

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gs406-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	Description
U1CTS	1	ST	UART1 Clear-to-Send.
U1RTS	0	_	UART1 Request-to-Send.
U1RX	I I	ST	UART1 receive.
U1TX	Ó	_	UART1 transmit.
U2CTS	I	ST	UART2 Clear-to-Send
U2RTS	Ô		UART2 Request-to-Send.
U2RX	I	ST	UART2 receive.
U2TX	Ō	_	UART2 transmit.
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.
SDI1	1	ST	SPI1 data in.
SDO1	0	_	SPI1 data out
SS1 ASS1	1/0	ST	SPI1 slave synchronization or frame pulse I/O
SCK2	1/O	ST	Synchronous serial clock input/output for SPI2
SDI2	1/ 0	ST	ISPI2 data in
SD02	$\dot{\circ}$		SPI2 data nit
SS2	1/0	ST	SPI2 slave synchronization or frame pulse I/O.
SCI 1	1/0	ST	Synchronous serial clock input/output for I2C1
SDA1	1/0	ST	Synchronous serial data input/output for I2C1
SCI 2	1/0	ST	Synchronous serial clock input/output for I201
SDA2	1/0	ST	Synchronous serial data input/output for I2C2.
	1/0		ITAC Test made select his
	1		JTAG test flode select plif.
	1		JTAG test clock input pin.
		116	JTAG test data input pin.
	0		
CMP1A		Analog	Comparator 1 Channel A.
CMP1B		Analog	Comparator 1 Channel B.
CMP1C		Analog	Comparator 1 Channel C.
CMP1D		Analog	Comparator 1 Channel D.
CMP2A	I	Analog	Comparator 2 Channel A
CMP2B	I	Analog	Comparator 2 Channel B.
CMP2C	I	Analog	Comparator 2 Channel C.
CMP2D	I	Analog	Comparator 2 Channel D.
СМРЗА	I	Analog	Comparator 3 Channel A.
СМРЗВ	I	Analog	Comparator 3 Channel B.
CMP3C	I	Analog	Comparator 3 Channel C.
CMP3D	I	Analog	Comparator 3 Channel D.
CMP4A	I	Analog	Comparator 4 Channel A.
CMP4B	I	Analog	Comparator 4 Channel B.
CMP4C	I	Analog	Comparator 4 Channel C.
CMP4D	I	Analog	Comparator 4 Channel D.
DACOUT	0		DAC output voltage.
EXTREF	Ι	Analog	External voltage reference input for the reference DACs.
REFCLK	0		REFCLK output signal is a postscaled derivative of the system clock.
Legend: CMOS = CMO	OS compa	atible input	or output Analog = Analog input I = Input

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend:CMOS = CMOS compatible input or output
ST = Schmitt Trigger input with CMOS levels
TTL = Transistor-Transistor LogicAnalog = Analog input
P = PowerI = Input
O = Output

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analogto-Digital input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG and ADPCFG2 registers.

The bits in the registers that correspond to the Analog-to-Digital pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device. If your application needs to use certain Analog-to-Digital pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG and ADPCFG2 registers during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG and ADPCFG2 registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all Analog-to-Digital pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins and drive the output to logic low.

2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-4 through Figure 2-11.

3.3 Special MCU Features

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/610 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CPU CORE BLOCK DIAGRAM

NOTES:

