

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	85
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs610-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/ PIC24 Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33/PIC24 Family Reference Manual sections. The information in this data sheet supersedes the information in the FRM.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ32GS406/606/ 608/610 and dsPIC33FJ64GS406/606/608/610 family of 16-bit Digital Signal Controllers (DSC) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)
 - (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins"**)
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	_	_	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	_	_	_	_	_	-		CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	-	_	-	-			_	CN23IE	CN22IE	_		-	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	_	_	_	_	_	_	_	CN23PUE	CN22PUE	_	_	_	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: HIGH-SPEED PWM GENERATOR 2 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0440	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP		MTBS	CAM	XPRES	IUE	0000
IOCON2	0442	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON2	0444	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC2	0446								PDC2	2<15:0>								0000
PHASE2	0448				PHASE2<15:0>							0000						
DTR2	044A	_	_							DTR2	<13:0>							0000
ALTDTR2	044C	_	_				ALTDTR2<13:0>							0000				
SDC2	044E						SDC2<15:0>										0000	
SPHASE2	0450								SPHAS	E2<15:0>								0000
TRIG2	0452							TRGCMP<12	2:0>						_	_	—	0000
TRGCON2	0454	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	—	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG2	0456							STRGCMP<1	2:0>						_	_	—	0000
PWMCAP2	0458							PWMCAP<1	2:0>						_	_	—	0000
LEBCON2	045A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	045C	_	_	_	—	•			L	EB<8:0>	•			-				0000
AUXCON2	045E	HRPDIS	HRDDIS	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE 4	+-35.		H-OF L			C REGIS		AF FUR	USFICS	DFJJZ(55400	AND us	SPIC33FJ	9463400		3		
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	-	ADSIDL	SLOWCLK	_	GSWTRG		FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302								PC	FG<15:0>								0000
ADSTAT	0306	—	_	_	P12RDY	_	_	_	—	P7RDY	P6RDY	P5RDY	P4RDY	P3RDY	P2RDY	P1RDY	PORDY	0000
ADBASE	0308								ADBASE<1	5:1>							—	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3	TRGSRC34	TRGSRC33	TRGSRC32	TRGSRC31	TRGSRC30	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCPC2	030E	IRQEN5	PEND5	SWTRG5	TRGSRC54	TRGSRC53	TRGSRC52	TRGSRC51	TRGSRC50	IRQEN4	PEND4	SWTRG4	TRGSRC44	TRGSRC43	TRGSRC42	TRGSRC41	TRGSRC40	0000
ADCPC3	0310	IRQEN7	PEND7	SWTRG7	TRGSRC74	TRGSRC73	TRGSRC72	TRGSRC71	TRGSRC70	IRQEN6	PEND6	SWTRG6	TRGSRC64	TRGSRC63	TRGSRC62	TRGSRC61	TRGSRC640	0000
ADCBUF0	0340								ADC I	Data Buffer	0							xxxx
ADCBUF1	0342		ADC Data Buffer 1 xxxx								xxxx							
ADCBUF2	0344		ADC Data Buffer 2 xxxx										xxxx					
ADCBUF3	0346								ADC I	Data Buffer	3							xxxx
ADCBUF4	0348								ADC I	Data Buffer	4							xxxx
ADCBUF5	034A								ADC I	Data Buffer	5							xxxx
ADCBUF6	034C								ADC I	Data Buffer	6							xxxx
ADCBUF7	034E								ADC I	Data Buffer	7							xxxx
ADCBUF8	0350								ADC I	Data Buffer	8							xxxx
ADCBUF9	0352								ADC I	Data Buffer	9							xxxx
ADCBUF10	0354								ADC D	Data Buffer	10							xxxx
ADCBUF11	0356		ADC Data Buffer 11 xxxx															
ADCBUF12	0358		ADC Data Buffer 12 xxxx									xxxx						
ADCBUF13	035A		ADC Data Buffer 13 xxxx									xxxx						
ADCBUF14	035C								ADC D	ata Buffer	14							xxxx
ADCBUF15	035E		ADC Data Buffer 15 xxxx									xxxx						

TABLE 4-35: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4 Modulo Addressing

Modulo Addressing mode is a method used to provide an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Υ	Space	Modulo	Addressing	EA
	cal	culations	assume	word-sized	data
	(LS	Sb of every	/ EA is alw	/ays clear).	

