

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	85
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs610t-i-pf

Email: info@E-XFL.COM

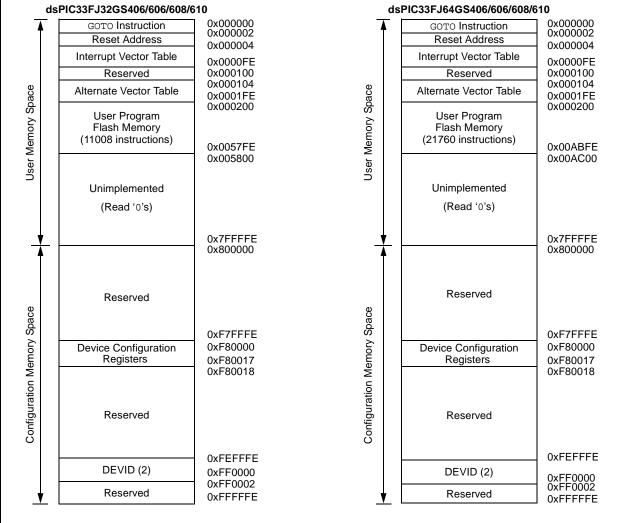
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *dsPIC33/PIC24 Family Reference Manual*, **Program Memory**" (DS70203), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access to program memory from the data space during code execution.


4.1 Program Address Space

The program address memory space is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in **Section 4.6 "Interfacing Program and Data Memory Spaces"**.

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory maps are shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAPS FOR dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	_		—		—	_	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	—	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF		—	_	—	INT1IF	CNIF		MI2C1IF	SI2C1IF	0000
IFS2	0088	_	_	-	_	_	_	_	_	_	IC4IF	IC3IF	_	-	_	SPI2IF	SPI2EIF	0000
IFS3	008A	_	_	-	_	_	QEI1IF	PSEMIF	_	_	INT4IF	INT3IF	_	-	MI2C2IF	SI2C2IF	_	0000
IFS4	008C	_	_	-	_	_	_	PSESMIF	_	_	_	_	_	-	U2EIF	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	ADCP12IF	_	_	_	_	_	_	_	_	_	-	_	_	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	-	_	_	_	_	_	_	_	_	_	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	0092	_	_	-	_	_	_	_	_	_	_	ADCP7IF	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF	0000
IEC0	0094	_	_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	_	_	_	_	INT1IE	CNIE	_	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	_	-	_	_	_	_	_	_	IC4IE	IC3IE	_	-	_	SPI2IE	SPI2EIE	0000
IEC3	009A	_	_	_	_	_	QEI1IE	PSEMIE	_	_	INT4IE	INT3IE	_	-	MI2C2IE	SI2C2IE	_	0000
IEC4	009C	_	—	—	—	_	_	PSESMIE	_	—	_	—	_	_	U2EIE	U1EIE	—	0000
IEC5	009E	PWM2IE	PWM1IE	ADCP12IE	—	_	_	—	_	—	_	—	_	_	_	—	—	0000
IEC6	00A0	_	ADCP0IE	—	—	_	_	—	_	—	_	—	_	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	00A2		_	-	_	_	_	_	_	_	_	ADCP7IE	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE	0000
IPC0	00A4		T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	-	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6		T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	-	_	_	_	4440
IPC2	00A8		U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0	-	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA		_	-	_	_	_	_	_	_	ADIP2	ADIP1	ADIP0	-	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	_	_	_	_	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	-	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_	_	-	_	_	_	_	_	_	_	_	_	-	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	_	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	-	_	_	_	4440
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	-	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	_	_	_	_	_	_	_	_	_	SPI2IP2	SPI2IP1	SPI2IP0	-	SPI2EIP2	SPI2EIP1	SPI2EIP0	0044
IPC9	00B6	_	—	—	—	_	IC4IP2	IC4IP1	IC4IP0	—	IC3IP2	IC3IP1	IC3IP0	_	_	—	—	0440
IPC12	00BC	_	—	—	—	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	—	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	_	—	—	0440
IPC13	00BE	—	—	—	—	_	INT4IP2	INT4IP1	INT4IP0	_	INT3IP2	INT3IP1	INT3IP0	_	—	_	—	0440
IPC14	00C0	_	—	_	_	—	QEI1IP2	QEI1IP1	QEI1IP0	_	PSEMIP2	PSEMIP1	PSEMIP0	_	—	_	—	0440
IPC16	00C4	_	—	_	_	—	U2EIP2	U2EIP1	U2EIP0	_	U1EIP2	U1EIP1	U1EIP0	—	—	_	—	0440
IPC18	00C8	_	—	—	—	—	—	—	—	—	PSESMIP2	PSESMIP1	PSESMIP0	_	—	_	—	0040
IPC23	00D2	_	PWM2IP2	PWM2IP1	PWM2IP0	_	PWM1IP2	PWM1IP1	PWM1IP0	_	_	_	_	_	_	_	_	4400