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	—	—	—		—	—	_		_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	—		ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	—	_		_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS2	0088	—		_	—	_			—	_	IC4IF	IC3IF	—	_		SPI2IF	SPI2EIF	0000
IFS3	008A	—		—	—	—	QEI1IF	PSEMIF	—	_	INT4IF	INT3IF	—	—	MI2C2IF	SI2C2IF	—	0000
IFS4	008C	—		—	—	QEI2IF		PSESMIF	—	_		_	—	—	U2EIF	U1EIF	—	0000
IFS5	008E	PWM2IF	PWM1IF	ADCP12IF	_	_	_	_	_	_	_	_	ADCP11IF	ADCP10IF	ADCP9IF	ADCP8IF	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	_	_	AC4IF	AC3IF	AC2IF	PWM9IF	PWM8IF	PWM7IF	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	0092	_	_	_	_	_	_	_	_	_	_	ADCP7IF	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF	0000
IEC0	0094	_	_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	—	—	_	_	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	_	_	_	_	_	—	—	—	IC4IE	IC3IE	—	_	_	SPI2IE	SPI2EIE	0000
IEC3	009A	_	_	_	_	_	QEI1IE	PSEMIE	—	—	INT4IE	INT3IE	—	_	MI2C2IE	SI2C2IE	_	0000
IEC4	009C	_	_	_	_	QEI2IE	_	PSESMIE	—	—	_	_	—	_	U2EIE	U1EIE	_	0000
IEC5	009E	PWM2IE	PWM1IE	ADCP12IE	_	_	_	—	—	—	_	_	ADCP11IE	ADCP10IE	ADCP9IE	ADCP8IE	_	0000
IEC6	00A0	ADCP1IE	ADCP0IE	_	_	_	_	AC4IE	AC3IE	AC2IE	PWM9IE	PWM8IE	PWM7IE	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	00A2	_	_	_	_	_	_	—	—	—	_	ADCP7IE	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	_	_	_	_	4440
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	_	_	_	_	_	—	—	—	ADIP2	ADIP1	ADIP0	_	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	_	AC1IP2	AC1IP1	AC1IP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_	_	_	_	_	_	—	—	—	_	_	—	_	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	_	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	—	_	_	_	4440
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	_	_	_	_	_	_	—	—	—	SPI2IP2	SPI2IP1	SPI2IP0	_	SPI2EIP2	SPI2EIP1	SPI2EIP0	0044
IPC9	00B6	_	-	_	_	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	_	_	_	_	0440
IPC12	00BC	_	-	_	_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	_	_	_	0440
IPC13	00BE	_		_	—	—	INT4IP2	INT4IP1	INT4IP0	—	INT3IP2	INT3IP1	INT3IP0	—		_	—	0440
IPC14	00C0	—	_	_	—	—	QEI1IP2	QEI1IP1	QEI1IP0	_	PSEMIP2	PSEMIP1	PSEMIP0	—	—	_	—	0440
IPC16	00C4	—	_	_	_	—	U2EIP2	U2EIP1	U2EIP0	_	U1EIP2	U1EIP1	U1EIP0	—	_	_	_	0440
IPC18	00C8	—	QEI2IP2	QEI2IP1	QEI2IP0	_	—	—	_	_	PSESMIP2	PSESMIP1	PSESMIP0	_	—	_	_	4040
IPC20	00CC	_	ADCP10IP2	ADCP10IP1	ADCP10IP0	_	ADCP9IP2	ADCP9IP1	ADCP9IP0	_	ADCP8IP2	ADCP8IP1	ADCP8IP0	_	_	_	_	4440

TABLE 4-8: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS610 DEVICES

x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Legend:

TABLE 4-16: HIGH-SPEED PWM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0400	PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2	0402	_	PCLKDIV<2:0> 0000															
PTPER	0404		PTPER<15:0> FFF8															
SEVTCMP	0406		SEVTCMP<12:0> 0000									0000						
MDC	040A								N	IDC<15:0>								0000
STCON	040E	—	—	_	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
STCON2	0410	—	—	_	—	_	—	_	_	-	—	_	—	-	F	PCLKDIV<2:)>	0000
STPER	0412		STPER<15:0> FFF								FFF8							
SSEVTCMP	0414		SSEVTCMP<15:3> 00/								0000							
CHOP	041A	CHPCLKEN	—	—	—	_	—	CHOPCLK6	CHOPCLK5	CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	—	—	—	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: HIGH-SPEED PWM GENERATOR 1 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0420	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON1	0422	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON1	0424	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC1	0426		PDC1<15:0> 0000															
PHASE1	0428		PHASE1<15:0> 0000															
DTR1	042A	_	— DTR1<13:0> 0000															
ALTDTR1	042C	_	ALTDTR1<13:0> 0000															
SDC1	042E								SD	C1<15:0>								0000
SPHASE1	0430								SPHA	ASE1<15:0>	•							0000
TRIG1	0432							TRGCMP<1	2:0>							_	_	0000
TRGCON1	0434	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	DTM	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG1	0436							STRGCMP<	12:0>						_	_	_	0000
PWMCAP1	0438		PWMCAP<12:0> 0000															
LEBCON1	043A	PHR	PHF	PLR	R PLF FLTLEBEN CLLEBEN — — — — BCH BCL BPHH BPHL BPLH BPLL C							0000						
LEBDLY1	043C	_	—	LEB<8:0> 000							0000							
AUXCON1	043E	HRPDIS	HRDDIS	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSELC) —	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 27-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the Table Write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 27-12).

