

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gs406-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	<pre>111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)</pre>
	000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	 1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of a magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

- Note 1: This bit can be read or cleared (not set).
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
 - 4: Clearing this bit will clear SA and SB.

	4-9:		TERRUI	1 0011						00.0010								<u> </u>
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR		MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	_	_	_	_	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_	_	_	_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS2	8800	_	_	_	_	_	_	_	_	—	IC4IF	IC3IF	_	_	_	SPI2IF	SPI2EIF	0000
IFS3	008A	_	_	_	_	_	QEI1IF	PSEMIF	_	—	INT4IF	INT3IF	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	008C	_	_	_	_	QEI2IF	_	PSESMIF	_	—	_	_	_	_	U2EIF	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	ADCP12IF	_	_	_	_	_	—	_	_	_	_	_	ADCP8IF	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	-	_		AC4IF	AC3IF	AC2IF		PWM8IF	PWM7IF	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	0092	_	_	_	_	_	_		_	_	_	ADCP7IF	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF	0000
IEC0	0094		_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	_	_	-	_	INT1IE	CNIE	_	MI2C1IE	SI2C1IE	0000
IEC2	0098	-	_	_	_	_			_	_	IC4IE	IC3IE	_		_	SPI2IE	SPI2EIE	0000
IEC3	009A		_	_	-	_	QEI1IE	PSEMIE	_	_	INT4IE	INT3IE	_		MI2C2IE	SI2C2IE	_	0000
IEC4	009C		_	_	-	QEI2IE		PSESMIE	_	_	-	_	_		U2EIE	U1EIE	_	0000
IEC5	009E	PWM2IE	PWM1IE	ADCP12IE	-	_			_	_		_	_		_	ADCP8IE	_	0000
IEC6	00A0	ADCP1IE	ADCP0IE	_	-	_		AC4IE	AC3IE	AC2IE		PWM8IE	PWM7IE	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	00A2	_	_	_	_	_	_	_	_	_	_	ADCP7IE	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE	0000
IPC0	00A4		T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0		INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6		T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0		_	_	_	4440
IPC2	00A8		U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0		T3IP2	T3IP1	T3IP0	4444
IPC3	00AA		_	_	_	_			_	_	ADIP2	ADIP1	ADIP0		U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC		CNIP2	CNIP1	CNIP0	_	AC1IP2	AC1IP1	AC1IP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0		SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE		_	_	_	_			_	_	-	_	_		INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0		T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0		_	_	_	4440
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	—	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4		_	_	_	_			_	_	SPI2IP2	SPI2IP1	SPI2IP0		SPI2EIP2	SPI2EIP1	SPI2EIP0	0044
IPC9	00B6		_	_	-	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0		_	_	_	0440
IPC12	00BC	_	_	_	_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	—	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	_	_	_	0440
IPC13	00BE	_	_	_	_	_	INT4IP2	INT4IP1	INT4IP0	—	INT3IP2	INT3IP1	INT3IP0	_	—	_	—	0440
IPC14	00C0	_	_	_	_	_	QEI1IP2	QEI1IP1	QEI1IP0	_	PSEMIP2	PSEMIP1	PSEMIP0	_	_	_	_	0440
IPC16	00C4	_	_	_	_	_	U2EIP2	U2EIP1	U2EIP0	_	U1EIP2	U1EIP1	U1EIP0	_	_	_	_	0440
IPC18	00C8	_	QEI2IP2	QEI2IP1	QEI2IP0	_	—	—	—	_	PSESMIP2	PSESMIP1	PSESMIP0	_	_	_	_	4040
IPC20	00CC							_		_	ADCP8IP2	ADCP8IP1	ADCP8IP0	_	_	_	_	0040