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

MOV #0x1100, W0 Byte W0, XMODSRT MOV ;set modulo start address Address MOV #0x1163. W0 MOV W0, MODEND ;set modulo end address 0x1100 MOV #0x8001, W0 MOV W0, MODCON ;enable W1, X AGU for modulo MOV #0x0000, W0 ;W0 holds buffer fill value MOV #0x1110, W1 ;point W1 to buffer 0x1163 DO AGAIN, #0x31 ;fill the 50 buffer locations MOV WO, [W1++] ;fill the next location AGAIN: INC W0, W0 ; increment the fill value Start Addr = 0x1100End Addr = 0x1163Length = 0x0032 Words

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	—	—	U2EIP2	U2EIP1	U2EIP0
bit 15	·						bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	U1EIP2	U1EIP1	U1EIP0	—	_	—	—
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10-8	U2EIP<2:0>:	UART2 Error	Interrupt Priori	ty bits			
	111 = Interru	pt is Priority 7	(highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
		pt source is dis	sabled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	U1EIP<2:0>:	UART1 Error	Interrupt Priori	ty bits			
	111 = Interru	pt is Priority 7	(highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
		pt source is dis	sabled				
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-34: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD ⁽¹⁾	_
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	ADCMD
bit 7							bit
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	T5MD: Timer	5 Module Disal	ole bit				
		odule is disable					
		odule is enable					
bit 14		4 Module Disal					
		odule is disable odule is enable					
bit 13		3 Module Disat					
		odule is disable					
	0 = Timer3 m	odule is enable	ed				
bit 12	T2MD: Timer	2 Module Disat	ole bit				
		odule is disable odule is enable					
bit 11	T1MD: Timer	1 Module Disat	ole bit				
		odule is disable odule is enable					
bit 10	QEI1MD: QE	I1 Module Disa	ble bit				
		dule is disabled					
		dule is enabled	(1)				
bit 9		/M Module Disa					
		dule is disabled dule is enabled					
bit 8	Unimplemen	ted: Read as '	0'				
bit 7	12C1MD: 12C	1 Module Disat	ole bit				
		lule is disabled lule is enabled					
bit 6	U2MD: UART	2 Module Disa	ble bit				
	-	odule is disabl odule is enable					
bit 5	U1MD: UART	1 Module Disa	ble bit				
		odule is disabl odule is enable					
bit 4		2 Module Disa					
-	1 = SPI2 mod	lule is disabled					

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be re-initialized.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
—	—	—	—	—	CMPMD	—	—
bit 15							bit 8
U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0
—	—	QEI2MD		—	—	I2C2MD	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15-11	Unimplemen	ted: Read as '	כ'				
bit 10	CMPMD: Ana	alog Comparato	or Module Disa	ble bit			
		omparator mode					
bit 9-6	Unimplemen	ted: Read as ')'				
bit 5	QEI2MD: QE	I2 Module Disa	ble bit				
		dule is disabled dule is enabled					
bit 4-2	Unimplemen	ted: Read as ')'				
bit 1	-	2 Module Disab					
	1 = I2C2 mod	lule is disabled					
	0 = I2C2 mod	lule is enabled					
bit 0	Unimplemen	ted: Read as ')'				

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—
						bit 8
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	_	REFOMD	_	—	
·	•					bit 0
e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
Unimplemen	ted: Read as 'o)'				
REFOMD: Re	eference Clock	Generator Mod	dule Disable bit			
	-					
	U-0 U-0 e bit POR Unimplemen REFOMD: Re 1 = Reference	U-0 U-0 U-0 U-0 — — — e bit W = Writable I POR '1' = Bit is set Unimplemented: Read as '0 REFOMD: Reference Clock 1 = Reference clock generat	U-0 U-0 U-0 U-0 U-0 U-0 Hermitian Hermitian Hermitian Bit W = Writable bit Hermitian POR '1' = Bit is set Hermitian Unimplemented: Read as '0' REFOMD: Reference Clock Generator Moor 1 = Reference clock generator module is dited	— — — — U-0 U-0 U-0 R/W-0 — — — REFOMD e bit W = Writable bit U = Unimplem POR '1' = Bit is set '0' = Bit is clear Unimplemented: Read as '0' U U	- - - - U-0 U-0 U-0 R/W-0 U-0 - - - REFOMD - e bit W = Writable bit U = Unimplemented bit, read POR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' REFOMD: Reference Clock Generator Module Disable bit 1 = Reference clock generator module is disabled	Image: definition of the second state of the second st

11.2 Open-Drain Configuration

In addition to the PORTx, LATx and TRISx registers for data control, some digital only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (for example, 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to "**Pin Diagrams**" for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The ADPCFG and TRISx registers control the operation of the Analog-to-Digital port pins. The port pins that are to function as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADPCFG and ADPCFG2 registers have a default value of 0x000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORTx register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 11-1.

