

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	85
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32gs610t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is
 -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS Register (SR):

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits, 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS Register bits support saturation and overflow:

- OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation) or

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

 SB: ACCB saturated (bit 31 overflow and saturation) or

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller"**). This allows the user application to take immediate action, for example, to correct system gain.

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	_	_	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_	_	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	_	_	CN23IE	CN22IE	_	_	_	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_	_	CN23PUE	CN22PUE	_	_	_	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE	TABLE 4-23: HIGH-SPEED PWM GENERATOR 7 REGISTER MAP (EXCLUDES dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES)																	
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON7	04E0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP		MTBS	CAM	XPRES	IUE	0000
IOCON7	04E2	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON7	04E4	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC7	04E6								PDC	7<15:0>								0000
PHASE7	04E8		PHASE7<15:0>												0000			
DTR7	04EA	_	DTR7<13:0> 0(0000			
ALTDTR7	04EA	_	ALTDTR7<13:0> 00												0000			
SDC7	04EE								SDC	7<15:0>								0000
SPHASE7	04F0								SPHAS	SE7<15:0>								0000
TRIG7	04F2							TRGCMP<12	2:0>						_	_	_	0000
TRGCON7	04F4	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	-	-	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG7	04F6							STRGCMP<1	2:0>						_	_	_	0000
PWMCAP7	04F8							PWMCAP<12	2:0>						_	_	_	0000
LEBCON7	04FA	PHR	PHF	PLR	PLF	FLTLEBEN	FLTLEBEN — — — BCH BCL BPHH BPHL E							BPLH	BPLL	0000		
LEBDLY7	04FC	—	—	—	_				L	EB<8:0>					_	_	—	0000
AUXCON7	04FE	HRPDIS	HRDDIS		—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2009-2014 Microchip Technology Inc.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "**Reset**" (DS70192) in the "*dsPIC33/PIC24 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: Software RESET Instruction
- WDTO: Watchdog Timer Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note:	Refer to the specific peripheral section or								
	Section 3.0 "CPU" of this data sheet for								
	register Reset states.								

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts (Part V)" (DS70597) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CPU. It has the following features:

- Up to Eight Processor Exceptions and Software
 Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with up to 118 Vectors
- A Unique Vector for each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Alternate Interrupt Vector Table (AIVT) for Debug Support
- Fixed Interrupt Entry and Return Latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors, consisting of eight nonmaskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR). Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices implement up to 71 unique interrupts and five non-maskable traps. These are summarized in Table 7-1.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices clear their registers in response to a Reset, which forces the PC to zero. The Digital Signal Controller (DSC) then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

Vector Number	Interrupt Request (IQR)	IVT Address	AIVT Address	Interrupt Source
63-64	55-56	0x000082- 0x000084	0x000182- 0x000184	Reserved
65	57	0x000086	0x000186	PWM PSEM Special Event Match
66	58	0x000088	0x000188	QEI1 – Position Counter Compare
67-72	59-64	0x00008A- 0x000094	0x00018A- 0x000194	Reserved
73	65	0x000096	0x000196	U1E – UART1 Error Interrupt
74	66	0x000098	0x000198	U2E – UART2 Error Interrupt
75-77	67-69	0x00009A- 0x00009E	0x00019A- 0x00019E	Reserved
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request
79	71	0x0000A2	0x0001A2	Reserved
80	72	0x0000A4	0x0001A4	Reserved
81	73	0x0000A6	0x0001A6	PWM Secondary Special Event Match
82	74	0x0000A8	0x0001A8	Reserved
83	75	0x0000AA	0x0001AA	QEI2 – Position Counter Compare
84-88	76-80	0x0000AC- 0x0000B4	0x0001AC- 0x0001B4	Reserved
89	81	0x0000B6	0x0001B6	ADC Pair 8 Conversion Done
90	82	0x0000B8	0x0001B8	ADC Pair 9 Conversion Done
91	83	0x0000BA	0x0001BA	ADC Pair 10 Conversion Done
92	84	0x0000BC	0x0001BC	ADC Pair 11 Conversion Done
93	85	0x0000BE	0x0001BE	ADC Pair 12 Conversion Done
94-101	86-93	0x0000C0- 0x0000CE	0x0001C0- 0x0001CE	Reserved
102	94	0x0000D0	0x0001D0	PWM1 – PWM1 Interrupt
103	95	0x0000D2	0x0001D2	PWM2 – PWM2 Interrupt
104	96	0x0000D4	0x0001D4	PWM3 – PWM3 Interrupt
105	97	0x0000D6	0x0001D6	PWM4 – PWM4 Interrupt
106	98	0x0000D8	0x0001D8	PWM5 – PWM5 Interrupt
107	99	0x0000DA	0x0001DA	PWM6 – PWM6 Interrupt
108	100	0x0000DC	0x0001DC	PWM7– PWM7 Interrupt
109	101	0x0000DE	0x0001DE	PWM8 – PWM8 Interrupt
110	102	0x0000E0	0x0001E0	PWM9 – PWM9 Interrupt
111	103	0x0000E2	0x00001E2	CMP2 – Analog Comparator 2
112	104	0x0000E4	0x0001E4	CMP3 – Analog Comparator 3
113	105	0x0000E6	0x0001E6	CMP4 – Analog Comparator 4
114-117	106-109	0x0000E8- 0x0000EE	0x0001E8- 0x0001EE	Reserved
118	110	0x0000F0	0x0001F0	ADC Pair 0 Convert Done
119	111	0x0000F2	0x0001F2	ADC Pair 1 Convert Done
120	112	0x0000F4	0x0001F4	ADC Pair 2 Convert Done
121	113	0x0000F6	0x0001F6	ADC Pair 3 Convert Done
122	114	0x0000F8	0x0001F8	ADC Pair 4 Convert Done
123	115	0x0000FA	0x0001FA	ADC Pair 5 Convert Done
124	116	0x0000FC	0x0001FC	ADC Pair 6 Convert Done
125	117	0x0000FE	0x0001FE	ADC Pair 7 Convert Done
		Lowes	t Natural Order Prio	rity

