

23.3 Module Applications

This module provides a means for the SMPS dsPIC[®] DSC devices to monitor voltage and currents in a power conversion application. The ability to detect transient conditions and stimulate the dsPIC DSC processor and/or peripherals, without requiring the processor and ADC to constantly monitor voltages or currents, frees the dsPIC DSC to perform other tasks.

The comparator module has a high-speed comparator and an associated 10-bit DAC that provides a programmable reference voltage to the inverting input of the comparator. The polarity of the comparator output is user-programmable. The output of the module can be used in the following modes:

- Generate an Interrupt
- Trigger an ADC Sample-and-Convert Process
- Truncate the PWM Signal (current limit)
- Truncate the PWM Period (current minimum)
- Disable the PWM Outputs (Fault latch)

The output of the comparator module may be used in multiple modes at the same time, such as: 1) generate an interrupt, 2) have the ADC take a sample and convert it, and 3) truncate the PWM output in response to a voltage being detected beyond its expected value.

The comparator module can also be used to wake-up the system from Sleep or Idle mode when the analog input voltage exceeds the programmed threshold voltage.

23.4 DAC

The range of the DAC is controlled via an analog multiplexer that selects either AVDD/2, an internal reference source, INTREF, or an external reference source, EXTREF. The full range of the DAC (AVDD/2) will typically be used when the chosen input source pin is shared with the ADC. The reduced range option (INTREF) will likely be used when monitoring current levels using a current sense resistor. Usually, the measured voltages in such applications are small (<1.25V); therefore the option of using a reduced reference range for the comparator extends the available DAC resolution in these applications. The use of an external reference enables the user to connect to a reference that better suits their application.

DACOUT, shown in Figure 23-1, can only be associated with a single comparator at a given time.

Note: It should be ensured in software that multiple DACOE bits are not set. The output on the DACOUT pin will be indeterminate if multiple comparators enable the DAC output.

23.5 Interaction with I/O Buffers

If the comparator module is enabled and a pin has been selected as the source for the comparator, then the chosen I/O pad must disable the digital input buffer associated with the pad to prevent excessive currents in the digital buffer due to analog input voltages.

23.6 Digital Logic

The CMPCONx register (see Register 23-1) provides the control logic that configures the comparator module. The digital logic provides a glitch filter for the comparator output to mask transient signals in less than two instruction cycles. In Sleep or Idle mode, the glitch filter is bypassed to enable an asynchronous path from the comparator to the interrupt controller. This asynchronous path can be used to wake-up the processor from Sleep or Idle mode.

The comparator can be disabled while in Idle mode if the CMPSIDL bit is set. If a device has multiple comparators, if any CMPSIDL bit is set, then the entire group of comparators will be disabled while in Idle mode. This behavior reduces complexity in the design of the clock control logic for this module.

The digital logic also provides a one TCY width pulse generator for triggering the ADC and generating interrupt requests.

The CMPDACx (see Register 23-2) register provides the digital input value to the reference DAC.

If the module is disabled, the DAC and comparator are disabled to reduce power consumption.

23.7 Comparator Input Range

The comparator has a limitation for the input Common-Mode Range (CMR) of (AVDD - 1.5V), typical. This means that both inputs should not exceed this range. As long as one of the inputs is within the Common-Mode Range, the comparator output will be correct. However, any input exceeding the CMR limitation will cause the comparator input to be saturated.

If both inputs exceed the CMR, the comparator output will be indeterminate.

23.8 DAC Output Range

The DAC has a limitation for the maximum reference voltage input of (AVDD - 1.6) volts. An external reference voltage input should not exceed this value or the reference DAC output will become indeterminate.

23.9 Comparator Registers

The comparator module is controlled by the following registers:

- CMPCONx: Comparator Control x Register
- CMPDACx: Comparator DAC Control x Register

26.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

26.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions
Operati	ng Voltag	e					
DC10	Vdd	Supply Voltage ⁽⁴⁾	3.0	_	3.6	V	Industrial and extended
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	—	_	V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V	
DC17	SVDD	VDD Rise Rate⁽³⁾ to Ensure Internal Power-on Reset Signal	0.03	—	_	V/ms	0-3.0V in 0.1s

TABLE 27-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: These parameters are characterized but not tested in manufacturing.

4: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN. See Parameter BO10 in Table 27-11 for the BOR values.