11.5 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 30 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-of-State.

Four control registers are associated with the Change Notification (CN) module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables an CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on Change Notification pins should always be disabled when the port pin is configured as a digital output.

MOV	0xFF00, W0	Configure PORTB<15:8> as	s inputs
MOV	W0, TRISBB	and PORTB<7:0> as output	ts
NOP		Delay 1 cycle	
BTSS	PORTB, #13	Next Instruction	

EQUATION 11-1: PORT WRITE/READ EXAMPLE

The Timer2/3/4/5 modules can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous Counter mode, the input clock is derived from the external clock input at the TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 13-1.

Mode	TCS	TGATE
Timer	0	0
Gated Timer	0	1
Synchronous Counter	1	x

TABLE 13-1: TIMER MODE SETTINGS

13.1 16-Bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

13.2 32-Bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control (TxCON<3>) register must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

When configured for 32-bit operation, only the Type B Timerx Control (TxCON) register bits are required for setup and control while the Type C Timer Control register bits are ignored (except the TSIDL bit).

For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The timers that can be combined to form a 32-bit timer are listed in Table 13-2.

Type B Timer (Isw)	Type C Timer (msw)
Timer2	Timer3
TImer4	Timer5

A block diagram representation of the 32-bit timer module is shown in Figure 13-3. The 32-timer module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- · Synchronous Counter mode

To configure the timer features for 32-bit operation:

- 1. Set the T32 control bit.
- 2. Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 contains the most significant word of the value, while PR2 contains the least significant word.
- 5. If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits, T3IP<2:0>, to set the interrupt priority. While Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the corresponding TON bit.

REGISTER 16-16: DTRx: PWM DEAD-TIME x REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—		DTRx<13:8>								
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	DTRx<7:0>										
bit 7							bit 0				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-Bit Value for PWMx Dead-Time Unit bits

REGISTER 16-17: ALTDTRx: PWM ALTERNATE DEAD-TIME x REGISTER

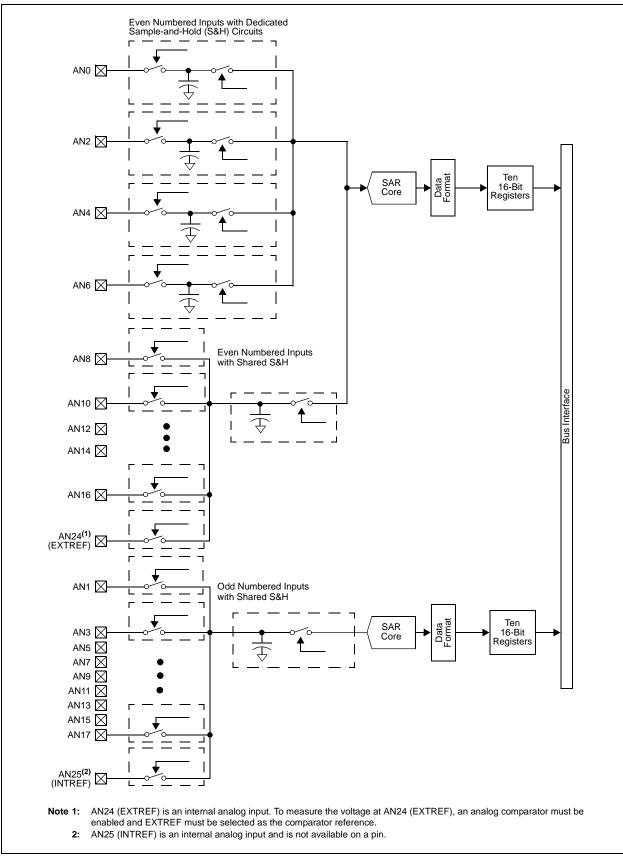
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		ALTDTRx<13:8>							
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			ALTDT	Rx<7:0>						
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable b	W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
h										

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Value for PWMx Dead-Time Unit bits

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	—	—	LEB<8:5>						
bit 15		-					bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
		LEB<4:0>			_	—	—			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-12	Unimpleme	nted: Read as ')'							
bit 11-3	LEB<8:0>: L	eading-Edge Bl	anking Delay	y for Current-Lin	nit and Fault Inp	outs bits				
	The value is	in 8.32 ns increi	ments.							