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0						
	_	_	_	_	QEI1IF	PSEMIF	_						
bit 15						1 1	bit 8						
U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0						
	INT4IF	INT3IF	—	—	MI2C2IF	SI2C2IF	—						
bit 7							bit 0						
Legend:			••										
R = Readable	bit		oit		nented bit, read	d as '0'							
-n = Value at P	OR	$1^{\prime} = Bit is set$		0' = Bit is cle	ared	x = Bit is unkn	own						
bit 15 11	Unimplomon	tad: Pood os '	۰ ،										
bit 10		Event Interrun	, t Elan Status I	hit									
bit 10	1 = Interrupt request has occurred												
	0 = Interrupt request has not occurred												
bit 9	PSEMIF: PWM Special Event Match Interrupt Flag Status bit												
	1 = Interrupt r	equest has occ	urred .										
	0 = Interrupt r	equest has not	occurred										
bit 8-7		ted: Read as ')' =										
Dit 6	INI4IF: Extern	nal Interrupt 4	-lag Status bi	t									
	1 = Interrupt T 0 = Interrupt r	equest has oct	occurred										
bit 5	INT3IF: Exter	nal Interrupt 3	Flag Status bi	t									
	1 = Interrupt r	equest has occ	curred										
	0 = Interrupt r	equest has not	occurred										
bit 4-3	Unimplement	ted: Read as ')'										
bit 2	MI2C2IF: 12C	2 Master Event	s Interrupt Fla	ag Status bit									
	1 = Interrupt r	equest has occ	occurred										
bit 1	SI2C2IF: 12C2	2 Slave Events	Interrupt Flac	u Status bit									
2	1 = Interrupt r	equest has occ	urred										
	0 = Interrupt r	equest has not	occurred										
bit 0	Unimplement	ted: Read as ')'										

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0					
ADCP1IE	ADCP0IE	—	—	—	_	AC4IE	AC3IE					
bit 15							bit 8					
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
AC2IE		—		PWM6IE	PWM5IE	PWM4IE	PWM3IE					
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, read	l as '0'						
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own					
bit 15	ADCP1IE: AI	DC Pair 1 Conve	ersion Done	Interrupt Enable	e bit							
	1 = Interrupt	request is enabl	ed									
h :+ 4 4		request is not el		laters at Each	- h:t							
DIT 14	ADCPUIE: AL	JC Pair 0 Conve	ad	Interrupt Enable	e bit							
	1 = Interrupt 0 = Interrupt	request is enabl	eu nabled									
bit 13-10	Unimplemented: Read as '0'											
bit 9	AC4IE: Analog Comparator 4 Interrupt Enable bit											
	1 = Interrupt	request is enabl	ed									
	0 = Interrupt	request is not ei	nabled									
bit 8	AC3IE: Analo	og Comparator 3	3 Interrupt Er	nable bit								
	1 = Interrupt	request is enabl	ed									
h it 7		request is not ei	habled									
DIT /		og Comparator 2	2 Interrupt Er	nadie dit								
	1 = Interrupt 0 = Interrupt	request is enabl	eu nabled									
bit 6-4	Unimplemen	ted: Read as '0)'									
bit 3	PWM6IE: PW	/M6 Interrupt Er	nable bit									
	1 = Interrupt	request is enabl	ed									
	0 = Interrupt	request is not e	nabled									
bit 2	PWM5IE: PW	/M5 Interrupt Er	nable bit									
	1 = Interrupt	request is enabl	ed									
	0 = Interrupt	request is not er	nabled									
bit 1	PWM4IE: PW	/M4 Interrupt Er	hable bit									
	$\perp = \text{Interrupt}$	request is enabl	ed nabled									
bit 0		/M3 Interrunt Fr	nable hit									
	1 = Interrupt	request is enabl	ed									
	0 = Interrupt	request is not er	nabled									