Section Name	Update Description
Section 27.0 "Electrical Characteristics" (Continued)	Updated the Timer1, Timer2, and Timer3 External Clock Timing Requirements (see Table 27-23, Table 27-24, and Table 27-25).
	Updated the Simple OC/PWM Mode Timing Requirements (see Table 27-28).
	Updated all SPI Timing specifications (see Figure 27-11-Figure 27-18 and Table 27-30-Table 27-37).
	Added Note 2 to the 10-bit High-Speed ADC Module Specifications (see Table 27-40).
	Added Note 2 to the 10-bit High-Speed ADC Module Timing Requirements (see Table 27-41).
	Added parameter DA08 to the DAC Module Specifications (see Table 27-43).
	Updated parameter DA16 in the DAC Output Buffer Specifications (see Table 27-44).
	Added DMA Read/Write Timing Requirements (see Table 27-49).
Section 28.0 "50 MIPS Electrical Characteristics"	Added new chapter with electrical specifications for 50 MIPS devices.
Section 29.0 "DC and AC Device Characteristics Graphs"	Added new chapter.

TABLE B-3: MAJOR SECTION UPDATES (CONTINUED)

Revision E (October 2012)

This revision removes the Preliminary watermark and includes minor typographical and formatting changes throughout the data sheet.

Revision F (July 2014)

Changes CHOP bit to CHOPCLK in the High Speed PWM Register Map and CHOPCLK PWMCHOP Clock Generator Register (see Register 4-16 and Register 16-9).

Changes values in the Minimum Row Write Time and Maximum Row Write time equation examples (see Equation 5-2 and Equation 5-3).

Adds the Oscillator Delay table (see Table 6-2).

Updates TUN bit ranges in the OSCTUN: Oscillator Tuning Register (see Register 9-4).

Updates the Type C Timer Block Diagram (see Figure 13-2).

Adds Note 1 to the CxFCTRL: ECANx FIFO Control Register (see Register 21-4).

Adds Note 10 to the DC Characteristics: I/O Pin Input Specifications (see Table 27-9).

Updates values in the DC Characteristics: Program Memory Table (see Table 27-12).

Adds Register 29-7 through Register 29-12 to Section 29.0 "DC and AC Device Characteristics Graphs"

Also includes minor typographical and formatting changes throughout the data sheet.

Idle Current (IIDLE)	
Internal Voltage Regulator Specifications	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	
DC Characteristics (50 MIPS)	
Doze Current (IDOZE)	
Idle Current (IIDLE)	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Demo/Development Boards, Evaluation and	
Starter Kits	
Development Support	
Third-Party Tools	
DMA Controller	
Channel to Peripheral Associations	179
Control Registers	
Doze Mode	
DSP Engine	
Multiplier	41

Е

ECAN Module	
Frame Types	
Modes of Operation	
Overview	
ECANx Message Buffers	
ECANx Word 0	
ECANx Word 1	
ECANx Word 2	310
ECANx Word 3	
ECANx Word 4	
ECANx Word 5	
ECANx Word 6	
ECANx Word 7	
Electrical Characteristics	
Absolute Maximum Ratings	
AC Characteristics and Timing Parameters	
Electrical Characteristics (50 MIPS)	417
AC Characteristics and Timing Parameters	421
Enhanced CAN (ECAN) Module	
Equations	
Device Operating Frequency	
Fosc Calculation	192
Maximum Row Write Time	110
Minimum Row Write Time	110
Programming Time	110
XT with PLL Mode Example	
Errata	14
External Reset (EXTR)	121

F

201
109
110
110
113
110

G

Getting Started with 16-Bit DSCs 23	
Application Connection Examples	
Capacitor on Internal Voltage Regulator (VCAP) 24	
Configuring Analog and Digital Pins During	
ICSP Operations26	
Connection Requirements	
Decoupling Capacitors23	
External Oscillator Pins25	
ICSP Pins <u></u>	
Master Clear (MCLR) Pin 24	
Oscillator Value Conditions on Start-up	
Unused I/Os26	
н	
High-Speed Analog Comparator	
Applications	
Comparator Input Range	
Control Registers	
DAC	
Output Range	
Digital Logic	
Interaction with I/O Buffers	
Module Description	
High-Speed PWM	
Control Registers	
High-Speed, 10-Bit ADC	
Control Registers	
Description	
Module Functionality 314	
1	
I/O Ports	
Parallel I/O (PIO)	
Write/Read Timing	
I ² C	
Control Registers 271	
Operating Modes 271	
Illegal Opcode Reset (IOPUWR) 121	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP) 349, 355	
Input Capture	
Control Registers 226	
Input Change Notification	
Instruction Addressing Modes	
File Register Instructions	
Fundamental Modes Supported 100	
MAC Instructions 100	
MCU Instructions	
Move and Accumulator Instructions 100	
Other Instructions 100	
Instruction Set	
Overview	
Summary	
Symbols Used in Opcode Descriptions	
Instruction-Based Power-Saving Modes	
Instruction-Based Power-Saving Modes	
Idle	
ldle	
Idle	