EQUATION 5-1: PROGRAMMING TIME

 $\frac{T}{7.37 \text{ MHz} \times (FRC \text{ Accuracy})\% \times (FRC \text{ Tuning})\%}$

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 2\%$. If the TUN<5:0> bits (see Register 9-4) are set to `b000000, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

Tow -	11064 Cycles	- 1 173 ms
IKW —	$\overline{7.37 MHz} \times (1 + 0.02) \times (1 - 0.000938)$	-1.4/3 ms

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

Tow -	11064 Cycles	- 1 533 ms
1KW -	$7.37 MHz \times (1 - 0.02) \times (1 - 0.000938)$	– 1.555 ms

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—		
bit 7							bit 0		
Legend:	L:4		L:4		a a vata al la itu ya a a				
R = Readable		vv = vvritable	DIT	0 = 0	nented bit, read	1 as U x – Pitio unkn	15 U		
-n = value at P	OR	I = DILIS SEL		0 = Dit is cies	areu		IOWI		
bit 15	NSTDIS: Inte	rrunt Nestina F)isahle hit						
Sit 10	1 = Interrupt r	nesting is disab	oled						
	0 = Interrupt r	nesting is enab	led						
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	lag bit					
	1 = Trap was	caused by an	overflow of Ac	cumulator A					
	0 = Irap was	not caused by	an overflow o	f Accumulator	A				
bit 13	OVBERR: Ac	cumulator B O	verflow I rap H	-lag bit					
	1 = Trap was 0 = Trap was	not caused by and	an overflow of AC	f Accumulator	В				
bit 12	COVAERR: A	Accumulator A	Catastrophic (Overflow Trap F	-lag bit				
	1 = Trap was	caused by a ca	atastrophic ov	erflow of Accur	mulator A				
	0 = Trap was	not caused by	a catastrophic	c overflow of A	ccumulator A				
bit 11	COVBERR: A	Accumulator B	Catastrophic (Overflow Trap F	-lag bit				
	1 = Trap was	caused by a ca	atastrophic ov	erflow of Accur	nulator B				
bit 10	0 = Trap was	not caused by	rflow Trop En	covernow of A	Comulator B				
bit TO	1 = Trap over	flow of Accum	illator A						
	0 = Trap is dis	sabled							
bit 9	OVBTE: Accu	umulator B Ove	erflow Trap En	able bit					
	1 = Trap over	flow of Accumu	ulator B						
	0 = Trap is dis	sabled							
bit 8	COVTE: Cata	astrophic Overf	low Trap Enat	ble bit	D · · · · ·				
	1 = Irap on a 0 = Trap is dist	catastrophic o sabled	verflow of Acc	cumulator A or	B is enabled				
bit 7	SFTACERR:	Shift Accumula	tor Error Statu	us bit					
2	1 = Math erro	or trap was caus	sed by an inva	alid accumulato	or shift				
	0 = Math erro	or trap was not	caused by an	invalid accumu	lator shift				
bit 6	DIV0ERR: Ar	ithmetic Error S	Status bit						
	1 = Math erro	or trap was caus	sed by a divid caused by a d	e-by-zero livide-by-zero					
bit 5	DMACERR:	DMA Controller	Error Status	bit					
	1 = DMA Con	troller error tra	p has occurre	d					
	0 = DMA Con	troller error tra	p has not occu	urred					
bit 4	MATHERR: A	Arithmetic Error	Status bit						
	1 = Math erro 0 = Math erro	or trap has occu or trap has not c	irred occurred						