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

TABLE 4-9: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS608

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: TIMERS REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1 Re	gister								0000
PR1	0102								Period Reg	ister 1								FFFF
T1CON	0104	TON	—	TSIDL	_	_	—	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106								Timer2 Re	gister								0000
TMR3HLD	0108						Timer3 H	Holding Reg	gister (for 32	2-bit timer o	perations of	only)						xxxx
TMR3	010A								Timer3 Re	gister								0000
PR2	010C								Period Reg	ister 2								FFFF
PR3	010E								Period Reg	ister 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
TMR4	0114								Timer4 Re	gister								0000
TMR5HLD	0116						Timer5 H	Holding Reg	gister (for 32	2-bit timer o	perations of	only)						xxxx
TMR5	0118								Timer5 Re	gister								0000
PR4	011A								Period Reg	ister 4								FFFF
PR5	011C								Period Reg	ister 5								FFFF
T4CON	011E	TON	_	TSIDL	_	_	_	—	—	-	TGATE	TCKPS1	TCKPS0	T32	_	TCS		0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: INPUT CAPTURE REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140							Inpu	t 1 Capture	e Register								xxxx
IC1CON	0142	_	—	ICSIDL	_	_	_	_	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2BUF	0144							Inpu	t 2 Capture	e Register								xxxx
IC2CON	0146	_	—	ICSIDL	_	—	—		—	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3BUF	0148							Inpu	t 3 Capture	e Register								xxxx
IC3CON	014A	_	—	ICSIDL	_	_	_	_	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC4BUF	014C							Inpu	t 4 Capture	e Register								xxxx
IC4CON	014E	_	—	ICSIDL	_	_	_	_	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-39:	ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1 (CONTINUED)
--------------------	--

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	066E								EIC	0<15:0>								xxxx
C1RXF12SID	0670	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	—	EID17	EID16	xxxx
C1RXF12EID	0672	•					•		EIC	0<15:0>			•					xxxx
C1RXF13SID	0674	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF13EID	0676								EIC	0<15:0>								xxxx
C1RXF14SID	0678	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF14EID	067A								EIC	0<15:0>								xxxx
C1RXF15SID	067C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	-	EXIDE	_	EID17	EID16	xxxx
C1RXF15EID	067E								EID	0<15:0>								xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

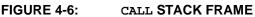
TABLE 4-40: ANALOG COMPARATOR CONTROL REGISTER MAP

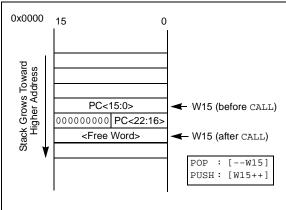
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMPCON1	0540	CMPON		CMPSIDL	_	_	_	_	DACOE	INSEL1	INSEL0	EXTREF		CMPSTAT		CMPPOL	RANGE	0000
CMPDAC1	0542	_		-	-	—	—					CMR	EF<9:0>					0000
CMPCON2	0544	CMPON	_	CMPSIDL	_	_	_	_	DACOE	INSEL1	INSEL0	EXTREF	_	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC2	0546	_	_	-	_	_	_					CMR	EF<9:0>					0000
CMPCON3	0548	CMPON	_	CMPSIDL	_	—	—		DACOE	INSEL1	INSEL0	EXTREF		CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC3	054A	_	_	-	_	_	_					CMR	EF<9:0>					0000
CMPCON4	054C	CMPON	_	CMPSIDL	_	_	_	_	DACOE	INSEL1	INSEL0	EXTREF	_	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC4	054E	_	_		_	—	—					CMR	EF<9:0>					0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.2.7 SOFTWARE STACK

In addition to its use as a Working register, the W15 register in the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices is also used as a Software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.


Note:	A PC push during exception processing
	concatenates the SRL register to the MSb
	of the PC prior to the push.


The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x1800 in RAM, initialize the SPLIM with the value, 0x17FE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