REGISTER 7-19: IEC6: INTERRUPT ENABLE CONTROL REGISTER 6

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

REGISTER 7-26: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	_	—			—	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
		—		—	INT1IP2	INT1IP1	INT1IP0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					

bit 15-3 Unimplemented: Read as '0'

INT1IP<2:0>: External Interrupt 1 Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- •

bit 2-0

.

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

9.2 Auxiliary Clock Generation

The auxiliary clock generation is used for a peripherals that need to operate at a frequency unrelated to the system clock such as a PWM or ADC.

The primary oscillator and internal FRC oscillator sources can be used with an auxiliary PLL to obtain the auxiliary clock. The auxiliary PLL has a fixed 16x multiplication factor.

The auxiliary clock has the following configuration restrictions:

- For proper PWM operation, auxiliary clock generation must be configured for 120 MHz (see Parameter OS56 in Table 27-18 in Section 27.0 "Electrical Characteristics"). If a slower frequency is desired, the PWM Input Clock Prescaler (Divider) Select bits (PCLKDIV<2:0>) should be used.
- To achieve 1.04 ns PWM resolution, the auxiliary clock must use the 16x auxiliary PLL (APLL). All other clock sources will have a minimum PWM resolution of 8 ns.
- If the primary PLL is used as a source for the auxiliary clock, the primary PLL should be configured up to a maximum operation of 30 MIPS or less.

9.3 Reference Clock Generation

The reference clock output logic provides the user with the ability to output a clock signal based on the system clock or the crystal oscillator on a device pin. The user application can specify a wide range of clock scaling prior to outputting the reference clock.

REGISTER 16-8: SSEVTCMP: PWM SECONDARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SSEVTC	MP<12:5>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	S	SSEVTCMP<4:0	0>		—	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown

bit 15-3 SSEVTCMP<12:0>: Special Event Compare Count Value bits

bit 2-0 Unimplemented: Read as '0'

REGISTER 16-9: CHOP: PWM CHOP CLOCK GENERATOR REGISTER⁽¹⁾

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	—	—	—	—	—	CHOPCLK6	CHOPCLK5
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CHPCLKEN: Enable Chop Clock Generator bit 1 = Chop clock generator is enabled 0 = Chop clock generator is disabled
bit 14-10	Unimplemented: Read as '0'
bit 9-3	CHOPCLK<6:0>: Chop Clock Divider bits
	Value in 8.32 ns increments. The frequency of the chop clock signal is given by the following expression:
	Chop Frequency = 1/(16.64 * (CHOPCLK<6:0> + 1) * Primary Master PWM Input Clock Period)
bit 2-0	Unimplemented: Read as '0'

Note 1: The chop clock generator operates with the primary PWM clock prescaler (PCLKDIV<2:0>) in the PTCON2 register (Register 16-2).

REGISTER 17-1: QEIXCON: QEIX CONTROL REGISTER (x = 1 or 2) (CONTINUED)

bit 5	TQGATE: Timer Gated Time Accumulation Enable bit
	 1 = Timer gated time accumulation is enabled 0 = Timer gated time accumulation is disabled
bit 4-3	TQCKPS<1:0>: Timer Input Clock Prescale Select bits ⁽³⁾
	 11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value
bit 2	POSRES: Position Counter Reset Enable bit ⁽⁴⁾
	 1 = Index pulse resets the position counter 0 = Index pulse does not reset the position counter
bit 1	TQCS: Timer Clock Source Select bit
	1 = External clock from pin, QEAx (on the rising edge) 0 = Internal clock (Tcy)
bit 0	UPDN_SRC: Position Counter Direction Selection Control bit ⁽⁵⁾
	 1 = QEBx pin state defines the position counter direction 0 = Control/status bit, UPDN (QEIxCON<11>), defines the timer counter (POSxCNT) direction
Note 1:	CNTERR flag only applies when $QEIM < 2:0 > = 110$ or 100.
•	

- 2: Read-only bit when QEIM<2:0> = 1xx; read/write bit when QEIM<2:0> = 001.
- **3:** Prescaler utilized for 16-Bit Timer mode only.
- 4: This bit applies only when QEIM < 2:0 > = 100 or 110.
- 5: When configured for QEI mode, this control bit is a 'don't care'.