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES

© 2009-2014 Microchip Technology Inc.

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming open	rations
	MOV	#0x4001, W0	;
	MOV	W0, NVMCON	; Initialize NVMCON
;	Set up a poi	nter to the first program	memory location to be written
;	program memo	ry selected, and writes en	nabled
	MOV	#0x0000, W0	i
	MOV	W0, TBLPAG	; Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	; An example program memory address
;	Perform the	TBLWT instructions to writ	te the latches
;	0th_program_	word	
	MOV	<pre>#LOW_WORD_0, W2</pre>	;
	MOV	<pre>#HIGH_BYTE_0, W3</pre>	;
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
;	lst_program_	word	
	MOV	#LOW_WORD_1, W2	i
	MOV	#HIGH_BYTE_1, W3	i
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
;	2nd_program	_word	
	MOV	#LOW_WORD_2, W2	;
	MOV	<pre>#HIGH_BYTE_2, W3</pre>	;
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
	•		
	•		
	•		
;	63rd_program	_word	
	MOV	#LOW_WORD_31, W2	i
	MOV	#HIGH_BYTE_31, W3	i
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
1			

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	i
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0				
_	—	_	_		QEI1IE	PSEMIE	_				
bit 15	·						bit				
U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0				
	INT4IE	INT3IE		—	MI2C2IE	SI2C2IE					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own				
bit 15-11	Unimplemen	ted: Read as '	כ'								
bit 10	QEI1IE: QEI1	QEI1IE: QEI1 Event Interrupt Enable bit									
		request is enab									
	•	request is not e									
bit 9		/M Special Ever		rupt Enable bit	t						
		request is enab request is not e									
bit 8-7		ited: Read as '									
bit 6	-										
	INT4IE: External Interrupt 4 Enable bit 1 = Interrupt request is enabled										
	0 = Interrupt request is not enabled										
bit 6	INT3IE: Exte	rnal Interrupt 3	Enable bit								
		request is enab									
		request is not e									
bit 4-3	-	ted: Read as '									
bit 2		2 Master Even		nable bit							
	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled 										
bit 1	-	2 Slave Events		able bit							
		request is enab	•								
	0 = Interrupt										
			liablea								