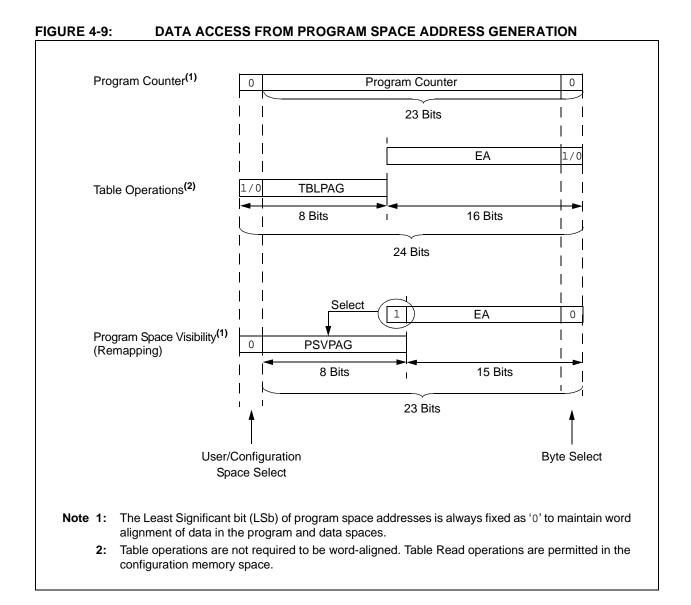
4.3 Instruction Addressing Modes

The addressing modes shown in Table 4-66 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS


The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

© 2009-2014 Microchip Technology Inc.

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming open	rations
	MOV	#0x4001, W0	;
	MOV	W0, NVMCON	; Initialize NVMCON
;	Set up a poi	nter to the first program	memory location to be written
;	program memo	ry selected, and writes en	nabled
	MOV	#0x0000, W0	i
	MOV	W0, TBLPAG	; Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	; An example program memory address
;	Perform the	TBLWT instructions to writ	te the latches
;	0th_program_	word	
	MOV	<pre>#LOW_WORD_0, W2</pre>	;
	MOV	<pre>#HIGH_BYTE_0, W3</pre>	;
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
;	lst_program_	word	
	MOV	#LOW_WORD_1, W2	i
	MOV	#HIGH_BYTE_1, W3	i
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
;	2nd_program	_word	
	MOV	#LOW_WORD_2, W2	;
	MOV	<pre>#HIGH_BYTE_2, W3</pre>	;
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
	•		
	•		
	•		
;	63rd_program	_word	
	MOV	#LOW_WORD_31, W2	i
	MOV	#HIGH_BYTE_31, W3	i
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
1			

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	i
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0
Legend:		C = Clearable	bit				
R = Readable	bit	W = Writable k	oit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Note 1:	For complete register details, see Register 3-1.	

bit 7-5

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- **3:** The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3)

110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)

111 = CPU Interrupt Priority Level is 7 (15), user interrupts are disabled

REGISTER 7-2							
U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT	DL2	DL1	DL0
bit 15							bit 8

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	-n = Value at POR	'1' = Bit is set
0' = Bit is cleared	'x = Bit is unknown	U = Unimplemented bit, read as '0'	

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	U-0
_	—	_	_	QEI2IF		PSESMIF	
bit 15							bit 8
U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
—	C1TXIF ⁽¹⁾	—	—	—	U2EIF	U1EIF	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own
bit 15-12	Unimplement	ed: Read as '	0'				
bit 11	QEI2IF: QEI2	Event Interrup	ot Flag Status	bit			
	1 = Interrupt re						
	0 = Interrupt re	•					
bit 10	Unimplement						
bit 9		•		y Match Interru	pt Flag Status b	bit	
	1 = Interrupt re 0 = Interrupt re						
bit 8-7	Unimplement	•					
bit 6	•			nterrupt Flag S	itatus bit ⁽¹⁾		
	1 = Interrupt re	equest has oc	curred				
	0 = Interrupt re	equest has no	t occurred				
bit 5-3	Unimplement	ed: Read as '	0'				
bit 2	U2EIF: UART	2 Error Interru	pt Flag Status	bit			
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 						
bit 1	U1EIF: UART	•		bit			
	1 = Interrupt re						
	0 = Interrupt re	equest has no	t occurred				
bit 0	Unimplemented: Read as '0'						
Note 1: Ir	nterrupts are disab	led on device	s without ECA	N™ modules.			