REGISTER 22-7: ADCPC1: ADC CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)

hit 10 0	TRCCRC2 .4.0 Trigger 2 Course Coloction bits
bit 12-8	TRGSRC3<4:0>: Trigger 3 Source Selection bits Selects trigger source for conversion of analog channels AN7 and AN6. 11111 = Timer2 period match 11110 = PWM Generator 8 current-limit ADC trigger 11101 = PWM Generator 7 current-limit ADC trigger 11011 = PWM Generator 6 current-limit ADC trigger 11010 = PWM Generator 5 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger 11011 = PWM Generator 2 current-limit ADC trigger 10110 = PWM Generator 1 current-limit ADC trigger 10110 = PWM Generator 3 secondary trigger is selected 10101 = PWM Generator 7 secondary trigger is selected 10101 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10011 = PWM Generator 5 secondary trigger is selected 10011 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 1 secondary trigger is selected 10010 = PWM Generator 1 secondary trigger is selected 10111 = PWM Generator 1 secondary trigger is selected 10110 = PWM Generator 1 secondary trigger is selected 10110 = PWM Generator 7 primary trigger is selected 10100 = Timer1 period match 10101 = PWM Generator 7 primary trigger is selected 10100 = PWM Generator 7 primary trigger is selected 10101 = PWM Generator 5 primary trigger is selected 10100 = PWM Generator 7 primary trigger is selected 10101 = PWM Generator 7 primary trigger is selected
	00111 = PWM Generator 4 primary trigger is selected 00110 = PWM Generator 3 primary trigger is selected 00101 = PWM Generator 2 primary trigger is selected 00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected 00010 = Global software trigger is selected 00001 = Individual software trigger is selected
	00000 = No conversion is enabled
bit 7	IRQEN2: Interrupt Request Enable 2 bit 1 = Enables IRQ generation when requested conversion of Channels AN5 and AN4 is completed 0 = IRQ is not generated
bit 6	PEND2: Pending Conversion Status 2 bit 1 = Conversion of Channels AN5 and AN4 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	 SWTRG2: Software Trigger 2 bit 1 = Starts conversion of AN5 and AN4 (if selected by the TRGSRCx<4:0> bits)⁽¹⁾ This bit is automatically cleared by hardware when the PEND2 bit is set. 0 = Conversion has not started

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

TABLE 27-19:	AC CHARACTERISTICS: INTERNAL FRC ACCURACY
--------------	---

AC CHA	RACTERISTICS	$\begin{tabular}{ c c c c c } \hline Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) \\ Operating temperature & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{tabular}$						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
Internal FRC Accuracy @ FRC Frequency = 7.37 MHz ⁽¹⁾								
F20a	FRC	-1	—	+1	%	$\textbf{-40^{\circ}C} \leq \textbf{TA} \leq \textbf{+85^{\circ}C}$	VDD = 3.0-3.6V	
F20b	FRC	-2		+2	%	$-40^{\circ}C \le TA \le +125^{\circ}C$	VDD = 3.0-3.6V	

Note 1: Frequency calibrated at +25°C and 3.3V. The TUN<5:0> bits can be used to compensate for temperature drift.

TABLE 27-20: AC CHARACTERISTICS: INTERNAL LPRC ACCURACY

AC CHA	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Characteristic	Min Typ Max Units C			Conditions	
LPRC @ 32.768 kHz ⁽¹⁾						
F21a	LPRC	-40	—	+40	%	$-40^{\circ}C \le TA \le +85^{\circ}C$
F21b	LPRC	-50		+50	%	$-40^{\circ}C \le TA \le +125^{\circ}C$

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 27-6: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

TABLE 27-26: INPUT CAPTURE x TIMING REQUIREMENTS

AC CH	HARACTERISTICS Standard Operating Cond (unless otherwise stated) Operating temperature -4(-4(litions: 3.0V to 3.6V)°C \leq TA \leq +85°C for Industrial)°C \leq TA \leq +125°C for Extended		
Param No.	Symbol	Characteristic ⁽¹⁾		Min	Мах	Units	Conditions	
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 TCY + 20		ns		
			With Prescaler	10		ns		
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	—	ns		
			With Prescaler	10	—	ns		
IC15	TccP	ICx Input Period		(TCY + 40)/N		ns	N = Prescale value (1, 4, 16)	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 27-7: OUTPUT COMPARE x (OCx) MODULE TIMING CHARACTERISTICS

TABLE 27-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
OC10	TccF	OCx Output Fall Time	—	_		ns	See Parameter DO32
OC11	TccR	OCx Output Rise Time	—	—	_	ns	See Parameter DO31

Note 1: These parameters are characterized but not tested in manufacturing.