REGISTER 7-16: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

9.4 Oscillator Control Registers

U-0	R-y	R-y	R-y	U-0	R/W-y	R/W-y	R/W-y
_	COSC2	COSC1	COSC0	_	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾
bit 15							bit
R/W-0	U-0	R-0	U-0	R/C-0	U-0	U-0	R/W-0
CLKLOCK	—	LOCK		CF	_	OSWEN	
bit 7							bit
Legend:		C = Clearable	e bit	y = Value se	t from Configura	tion bits on PO	R
R = Readable	e bit	W = Writable	bit	-	mented bit, read		
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15 bit 14-12	COSC<2:0>: 111 = Fast R	nted: Read as Current Oscill C Oscillator (F C Oscillator (F	ator Selection RC) with Divid	e-by-n	/)		
	100 = Secon 011 = Primar 010 = Primar 001 = Fast R 000 = Fast R	ower RC Oscil dary Oscillator y Oscillator (X y Oscillator (X C Oscillator (F C Oscillator (F	(SOSC) T, HS, EC) with T, HS, EC) RC) with PLL RC)	ו PLL			
bit 11	Unimplemen	nted: Read as	0'				
bit 10-8	NOSC<2:0>:	New Oscillato	r Selection bits	₃ (2)			
	110 = Fast R 101 = Low-P 100 = Secon 011 = Primar 010 = Primar 001 = Fast R	C Oscillator (F C Oscillator (F ower RC Oscill dary Oscillator y Oscillator (X y Oscillator (X C Oscillator (F C Oscillator (F	RC) with Divid lator (LPRC) (SOSC) T, HS, EC) with T, HS, EC) RC) with PLL	e-by-16			
bit 7		Clock Lock Ena					
	1 = Clock sw	vitching is disat	oled, system cl	ock source is	CKSM<1:0> (FC locked n be modified by	L. L	
bit 6		ted: Read as					-
bit 5	LOCK: PLL L	_ock Status bit	(read-only)				
	1 = Indicates	that PLL is in I	ock or PLL sta		satisfied progress or PLL	is disabled	
bit 4		nted: Read as			-		
	rites to this regis sPIC33/PIC24 F				Oscillator (Par	t IV)" (DS7030	7) in the
		-			th PLL and FRC	PII mode are	not permitte

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD ⁽¹⁾	_			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	ADCMD			
bit 7							bit			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own			
bit 15	T5MD: Timer	5 Module Disal	ole bit							
		odule is disable								
		odule is enable								
bit 14		4 Module Disal								
		odule is disable odule is enable								
bit 13		3 Module Disat								
		odule is disable								
	0 = Timer3 m	odule is enable	ed							
bit 12	T2MD: Timer2 Module Disable bit									
		odule is disable odule is enable								
bit 11	T1MD: Timer	1 Module Disat	ole bit							
		odule is disable odule is enable								
bit 10	QEI1MD: QE	I1 Module Disa	ble bit							
		dule is disabled								
		dule is enabled	(1)							
bit 9		/M Module Disa								
		dule is disabled dule is enabled								
bit 8	Unimplemen	ted: Read as '	0'							
bit 7	12C1MD: 12C	1 Module Disat	ole bit							
		lule is disabled lule is enabled								
bit 6	U2MD: UART	2 Module Disa	ble bit							
	-	odule is disabl odule is enable								
bit 5	U1MD: UART	1 Module Disa	ble bit							
		odule is disabl odule is enable								
bit 4		2 Module Disa								
-	1 = SPI2 mod	lule is disabled								

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be re-initialized.

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0			
—	—	—	—	—	CMPMD	—	—			
bit 15							bit 8			
U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0			
—	—	QEI2MD		—	—	I2C2MD	—			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
-n = Value a	-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkno	own			
bit 15-11	Unimplemen	ted: Read as '	כ'							
bit 10	CMPMD: Ana	alog Comparato	or Module Disa	ble bit						
		omparator mode								
bit 9-6	Unimplemen	ted: Read as ')'							
bit 5	QEI2MD: QE	I2 Module Disa	ble bit							
		dule is disabled dule is enabled								
bit 4-2	Unimplemen	ted: Read as ')'							
bit 1	-	I2C2MD: I2C2 Module Disable bit								
	1 = I2C2 mod	lule is disabled								
	0 = I2C2 mod	lule is enabled								
bit 0	Unimplemen	ted: Read as ')'							

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—				
						bit 8				
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0				
—	—	_	REFOMD	_	—					
·	•					bit 0				
e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'					
POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$							
Unimplemen	ted: Read as 'o)'								
REFOMD: Re	eference Clock	Generator Mod	dule Disable bit							
 1 = Reference clock generator module is disabled 0 = Reference clock generator module is enabled 										
Unimplemented: Read as '0'										
	U-0 U-0 e bit POR Unimplemen REFOMD: Re 1 = Reference	U-0 U-0 U-0 U-0 — — — e bit W = Writable I POR '1' = Bit is set Unimplemented: Read as '0 REFOMD: Reference Clock 1 = Reference clock generat	U-0 U-0 U-0 U-0 U-0 U-0 Hermitian Hermitian Hermitian Bit W = Writable bit Hermitian POR '1' = Bit is set Hermitian Unimplemented: Read as '0' REFOMD: Reference Clock Generator Moor 1 = Reference clock generator module is dited in the set	- - - - U-0 U-0 U-0 R/W-0 - - - REFOMD e bit W = Writable bit U = Unimplem POR '1' = Bit is set '0' = Bit is clear Unimplemented: Read as '0' REFOMD: Reference Clock Generator Module Disable bit 1 = Reference clock generator module is disabled	- - - - U-0 U-0 U-0 R/W-0 U-0 - - - REFOMD - e bit W = Writable bit U = Unimplemented bit, read POR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' REFOMD: Reference Clock Generator Module Disable bit 1 = Reference clock generator module is disabled	Image: definition of the second state of the second st				

REGISTER	13-1: TxCO	N: TIMERX C	ONTROL RE	EGISTER (x =	2, 4)								
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0						
TON		TSIDL	—	—	_	—	_						
bit 15							bit 8						
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0						
0-0	TGATE	TCKPS1	TCKPS0	T32	0-0	TCS	0-0						
 bit 7	IGAIL	TORFST	TOKE SU	132	_	103	bit (
							Dit C						
Legend:													
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkne	own						
bit 15	TON: Timerx	On bit											
		1 (in 32-Bit Tim											
		bit TMRx:TMR bit TMRx:TMR											
	-	0 (in 16-Bit Tim											
	1 = Starts 16-bit timer												
	0 = Stops 16-	bit timer											
oit 14	Unimplemen	ted: Read as '	0'										
bit 13	TSIDL: Timer	x Stop in Idle N	lode bit										
		ues timer opera			mode								
		s timer operatio		9									
bit 12-7	•	Unimplemented: Read as '0'											
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit When TCS = 1:												
	This bit is ign												
	When TCS = 0 :												
	1 = Gated time accumulation is enabled												
	0 = Gated tim	ne accumulation	n is disabled										
oit 5-4		: Timerx Input	Clock Prescal	e Select bits									
	11 = 1:256 pr												
	10 = 1:64 pre 01 = 1:8 pres												
	00 = 1:1 pres												
bit 3	T32: 32-Bit Ti	imerx Mode Se	lect bit										
		d TMRy form a d TMRy form a		bit timer									
bit 2	Unimplemen	ted: Read as '	0'										
bit 1	TCS: Timerx	Clock Source S	Select bit										
		clock from TxCl	K pin										
	0 = Internal c												
bit 0	Unimplemen	ted: Read as '	0'										

REGISTER 13-1: TxCON: TIMERx CONTROL REGISTER (x = 2, 4)

NOTES:

19.0 INTER-INTEGRATED CIRCUIT (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 dsPIC33FJ64GS406/606/608/610 and families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit[™] (I²C[™])" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C Interface Supporting Both Master and Slave modes of Operation
- I²C Slave mode Supports 7-Bit and 10-Bit Addressing
- I²C Master mode Supports 7-Bit and 10-Bit Addressing
- I²C Port allows Bidirectional Transfers Between Master and Slaves
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control)
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates Accordingly

19.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, refer to the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest "*dsPIC33/PIC24 Family Reference Manual*" sections.

19.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it.
- I2CxRCV is the receive buffer and the register to which data bytes are written or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- The I2CxADD register holds the slave address.
- A status bit, ADD10, indicates 10-Bit Addressing mode.
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated.

REGISTER 22-4: ADPCFG: ADC PORT CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			PCFG	<15:8> ⁽¹⁾						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			PCFC	6<7:0> ⁽¹⁾						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown						

bit 15-0

PCFG<15:0>: ADC Port Configuration Control bits⁽¹⁾

- 1 = Port pin in Digital mode, port read input is enabled; Analog-to-Digital input multiplexer is connected to AVss
- 0 = Port pin in Analog mode, port read input is disabled; Analog-to-Digital samples the pin voltage
- Note 1: Not all PCFGx bits are available on all devices. See Figure 22-1, Figure 22-2, Figure 22-3 and Figure 22-4 for the available analog inputs (PCFGx = ANx, where x = 0-15).

REGISTER 22-5: ADPCFG2: ADC PORT CONFIGURATION REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	_	—	_	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PCFG<2	23:16> ⁽¹⁾			
bit 7							bit 0
L							
Logond							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0

PCFG<23:16>: ADC Port Configuration Control bits⁽¹⁾

- 1 = Port pin in Digital mode, port read input is enabled; Analog-to-Digital input multiplexer is connected to AVss
- 0 = Port pin in Analog mode, port read input is disabled; Analog-to-Digital samples the pin voltage

Note 1: Not all PCFGx bits are available on all devices. See Figure 22-1, Figure 22-2, Figure 22-3 and Figure 22-4 for the available analog inputs (PCFGx = ANx, where x can be 0 through 15).

26.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

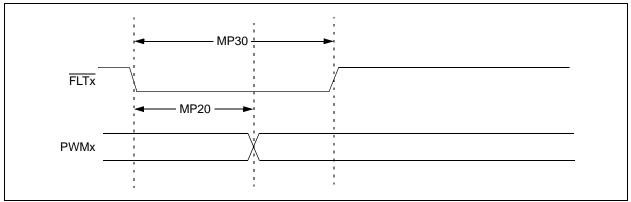
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

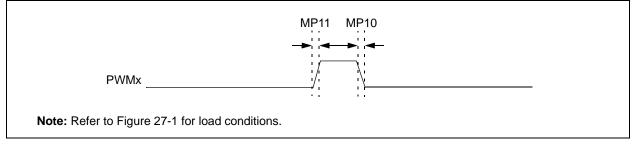
The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.


Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

26.12 Third-Party Development Tools


Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

FIGURE 27-9: HIGH-SPEED PWMx MODULE FAULT TIMING CHARACTERISTICS

FIGURE 27-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS

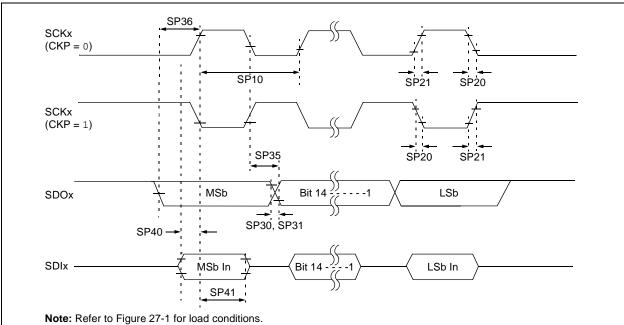


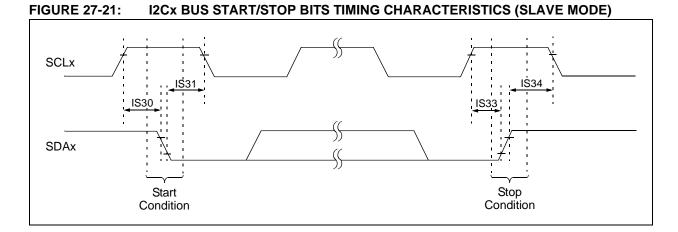
TABLE 27-29: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
MP10	TFPWM	PWMx Output Fall Time	—	2.5		ns	
MP11	TRPWM	PWMx Output Rise Time	—	2.5	_	ns	
MP20	Tfd	Fault Input ↓ to PWMx I/O Change	-	_	15	ns	DTC<1:0> = 10
MP30	Тғн	Minimum PWMx Fault Pulse Width	8		—	ns	
MP31	TPDLY	Tap Delay	1.04	—	—	ns	ACLK = 120 MHz
MP32	ACLK	PWMx Input Clock	—	_	120	MHz	See Note 2

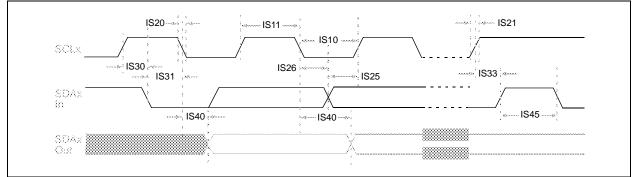
Note 1: These parameters are characterized but not tested in manufacturing.

2: This parameter is a maximum allowed input clock for the PWM module.

FIGURE 27-13: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS


TABLE 27-32:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

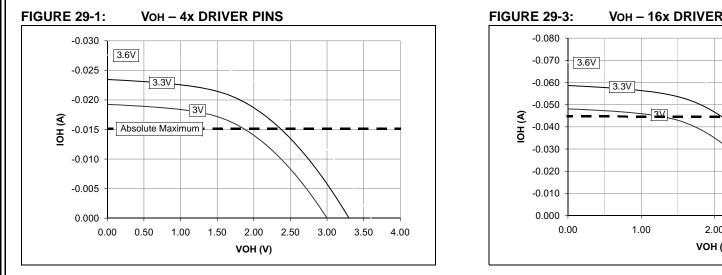
AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP10	TscP	Maximum SCKx Frequency		—	10	MHz	See Note 3		
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns			
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	-	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	—	ns			


Note 1: These parameters are characterized, but are not tested in manufacturing.

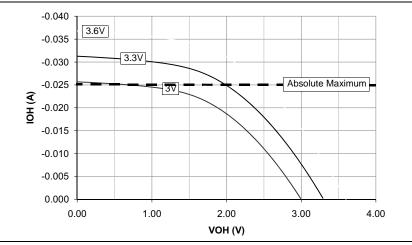
2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

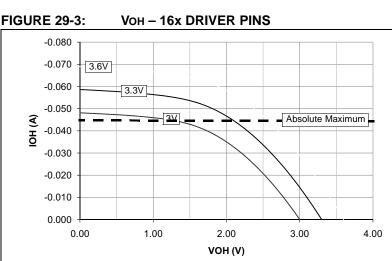
- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

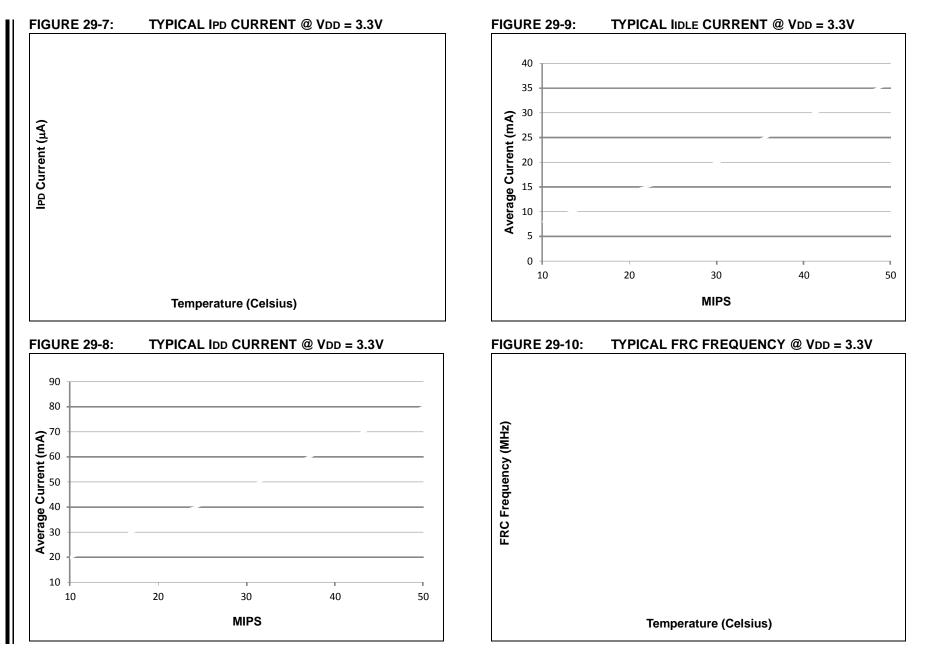
AC CHA		STICS	Standard Operating Conditions: 3.0V and 3.6V ⁽²⁾ (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions	
			Device Su	upply				
AD01	AVdd	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	_	Lesser of VDD + 0.3 or 3.6	V		
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V		
		•	Analog I	nput				
AD10	VINH-VINL	Full-Scale Input Span	Vss	_	Vdd	V		
AD11	Vin	Absolute Input Voltage	AVss	_	AVdd	V		
AD12	IAD	Operating Current	—	8	—	mA		
AD13	—	Leakage Current	_	±0.6	_	μA	VINL = AVSS = 0V, AVDD = 3.3V, Source Impedance = 100Ω	
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	1	100	Ω		
	_		DC Accu	racy				
AD20	Nr	Resolution	1	0 data bi	its	bits		
AD21A	INL	Integral Nonlinearity	> -2	±0.5	< 2	LSb	VINL = AVSS = 0V, AVDD = 3.3V	
AD22A	DNL	Differential Nonlinearity	> -1	±0.5	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.3V	
AD23A	Gerr	Gain Error	> -5	±2.0	< 5	LSb	VINL = AVSS = 0V, AVDD = 3.3V	
AD24A	EOFF	Offset Error	> -3	±0.75	< 3	LSb	VINL = AVSS = VSS = 0V, AVDD = VDD = 3.3V	
AD25	—	Monotonicity ⁽¹⁾	—	_	—	—	Guaranteed	
		D	ynamic Perf	formanc	е			
AD30	THD	Total Harmonic Distortion		-73	—	dB		
AD31	SINAD	Signal to Noise and Distortion	—	58	_	dB		
AD32	SFDR	Spurious Free Dynamic Range	—	-73	—	dB		
AD33	Fnyq	Input Signal Bandwidth	_	_	1	MHz		
AD34	ENOB	Effective Number of Bits	_	9.4		bits		


TABLE 27-40: 10-BIT, HIGH-SPEED ADC MODULE SPECIFICATIONS

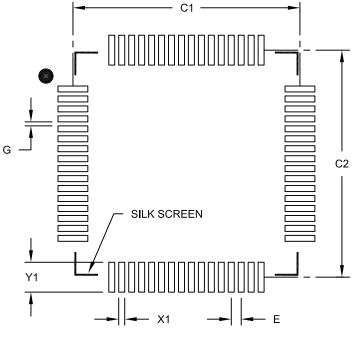
Note 1: The Analog-to-Digital conversion result never decreases with an increase in the input voltage and has no missing codes.


2: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.


DC AND AC DEVICE CHARACTERISTICS GRAPHS 29.0


The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes Note: only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

VOH – 8x DRIVER PINS FIGURE 29-2:



64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	Contact Pitch E				
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B