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
_		—	_	—	DMA1IP2	DMA1IP1	DMA1IP0			
bit 15		·				·	bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	ADIP2	ADIP1	ADIP0		U1TXIP2	U1TXIP1	U1TXIP0			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15-11	Unimplemen	ted: Read as '	0'							
bit 10-8	DMA1IP<2:0	>: DMA Chann	el 1 Data Trai	nsfer Complete	e Interrupt Priori	ty bits				
	111 = Interru	111 = Interrupt is Priority 7 (highest priority interrupt)								
	•									
	•									
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled							
bit 7	Unimplemen	ted: Read as '	0'							
bit 6-4	ADIP<2:0>: /	ADC1 Conversi	on Complete	Interrupt Priori	ity bits					
	111 = Interru	pt is Priority 7 (highest priori	ty interrupt)						
	•									
	•									
	001 = Interru	ot is Priority 1								
	000 = Interru	pt source is dis	abled							
bit 3	Unimplemen	ted: Read as '	0'							
bit 2-0	U1TXIP<2:0>	UART1 Trans	smitter Interru	pt Priority bits						
	111 = Interru	111 = Interrupt is Priority 7 (highest priority interrupt)								
	•									
	•									
	001 = Interrupt is Priority 1									
	000 = Interru	pt source is dis	abled							

REGISTER 7-24: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—		—	_	—			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—	AC4IP2	AC4IP1	AC4IP0	—	AC3IP2	AC3IP1	AC3IP0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15-7	Unimplemen	ted: Read as '	0'							
bit 6-4	AC4IP<2:0>:	Analog Compa	arator 4 Interru	upt Priority bits	6					
	111 = Interru	pt is Priority 7 (highest priorit	y)						
	•									
	•									
	001 = Interru	ot is Priority 1								
	000 = Interru	pt source is dis	abled							
bit 3	Unimplemen	ted: Read as '	0'							
bit 2-0	AC3IP<2:0>:	Analog Compa	arator 3 Interru	upt Priority bits	6					
	111 = Interru	pt is Priority 7 (highest priorit	y)						
	•									
	•									
	001 = Interru	ot is Priority 1								
	000 = Interru	pt source is dis	abled							

REGISTER 7-42: IPC26: INTERRUPT PRIORITY CONTROL REGISTER 26

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—		CMP4MD	CMP3MD	CMP2MD	CMP1MD			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
_	—	—	_	—		—	PWM9MD			
bit 7							bit 0			
Legend:										
R = Readabl	le bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-12	Unimplemen	Unimplemented: Read as '0'								
bit 11	CMP4MD: An	alog Comparat	or 4 Module D	isable bit						
	1 = Analog Co 0 = Analog Co	omparator 4 mo omparator 4 mo	odule is disable odule is enable	ed ed						
bit 10	CMP3MD: An	alog Comparat	or 3 Module D	isable bit						
	1 = Analog Co 0 = Analog Co	omparator 3 mo omparator 3 mo	odule is disable odule is enable	ed ed						
bit 9	CMP2MD: An	alog Comparat	or 2 Module D	isable bit						
	1 = Analog Co	omparator 2 mo	odule is disable	ed						
hit Q		olog Comparat	or 1 Modulo D	icabla bit						
DILO	L = Analog Comparator 1 module is disabled									
	0 = Analog Comparator 1 module is enabled									
bit 7-1	Unimplemented: Read as '0'									
bit 0	PWM9MD: P	PWM9MD: PWM Generator 9 Module Disable bit								
	1 = PWM Generator 9 module is disabled									
	0 = PWM Ger	nerator 9 modu	le is enabled							

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

11.2 Open-Drain Configuration

In addition to the PORTx, LATx and TRISx registers for data control, some digital only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (for example, 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to "**Pin Diagrams**" for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The ADPCFG and TRISx registers control the operation of the Analog-to-Digital port pins. The port pins that are to function as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADPCFG and ADPCFG2 registers have a default value of 0x000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORTx register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 11-1.

11.5 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 30 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-of-State.