^{© 2009-2014} Microchip Technology Inc.

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	cymbol Characteristic		Typ ⁽¹⁾	Max	Units	Conditions	
-		Cloc	k Parame	eters				
AD50b TAD ADC Clock Period 35.8			—	_	ns			
		Con	version F	Rate				
AD55b	tCONV	Conversion Time		14 Tad		_		
AD56b	FCNV	Throughput Rate						
		Devices with Single SAR	—	—	2.0	Msps		
Devices with Dual SARs		_	_	4.0	Msps			
	Timing Parameters							
AD63b	tDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾	1.0		10	μS		

TABLE 27-41: 10-BIT, HIGH-SPEED ADC MODULE TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Overall functional device operation at VBOR < VDD < VDDMIN is guaranteed but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN.

FIGURE 27-23: ANALOG-TO-DIGITAL CONVERSION TIMING PER INPUT

28.1 DC Characteristics

	TABLE 28-1:	OPERATING MIPS vs.	VOLTAGE
--	-------------	---------------------------	---------

Voo Bongo Tomo Bongo		Max MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610	
	3.0-3.6∨ (1)	-40°C to +85°C	50	

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. See Parameter BO10 in Table 27-11 for the BOR values.

TABLE 28-2: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical	Мах	Units	nits Conditions			
Operating Current (IDD) ⁽¹⁾							
MDC29d	85	100	mA	-40°C			
MDC29a	85	100	mA	+25°C	3.3V	50 MIPS	
MDC29b	85	100	mA	+85°C			

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU executing while(1) statement
- JTAG is disabled

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

Section Name	Update Description
Section 27.0 "Electrical Characteristics" (Continued)	Updated the Timer1, Timer2, and Timer3 External Clock Timing Requirements (see Table 27-23, Table 27-24, and Table 27-25).
	Updated the Simple OC/PWM Mode Timing Requirements (see Table 27-28).
	Updated all SPI Timing specifications (see Figure 27-11-Figure 27-18 and Table 27-30-Table 27-37).
	Added Note 2 to the 10-bit High-Speed ADC Module Specifications (see Table 27-40).
	Added Note 2 to the 10-bit High-Speed ADC Module Timing Requirements (see Table 27-41).
	Added parameter DA08 to the DAC Module Specifications (see Table 27-43).
	Updated parameter DA16 in the DAC Output Buffer Specifications (see Table 27-44).
	Added DMA Read/Write Timing Requirements (see Table 27-49).
Section 28.0 "50 MIPS Electrical Characteristics"	Added new chapter with electrical specifications for 50 MIPS devices.
Section 29.0 "DC and AC Device Characteristics Graphs"	Added new chapter.

TABLE B-3: MAJOR SECTION UPDATES (CONTINUED)

Revision E (October 2012)

This revision removes the Preliminary watermark and includes minor typographical and formatting changes throughout the data sheet.

Revision F (July 2014)

Changes CHOP bit to CHOPCLK in the High Speed PWM Register Map and CHOPCLK PWMCHOP Clock Generator Register (see Register 4-16 and Register 16-9).

Changes values in the Minimum Row Write Time and Maximum Row Write time equation examples (see Equation 5-2 and Equation 5-3).

Adds the Oscillator Delay table (see Table 6-2).

Updates TUN bit ranges in the OSCTUN: Oscillator Tuning Register (see Register 9-4).

Updates the Type C Timer Block Diagram (see Figure 13-2).

Adds Note 1 to the CxFCTRL: ECANx FIFO Control Register (see Register 21-4).

Adds Note 10 to the DC Characteristics: I/O Pin Input Specifications (see Table 27-9).

Updates values in the DC Characteristics: Program Memory Table (see Table 27-12).

Adds Register 29-7 through Register 29-12 to Section 29.0 "DC and AC Device Characteristics Graphs"

Also includes minor typographical and formatting changes throughout the data sheet.