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

NOTES:

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70205) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as a time counter for the Real-Time Clock (RTC), or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low-power 32.767 kHz crystal oscillator available on the device.
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

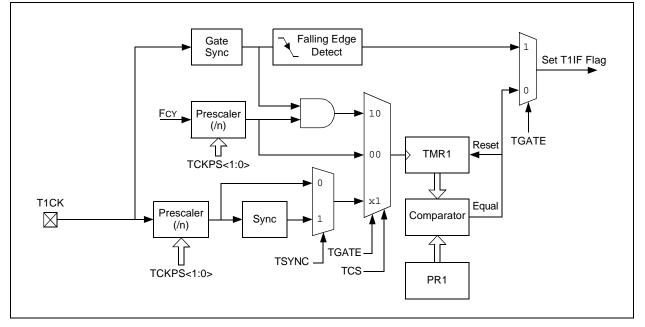
The unique features of Timer1 allow it to be used for Real-Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit: TCS (T1CON<1>)
- Timer Synchronization Control bit: TSYNC (T1CON<2>)
- Timer Gate Control bit: TGATE (T1CON<6>)

The timer control bit settings for different operating modes are given in the Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated Timer	0	1	х
Synchronous Counter	1	х	1
Asynchronous Counter	1	x	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

REGISTER 16-11: PWMCONx: PWM CONTROL x REGISTER (CONTINUED)

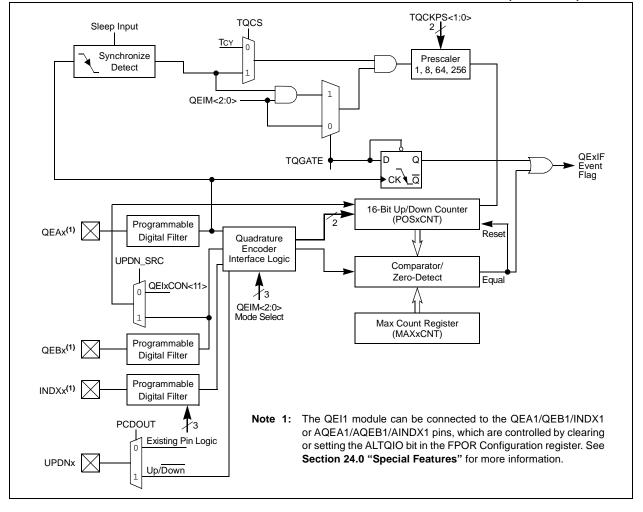
bit 7-	6	DTC<1:0>: Dead-Time Control bits 11 = Dead-Time Compensation mode 10 = Dead-time function is disabled
		 01 = Negative dead time is actively applied for Complementary Output mode 00 = Positive dead time is actively applied for all output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽⁴⁾
		 1 = If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened; If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened
		 If DTCMPx = 0, PWMxH is shortened and PWMLx is lengthened; If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		 1 = PWM generator uses the secondary master time base for synchronization and the clock source for the PWM generation logic (if secondary time base is available)
		 PWM generator uses the primary master time base for synchronization and the clock source for the PWM generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,3,5)
		1 = Center-Aligned mode is enabled0 = Edge-Aligned mode is enabled
bit 1		XPRES: External PWM Reset Control bit ⁽⁶⁾
		 1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode
		0 = External pins do not affect PWM time base
bit 0		IUE: Immediate Update Enable bit
		 1 = Updates to the active MDC/PDCx/SDCx registers are immediate 0 = Updates to the active PDCx registers are synchronized to the PWM time base
Note	1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
	2:	The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

- **3:** These bits should not be changed after the PWM is enabled by setting PTEN (PTCON<15>) = 1.
- 4: For DTCP to be effective, DTC<1:0> must be set to '11'; otherwise, DTCP is ignored.
- 5: Center-Aligned mode ignores the Least Significant 3 bits of the Duty Cycle, Phase and Dead-Time registers. The highest Center-Aligned mode resolution available is 8.32 ns with the clock prescaler set to the fastest clock.
- 6: Configure CLMOD (FCLCONX<8>) = 0 and ITB (PWMCONx<9>) = 1 to operate in External Period Reset mode.

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Quadrature Encoder Interface (QEI)" (DS70208) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.


The operational features of the QEI include:

- Three Input Channels for Two Phase Signals and Index Pulse
- 16-Bit Up/Down Position Counter
- Count Direction Status
- Position Measurement (x2 and x4) mode
- Programmable Digital Noise Filters on Inputs
- Alternate 16-Bit Timer/Counter mode
- · Quadrature Encoder Interface Interrupts

These operating modes are determined by setting the appropriate bits, QEIM<2:0> in (QEIxCON<10:8>). Figure 17-1 depicts the Quadrature Encoder Interface block diagram.

Note: An 'x' used in the names of pins, control/ status bits and registers denotes a particular QEI module number (x = 1 or 2).

FIGURE 17-1: QUADRATURE ENCODER INTERFACE x BLOCK DIAGRAM (x = 1 OR 2)

© 2009-2014 Microchip Technology Inc.

	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
_	—	—	—	-	IMV1	IMV0	CEID			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
QEOUT	QECK2	QECK1	QECK0	—	_		_			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15-11	Unimplemen	ted: Read as '	0'							
bit 10-9	IMV<1:0>: Ind	dex Match Valu	ue bits							
		These bits allow the user application to specify the state of the QEAx and QEBx input pins during an								
	index pulse when the POSxCNT register is to be reset.									
	In x4 Quadrature Count Mode:									
	IMV1 = Required state of Phase B input signal for match on index pulse IMV0 = Required state of Phase A input signal for match on index pulse									
	IMV0 = Requ									
	-		ase A input s							
	In x2 Quadrat	ired state of Ph ture Count Mod	ase A input s <u>de:</u>	ignal for match						
	In x2 Quadrat IMV1 = Selec	ired state of Ph <u>ture Count Moc</u> ts phase input	hase A input s <u>de:</u> signal for inde	ignal for match ex state match	n on index pulse	L = Phase B)				
bit 8	In x2 Quadrat IMV1 = Selec IMV0 = Requi	ired state of Ph <u>ture Count Moc</u> ts phase input	hase A input s de: signal for inde e selected pha	ignal for match ex state match	0 = Phase A, 1	L = Phase B)				
bit 8	In x2 Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts	ired state of Ph ture Count Moo ts phase input ired state of the Error Interrupt due to count e	ase A input s d <u>e:</u> signal for inde selected pha Disable bit errors are disa	ignal for match ex state match ase input signa bled	0 = Phase A, 1	L = Phase B)				
	In x2 Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts	ired state of Ph ture Count Moo ts phase input ired state of the Error Interrupt due to count e due to count e	ase A input s de: signal for inde selected pha Disable bit errors are disa errors are ena	ignal for match ex state match ase input signa bled bled	n on index pulse (0 = Phase A, 1 Il for match on ir	L = Phase B)				
bit 8 bit 7	In x2 Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA	ired state of Ph ture Count Moo ts phase input ired state of the Error Interrupt due to count e due to count e Ax/QEBx/INDX	ase A input s de: signal for inde selected pha Disable bit errors are disa errors are enal k Pin Digital F	ignal for match ex state match ase input signa bled bled	n on index pulse (0 = Phase A, 1 Il for match on ir	L = Phase B)				
	In x2 Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte	ired state of Ph ture Count Moo ts phase input ired state of the Error Interrupt due to count e due to count e Ax/QEBx/INDX er outputs are e	ase A input s de: signal for inde selected pha Disable bit errors are disa errors are enal k Pin Digital F enabled	ignal for match ex state match ase input signa bled bled ilter Output En	n on index pulse (0 = Phase A, 1 Il for match on ir able bit	L = Phase B)				
bit 7	In x2 Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte	ired state of Ph ture Count Moo ts phase input ired state of the Error Interrupt due to count e due to count e Ax/QEBx/INDX er outputs are e	ase A input s signal for inde selected pha Disable bit errors are disa errors are enal k Pin Digital F enabled disabled (norm	ignal for match ex state match ase input signa bled bled ilter Output En nal pin operatio	n on index pulse (0 = Phase A, 1 Il for match on ir able bit	L = Phase B)				
bit 7	In x2 Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>:	ired state of Ph ture Count Moo ts phase input ired state of the Error Interrupt due to count e due to count e Ax/QEBx/INDXX er outputs are e er outputs are o QEAx/QEBx/II	ase A input s signal for inde selected pha Disable bit errors are disa errors are enal k Pin Digital F enabled disabled (norm	ignal for match ex state match ase input signa bled bled ilter Output En nal pin operatio	n on index pulse (0 = Phase A, 1 Il for match on ir able bit	L = Phase B)				
bit 7	In x2 Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c	ired state of Ph ture Count Moo ts phase input ired state of the Error Interrupt due to count e due to count e Ax/QEBx/INDXX er outputs are o QEAx/QEBx/II clock divide	ase A input s signal for inde selected pha Disable bit errors are disa errors are enal k Pin Digital F enabled disabled (norm	ignal for match ex state match ase input signa bled bled ilter Output En nal pin operatio	n on index pulse (0 = Phase A, 1 Il for match on ir able bit	L = Phase B)				
bit 7	In x2 Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 of 110 = 1:128 of	ired state of Ph ture Count Moo ts phase input ired state of the Error Interrupt due to count e due to count e Ax/QEBx/INDXX er outputs are o QEAx/QEBx/II clock divide clock divide	ase A input s signal for inde selected pha Disable bit errors are disa errors are enal k Pin Digital F enabled disabled (norm	ignal for match ex state match ase input signa bled bled ilter Output En nal pin operatio	n on index pulse (0 = Phase A, 1 Il for match on ir able bit	L = Phase B)				
bit 7	In x2 Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c	ired state of Ph ture Count Moo ts phase input ired state of the Error Interrupt due to count e due to count e due to count e Ax/QEBx/INDX er outputs are o QEAx/QEBx/II clock divide clock divide ock divide	ase A input s signal for inde selected pha Disable bit errors are disa errors are enal k Pin Digital F enabled disabled (norm	ignal for match ex state match ase input signa bled bled ilter Output En nal pin operatio	n on index pulse (0 = Phase A, 1 Il for match on ir able bit	L = Phase B)				
bit 7	In x2 Quadrat IMV1 = Select IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c 110 = 1:128 c 101 = 1:64 ch	ired state of Ph ture Count Moo ts phase input ired state of the Error Interrupt due to count e due to count e due to count e ax/QEBx/INDX er outputs are o QEAx/QEBx/II clock divide clock divide ock divide	ase A input s signal for inde selected pha Disable bit errors are disa errors are enal k Pin Digital F enabled disabled (norm	ignal for match ex state match ase input signa bled bled ilter Output En nal pin operatio	n on index pulse (0 = Phase A, 1 Il for match on ir able bit	L = Phase B)				
	In x2 Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c 110 = 1:128 c 101 = 1:64 cl 100 = 1:32 cl 011 = 1:16 cl 010 = 1:4 clo	ired state of Ph ture Count Moo ts phase input ired state of the Error Interrupt due to count e due to count e	ase A input s signal for inde selected pha Disable bit errors are disa errors are enal k Pin Digital F enabled disabled (norm	ignal for match ex state match ase input signa bled bled ilter Output En nal pin operatio	n on index pulse (0 = Phase A, 1 Il for match on ir able bit	L = Phase B)				
bit 7	In x2 Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c 110 = 1:128 c 101 = 1:64 cl 100 = 1:32 cl 011 = 1:16 cl 010 = 1:4 clo 001 = 1:2 clo	ired state of Ph ture Count Moo ts phase input ired state of the Error Interrupt due to count e due to count e due to count e ax/QEBx/INDX er outputs are o QEAx/QEBx/II clock divide clock divide ock divide ock divide ck divide ck divide	ase A input s signal for inde selected pha Disable bit errors are disa errors are enal k Pin Digital F enabled disabled (norm	ignal for match ex state match ase input signa bled bled ilter Output En nal pin operatio	n on index pulse (0 = Phase A, 1 Il for match on ir able bit	L = Phase B)				
bit 7	In x2 Quadrat IMV1 = Select IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 of 100 = 1:128 of 101 = 1:164 ch 100 = 1:32 ch 011 = 1:16 ch 010 = 1:4 cho 001 = 1:2 cho 000 = 1:1 cho	ired state of Ph ture Count Moo ts phase input ired state of the Error Interrupt due to count e due to count e due to count e ax/QEBx/INDX er outputs are o QEAx/QEBx/II clock divide clock divide ock divide ock divide ck divide ck divide	ase A input s signal for inde selected pha Disable bit errors are disa rrors are disa rrors are enal Pin Digital F enabled disabled (norr NDXx Digital F	ignal for match ex state match ase input signa bled bled ilter Output En nal pin operatio	n on index pulse (0 = Phase A, 1 Il for match on ir able bit	L = Phase B)				

REGISTER 17-2: DFLTxCON: DIGITAL FILTER x CONTROL REGISTER

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	WAKFIL	—	—	—	SEG2PH2	SEG2PH1	SEG2PH0
bit 15				•			bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	כ'				
bit 14	WAKFIL: Sel	ect ECAN Bus	Line Filter for	Wake-up bit			
		AN bus line filte					
		s line filter is no		ke-up			
bit 13-11	-	ted: Read as '					
bit 10-8		I>: Phase Segn is 8 x To	nent 2 bits				
	111 = Length	IISOXIQ					
	•						
	•						
bit 7	000 = Length	Phase Segmer	t 2 Time Solo	ot hit			
	1 = Freely pro	-					
		of SEG1PHx b	oits or Informa	tion Processin	g Time (IPT), w	/hichever is gre	ater
bit 6	SAM: Sample	e of the ECAN I	Bus Line bit				
		s sampled three					
		s sampled once	-	e point			
bit 5-3		>: Phase Segn	nent 1 bits				
	111 = Length	ISBXIQ					
	•						
	•	· 4 T-					
h:: 0 0	000 = Length		T	(h.) (-			
bit 2-0		•: Propagation	lime Segmen	t Dits			
	111 = Length •	INDAIQ					
	•						
	• 000 - Longth						
	000 = Length	INSTXIQ					

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK1	F13MSK0	F12MSK1	F12MSK0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is ur			nown	
bit 15-14	F15MSK<1:0	>: Mask Sourc	e for Filter 15	bits				
	11 = Reserve	ed						
		nce Mask 2 reg						
	01 = Accepta	nce Mask 1 reg	gisters contain	mask				

REGISTER 21-19: CxFMSKSEL2: ECANx FILTER 15-8 MASK SELECTION REGISTER 2

bit 13-12	F14MSK<1:0>: Mask Source for Filter 14 bits (same values as bits<15:14>)

00 = Acceptance Mask 0 registers contain mask

bit 11-10 F13MSK<1:0>: Mask Source for Filter 13 bits (same values as bits<15:14>)

bit 9-8 F12MSK<1:0>: Mask Source for Filter 12 bits (same values as bits<15:14>)

bit 7-6 **F11MSK<1:0>:** Mask Source for Filter 11 bits (same values as bits<15:14>)

bit 5-4 **F10MSK<1:0>:** Mask Source for Filter 10 bits (same values as bits<15:14>)

bit 3-2 **F9MSK<1:0>:** Mask Source for Filter 9 bits (same values as bits<15:14>)

bit 1-0 F8MSK<1:0>: Mask Source for Filter 8 bits (same values as bits<15:14>)

27.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.0V ⁽³⁾	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum current sourced/sunk by any 4x I/O pin	15 mA
Maximum current sourced/sunk by any 8x I/O pin	25 mA
Maximum current sourced/sunk by any 16x I/O pin	45 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of the device maximum power dissipation (see Table 27-2).

3: See the **"Pin Diagrams**" section for 5V tolerant pins.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions
DI60a	licl	Input Low Injection Current	0		₋₅ (3,5,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO and RB11
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, RB11 and digital 5V tolerant designated pins ⁽³⁾
DI60c	∑ lict	Total Input Injection Current (sum of all I/O and control pins)	₋₂₀ (9)		+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 27-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the list of 5V tolerant I/O pins.
- 5: VIL source < (VSS 0.3). Characterized but not tested.
- **6:** VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- 7: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.
- 10: RB11 has also been tested up to $\pm 8 \ \mu A$ test limits.

FIGURE 29-11:	TYPICAL LPRC FREQUENCY @ VDD = 3.3V	7	FIGURE 29-12:	TYPICAL INTREF @ Vdd = 3.3V
LPRC Frequency (kHz)			INTREF (V)	
	Temperature (Celsius)			Temperature (Celsius)

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

03/25/14