Four control registers are associated with the Change Notification (CN) module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables an CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on Change Notification pins should always be disabled when the port pin is configured as a digital output.

MOV	0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

EQUATION 11-1: PORT WRITE/READ EXAMPLE

© 2009-2014 Microchip Technology Inc.

FIGURE 22-1: ADC BLOCK DIAGRAM FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES WITH ONE SAR

REGISTER 22-7: ADCPC1: ADC CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)

bit 4-0	TRGSRC2<4:0>: Trigger 2 Source Selection bits
	Selects trigger source for conversion of Analog Channels AN5 and AN4.
	11111 = Timer2 period match
	11110 = PWM Generator 8 current-limit ADC trigger
	11101 = PWM Generator 7 current-limit ADC trigger
	11100 = PWM Generator 6 current-limit ADC trigger
	11011 = PWM Generator 5 current-limit ADC trigger
	11010 = PWM Generator 4 current-limit ADC trigger
	11001 = PWM Generator 3 current-limit ADC trigger
	11000 = PWM Generator 2 current-limit ADC trigger
	10111 = PWM Generator 1 current-limit ADC trigger
	10110 = PWM Generator 9 secondary trigger is selected
	10101 = PWM Generator 8 secondary trigger is selected
	10100 = PWM Generator 7 secondary trigger is selected
	10011 = PWM Generator 6 secondary trigger is selected
	10010 = PWM Generator 5 secondary trigger is selected
	10001 = PWM Generator 4 secondary trigger selected
	10000 = PWM Generator 3 secondary trigger is selected
	01111 = PWM Generator 2 secondary trigger is selected
	01110 = PWM Generator 1 secondary trigger is selected
	01101 = PWM secondary Special Event Trigger is selected
	01100 = Timer1 period match
	01011 = PWM Generator 8 primary trigger is selected
	01010 = PWM Generator 7 primary trigger is selected
	01001 = PWM Generator 6 primary trigger is selected
	01000 = PWM Generator 5 primary trigger is selected
	00111 = PWM Generator 4 primary trigger is selected
	00110 = PWM Generator 3 primary trigger is selected
	00101 = PWM Generator 2 primary trigger is selected
	00100 = PWM Generator 1 primary trigger is selected
	00011 = PWM Special Event Trigger is selected
	00010 = Global software trigger is selected
	00001 = Individual software trigger is selected
	00000 = No conversion is enabled

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

DC CHA	DC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature 40°C < Ta < 185°C for Industric				s: 3.0V to 3.6V		
			Operati	$-40^{\circ}C \le TA \le +85^{\circ}C \text{ for industrial}$ $-40^{\circ}C \le TA \le +125^{\circ}C \text{ for Extended}$		\leq TA \leq +125°C for Extended	
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units Conditions	
		Program Flash Memory					
D130	Eр	Cell Endurance	10,000	—	—	E/W	-40°C to +125°C
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage
D132B	Vpew	VDD for Self-Timed Write	VMIN	_	3.6	V	VMIN = Minimum operating voltage
D134	Tretd	Characteristic Retention	20	_	—	Year	Provided no other specifications are violated, -40°C to +125°C
D135	IDDP	Supply Current during Programming	_	10	_	mA	
D136a	Trw	Row Write Time	1.488	_	1.518	ms	TRW = 11064 FRC cycles, TA = +85°C (See Note 2)
D136b	Trw	Row Write Time	1.473	_	1.533	ms	TRW = 11064 FRC cycles, TA = +125°C (See Note 2)
D137a	Тре	Page Erase Time	22.7	_	23.1	ms	TPE = 168517 FRC cycles, TA = +85°C (See Note 2)
D137b	Тре	Page Erase Time	22.4	—	23.3	ms	TPE = 168517 FRC cycles, TA = +125°C (See Note 2)
D138a	Tww	Word Write Cycle Time	47.7	—	48.7	μs	Tww = 355 FRC cycles, TA = +85°C (See Note 2)
D138b	Tww	Word Write Cycle Time	47.3	—	49.2	μs	Tww = 355 FRC cycles, TA = +125°C (See Note 2)

TABLE 27-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min.), TUN<5:0> = b'100000 (for Max.). This parameter depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the minimum and maximum time, see Section 5.3 "Programming Operations".