REGISTER 16-24: LEBDLYx: LEADING-EDGE BLANKING DELAY x REGISTER

bit 2-0 Unimplemented: Read as '0'

REGISTER												
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0					
	—		FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0					
bit 15							bit					
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0					
_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0					
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown					
bit 15-13	-	ted: Read as ' Filter Hit Num										
bit 12-8	10000-11111		Der Dits									
	01111 = Filte											
	•											
	•											
	• 00001 = Filter 1											
	00000 = Filte											
bit 7	Unimplemen	ted: Read as '	0'									
bit 6-0	ICODE<6:0>:	ICODE<6:0>: Interrupt Flag Code bits										
	1000101-1111111 = Reserved											
		IFO almost full										
		eceiver overflo /ake-up interru										
	1000001 = E		pr									
	1000000 = N	-										
	•											
	•											
	0010000-011	11111 = Rese r	ved									
	0001111 = RB15 buffer interrupt											
	•											
	•											
	0001001 = R	B9 buffer inter	rupt									
		B8 buffer inter										
		RB7 buffer inte RB6 buffer inte	•									
		RB5 buffer inte										
	0000100 = T	RB4 buffer inte	errupt									
		RB3 buffer inte										
		RB2 buffer inte RB1 buffer inte										
	0000001 = T	RB1 buffer inte RB0 Buffer inte	errupt									

REGISTER 21-3: CxVEC: ECANx INTERRUPT CODE REGISTER

FIGURE 22-3: ADC BLOCK DIAGRAM FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES WITH TWO SARs

INDL	E 25-2:												
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected						
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB						
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z						
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z						
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z						
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z						
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z						
		ADD	Wso,#Slit4,Acc	16-Bit Signed Add to Accumulator	1	1	OA,OB,SA,SE						
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z						
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z						
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z						
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z						
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z						
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z						
0	TIND	AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z						
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z						
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z						
				Wd = Wb .AND. lit5	1	1	N,Z						
4	100	AND	Wb,#lit5,Wd		+	1	C,N,OV,Z						
4	ASR	ASR	f	f = Arithmetic Right Shift f	1		, , ,						
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z						
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z						
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z						
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z						
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None						
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None						
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None						
		BRA	GE,Expr	Branch if Greater Than or Equal	1	1 (2)	None						
		BRA	GEU,Expr	Branch if Unsigned Greater Than or Equal	1	1 (2)	None						
		BRA	GT,Expr	Branch if Greater Than	1	1 (2)	None						
		BRA	GTU,Expr	Branch if Unsigned Greater Than	1	1 (2)	None						
		BRA	LE,Expr	Branch if Less Than or Equal	1	1 (2)	None						
		BRA	LEU,Expr	Branch if Unsigned Less Than or Equal	1	1 (2)	None						
		BRA	LT,Expr	Branch if Less Than	1	1 (2)	None						
		BRA	LTU,Expr	Branch if Unsigned Less Than	1	1 (2)	None						
		BRA	N,Expr	Branch if Negative	1	1 (2)	None						
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None						
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None						
		BRA	NOV,Expr	Branch if Not Overflow	1	1 (2)	None						
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None						
		BRA	OA,Expr	Branch if Accumulator A Overflow	1	1 (2)	None						
		BRA	OB,Expr	Branch if Accumulator B Overflow	1	1 (2)	None						
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None						
		BRA	SA, Expr	Branch if Accumulator A Saturated	1	1 (2)	None						
		BRA	SB, Expr	Branch if Accumulator B Saturated	1	1 (2)	None						
		BRA	Expr	Branch Unconditionally	1	2	None						
		BRA		Branch if Zero	1	1 (2)	None						
			Z,Expr	Computed Branch	1	2							
7	DODE	BRA	Wn				None						
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None						
		BSET	Ws,#bit4	Bit Set Ws	1	1	None						
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None						
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None						

TABLE 25-2:	INSTRUCTION SET	OVERVIEW

DC CHARACT	ERISTICS				ons: 3.0V to 3.6V C \leq TA \leq +85°C for Industrial C \leq TA \leq +125°C for Extended			
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions				
Idle Current (li	DLE): Core Of	f, Clock On	Base Current	(2)				
DC40d	8	15	mA	-40°C				
DC40a	9	15	mA	+25°C	3.3V	10 MIPS		
DC40b	9	15	mA	+85°C	- 3.3V	10 1011195		
DC40c	10	15	mA	+125°C				
DC41d	11	20	mA	-40°C				
DC41a	11	20	mA	+25°C	2.21/	16 MIPS ⁽³⁾		
DC41b	11	20	mA	+85°C	3.3V	10 MIPS(*)		
DC41c	12	20	mA	+125°C				
DC42d	14	25	mA	-40°C				
DC42a	14	25	mA	+25°C	3.3V	20 MIPS ⁽³⁾		
DC42b	14	25	mA	+85°C	3.3V	20 1011-307		
DC42c	15	25	mA	+125°C				
DC43d	20	30	mA	-40°C				
DC43a	20	30	mA	+25°C	- 3.3V	30 MIPS ⁽³⁾		
DC43b	21	30	mA	+85°C	3.3V	30 WIF 3(*)		
DC43c	22	30	mA	+125°C				
DC44d	29	40	mA	-40°C				
DC44a	29	40	mA	+25°C	2.21/			
DC44b	30	40	mA	+85°C	- 3.3V	40 MIPS		
DC44c	31	40	mA	+125°C				

TABLE 27-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: Base Idle current (IIDLE) is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are all '0's)
- JTAG is disabled
- **3:** These parameters are characterized but not tested in manufacturing.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
DO20A	Voh1	Output High Voltage I/O Pins: 4x Sink Driver Pins – RA0-RA7,	1.5	_	_	V	Іон ≥ -12 mA, Voo = 3.3V (See Note 1)		
		RA14, RA15, RB0-RB15, RC1-RC4, RC12-RC14, RD0-RD2,	2.0	—	-	V	IOH ≥ -11 mA, VDD = 3.3V (See Note 1)		
	RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15	3.0	—	—	V	IOH ≥ -3 mA, VDD = 3.3V (See Note 1)			
	Output High Voltage I/O Pins: 8x Sink Driver Pin – RC15		1.5	_	_	V	Іон ≥ -16 mA, Voo = 3.3V (See Note 1)		
			2.0	_	-	V	IOH ≥ -12 mA, VDD = 3.3V (See Note 1)		
			3.0	—	—	V	IOH ≥ -4 mA, VDD = 3.3V (See Note 1)		
		Output High Voltage I/O Pins: 16x Sink Driver Pins – RA9, RA10, RD3-RD7, RD13, RE0-RE7, RG12, RG13	1.5	_	_	V	ІОн ≥ -30 mA, VDD = 3.3V (See Note 1)		
			2.0	—	—	V	$\begin{array}{l} \mbox{IOH} \geq -25 \mbox{ mA, VDD} = 3.3 \mbox{V} \\ \mbox{(See Note 1)} \end{array}$		
			3.0	_	_	V	IOH ≥ -8 mA, VDD = 3.3V (See Note 1)		

TABLE 27-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)

Note 1: Parameters are characterized, but not tested.

TABLE 27-11: ELECTRICAL CHARACTERISTICS: BROWN-OUT RESET (BOR)

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to $3.6V^{(3)}$ (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low		2.6		2.95	V	See Note 2

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The device will operate as normal until the VDDMIN threshold is reached.

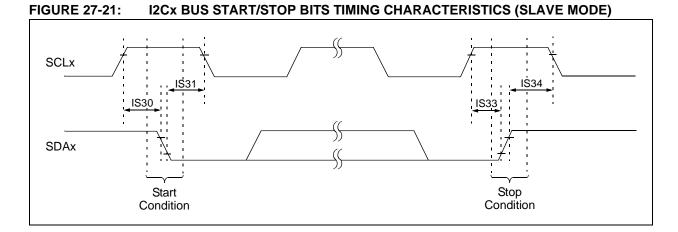
3: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8	MHz	ECPLL, XTPLL modes	
OS51	Fsys	On-Chip VCO System Frequency	100	—	200	MHz		
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	mS		
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	Measured over a 100 ms period	

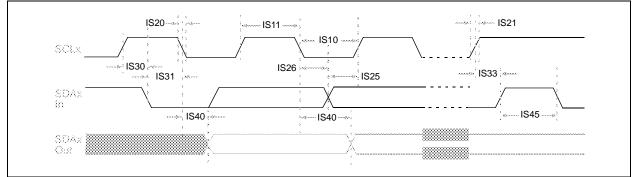
Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks, use this formula:

 $Peripheral \ Clock \ Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral \ Bit \ Rate \ Clock}}}$


For example: FOSC = 32 MHz, DCLK = 3%, SPI bit rate clock (i.e., SCK) is 2 MHz.

$$SPI SCK Jitter = \left[\frac{D_{CLK}}{\sqrt{\left(\frac{32 MHz}{2 MHz}\right)}}\right] = \left[\frac{3\%}{\sqrt{16}}\right] = \left[\frac{3\%}{4}\right] = 0.75\%$$


TABLE 27-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
OS56	Fhpout	On-Chip, 16x PLL CCO Frequency	112	118	120	MHz		
OS57	Fhpin	On-Chip, 16x PLL Phase Detector Input Frequency	7.0	7.37	7.5	MHz		
OS58	Tsu	Frequency Generator Lock Time	—	—	10	μs		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