TABLE 27-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments
_	Cefc	External Filter Capacitor Value ⁽¹⁾	22	_	_	μF	Capacitor must be low series resistance (< 0.5 Ohms)

Note 1: Typical VCAP voltage = 2.5 volts when $VDD \ge VDDMIN$.

TABLE 27-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Condition				Conditions
DO31	TIOR	Port Output Rise Time					
		4x Source Driver Pins – RA0-RA7, RA14, RA15, RB0-RB15, RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15		10	25	ns	Refer to Figure 27-1 for test conditions
		8x Source Driver Pins – RC15	—	8	20	ns	
		16x Source Driver Pins – RE0-RE7, RG12, RG13	—	6	15	ns	
DO32	TIOF	Port Output Fall Time					
		4x Source Driver Pins – RA0-RA7, RA14, RA15, RB0-RB15, RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15	_	10	25	ns	Refer to Figure 27-1 for test conditions
		8x Source Driver Pins – RC15	—	8	20	ns	
		16x Source Driver Pins – RE0-RE7, RG12, RG13	—	6	15	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20	—	—	ns	
DI40	TRBP	CNx High or Low Time (input)	2	—	—	TCY	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

Idle Current (IIDLE)	
Internal Voltage Regulator Specifications	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	
DC Characteristics (50 MIPS)	
Doze Current (IDOZE)	
Idle Current (IIDLE)	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Demo/Development Boards, Evaluation and	
Starter Kits	
Development Support	
Third-Party Tools	
DMA Controller	
Channel to Peripheral Associations	
Control Registers	
Doze Mode	
DSP Engine	
Multiplier	41
•	

Е

ECAN Module	
Frame Types	
Modes of Operation	
Overview	
ECANx Message Buffers	
ECANx Word 0	
ECANx Word 1	
ECANx Word 2	
ECANx Word 3	
ECANx Word 4	
ECANx Word 5	
ECANx Word 6	
ECANx Word 7	
Electrical Characteristics	
Absolute Maximum Ratings	
AC Characteristics and Timing Parameters	
Electrical Characteristics (50 MIPS)	
AC Characteristics and Timing Parameters	421
Enhanced CAN (ECAN) Module	
Equations	
Device Operating Frequency	
Fosc Calculation	192
Maximum Row Write Time	110
Minimum Row Write Time	110
Programming Time	
XT with PLL Mode Example	
Errata	14
External Reset (EXTR)	121

F

201
109
110
110
113
110

G

Getting Started with 16-Bit DSCs 23
Application Connection Examples
Capacitor on Internal Voltage Regulator (VCAP) 24
Configuring Analog and Digital Pins During
ICSP Operations
Connection Requirements
Decoupling Capacitors
External Oscillator Pins
ICSP PINS
Oscillator Value Conditions on Start-up 26
Linused I/Os 26
011360 1/03
Н
High-Speed Analog Comparator
Applications 346
Comparator Input Range 346
Control Registers 346
DAC
Output Range 346
Digital Logic 346
Features Overview
Interaction with I/O Buffers
Module Description
High-Speed PWM
Control Registers
High-Speed, 10-Bit ADC
Control Registers
Medule Eurotionality 214
Module Functionality
1
I/O Ports
Parallel I/O (PIO)
Write/Read Timing215
I ² C
Control Registers 271
Operating Modes 271
Illegal Opcode Reset (IOPUWR) 121
In-Circuit Debugger
In-Circuit Emulation
In-Circuit Serial Programming (ICSP)
Input Capture
Control Registers
Input Change Notification
File Degister Instructions
File Register Instructions
MAC Instructions 100
MCU Instructions 99
Move and Accumulator Instructions 100
Other Instructions 100
Instruction Set
Overview
Summary
Symbols Used in Opcode Descriptions
Instruction-Based Power-Saving Modes
Idle
Sleep
Interfacing Program and Data Memory Spaces 104
Inter-Integrated Circuit. See I ² C.

NOTES: