

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gs406-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 4-	·1:	CPU CO	RE REGIS	STER MA	Р													
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000						V	Vorking Regis	ter 0									0000
WREG1	0002						V	Vorking Regis	ter 1									0000
WREG2	0004						V	Vorking Regis	ter 2									0000
WREG3	0006						V	Vorking Regis	ter 3									0000
WREG4	0008						V	Vorking Regis	ter 4									0000
WREG5	000A						V	Vorking Regis	ter 5									0000
WREG6	000C						V	Vorking Regis	ter 6									0000
WREG7	000E						V	Vorking Regis	ter 7									0000
WREG8	0010						V	Vorking Regis	ter 8									0000
WREG9	0012						V	Vorking Regis	ter 9									0000
WREG10	0014						W	orking Regist	er 10									0000
WREG11	0016						W	orking Regist	er 11									0000
WREG12	0018						W	orking Regist	er 12									0000
WREG13	001A						W	orking Regist	er 13									0000
WREG14	001C						W	orking Regist	er 14									0000
WREG15	001E						W	orking Regist	er 15									0800
SPLIM	0020						Stack	Pointer Limit	Register									xxxx
ACCAL	0022							ACCAL										xxxx
ACCAH	0024							ACCAH										xxxx
ACCAU	0026	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>				ACCA	U				xxxx
ACCBL	0028			-				ACCBL		-								xxxx
ACCBH	002A							ACCBH										xxxx
ACCBU	002C	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>				ACCB	U				xxxx
PCL	002E			-			Program (Counter Low E	Byte Register									0000
PCH	0030	—	_	_	—	_	—	—	_			Program	n Counter Hig	gh Byte F	Register			0000
TBLPAG	0032	—	_	_	—	_	—	—	_			Table Pa	age Address	Pointer F	Register			0000
PSVPAG	0034	—	_	_	—	_	—	—	_	F	Program	Memory \	/isibility Page	e Addres	s Pointe	r Registe	ər	0000
RCOUNT	0036			-			REPEAT	Loop Counte	er Register									xxxx
DCOUNT	0038							DCOUNT<15	:0>									xxxx
DOSTARTL	003A						DOS	TARTL<15:1>									0	xxxx
DOSTARTH	003C	—	—	—	—	—	—	—	—	—	—		DO	STARTH	l<5:0>			00xx
DOENDL	003E						DOE	ENDL<15:1>									0	xxxx
DOENDH	0040	—	—	—	—	—	—	—	—	—	—			DOEND	ЭН			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE	4-21	: HIG	H-SPE	ED PV	VIVI GEI	NERAIC	DR 5 REG	SISTER N	AP									
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON5	04A0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON5	04A2	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON5	04A4	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC5	04A6								PDC	5<15:0>								0000
PHASE5	04A8								PHAS	E5<15:0>								0000
DTR5	04AA	—	—							DTR	5<13:0>							0000
ALTDTR5	04AA	—	—							ALTDT	R5<13:0>							0000
SDC5	04AE								SDC	5<15:0>								0000
SPHASE5	04B0								SPHAS	SE5<15:0>								0000
TRIG5	04B2							TRGCMP<1	2:0>						_	_	_	0000
TRGCON5	04B4	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	-	-	DTM	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG5	04B6							STRGCMP<	12:0>						_	_	_	0000
PWMCAP5	04B8							PWMCAP<1	2:0>						_	_	_	0000
LEBCON5	04BA	PHR	PHF	PLR	PLF	FLTLEBEN CLLEBEN — — — — BCH BCL BPH									BPHL	BPLH	BPLL	0000
LEBDLY5	04BC	—	—	—	—	LEB<8:0> DCL BPTH BPTL BPTH BPTL BPTH BPTL BPTH BPTL												0000
AUXCON5	04BE	HRPDIS	HRDDIS	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES ONLY (CONTINUED)

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCBUF22	036C								ADC Dat	a Buffer 22								xxxx
ADCBUF23	036E								ADC Dat	a Buffer 23								XXXX
ADCBUF24	0370								ADC Dat	a Buffer 24								xxxx
ADCBUF25	0372								ADC Dat	a Buffer 25								xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-41: PORTA REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA	<15:14>	-	—	—	TRISA	<10:9>	—				TRISA	<7:0>				C6FF
PORTA	02C2	RA<1	5:14>	_	_	_	RA<1	10:9>	_				RA<	7:0>				xxxx
LATA	02C4	LATA<	15:14>	_	_	_	LATA<	:10:9>	_				LATA	<7:0>				0000
ODCA	02C6	ODCA<	<15:14>	—	_	_	ODCA.	<10:9>	_	_	_	ODCA-	<5:4>	_	_	ODCA	<1:0>	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-42: PORTA REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA	<15:14>	_	—	—	TRISA	<10:9>		_	—	_	—	—	—	_	_	C600
PORTA	02C2	RA<1	5:14>	_	_	_	RA<1	0:9>	_	—	_	_	_	_	_	_	_	xxxx
LATA	02C4	LATA<	5:14> — 5:14> —		_	_	LATA<	:10:9>	_	—	_	_	_	_	_	_	_	0000
ODCA	02C6	ODCA<	<15:14>	_	_	—	ODCA<	<10:9>		—	_		_	_	_	_	—	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-43: PORTB REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8								TRISE	8<15:0>								FFFF
PORTB	02CA								RB<	15:0>								xxxx
LATB	02CC								LATB	<15:0>								0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: PORTC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0		TRISC	C<15:12>		—	—	—	—	—	—	—		TRISC	<4:1>		—	F01E
PORTC	02D2		RC<15:12>			_	_	_	_	_	_	_		RC<	4:1>		_	xxxx
LATC	02D4		LATC	<15:12>		_	—	-	_	_	-	_		LATC	<4:1>			0000

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-53: PORTF REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	02E8		—	—	_	_	_			—				RISF<6:0>				007F
PORTF	02EA	_	_		-	-	-	_	_					RF<6:0>				xxxx
LATF	02EC	_	_		-	-	-	_	_					LATF<6:0>				0000
ODCF	02EE	-	_	_	_	_	_	_		_	ODCF6	_	—	C	DCF<3:1>		_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-54: PORTG REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	02F0		TRISG	i<15:12		_			TRIS	G<9:6>			-		TRISG	<3:0>		F3CF
PORTG	02F2		RG<15:12			_	_		RG	<9:6>		_	_		RG<3	3:0>		xxxx
LATG	02F4		LATG<15:12>			_	_		LATO	6<9:6>		_	_		LATG<	<3:0>		0000
ODCG	02F6		ODCG<	<15:12>		_	_		ODCO	G<9:6>		_	_		ODCG-	<3:0>		0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-55: PORTG REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	02F0		—	—	—	_	—	- TRISG<9:6>				_	—		TRISG	<3:0>		03CF
PORTG	02F2	_	_	_	_	_	_	TRISG<9:6> RG<9:6>					_		RG<3	3:0>		xxxx
LATG	02F4	_	_	_	_	_	_		LATO	3<9:6>		_	_		LATG<	<3:0>		0000
ODCG	02F6	_	_	_	_	_	_		ODC	G<9:6>		_	_		ODCG	<3:0>		0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-56: PORTG REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	02F0	-		-	—				TRIS	G<9:6>		—		TRISG	<3:2>			03CC
PORTG	02F2		_		—			TRISG<9:6> RG<9:6>				_		RG<	3:2>	_		xxxx
LATG	02F4		_		—			– LATG<9:6>				_		LATG<	<3:2>	_		0000
ODCG	02F6	_	_	_	_	_	_	LATG<9:6> ODCG<9:6>				_	_	ODCG	<3:2>	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming opera	ti	ions
	MOV	#0x4001, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Set up a poir	nter to the first program m	en	nory location to be written
;	program memo:	ry selected, and writes ena	bl	led
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	An example program memory address
;	Perform the	TBLWT instructions to write	t	the latches
;	0th_program_v	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	#HIGH_BYTE_0, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	lst_program_v	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	2nd_program	_word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	#HIGH_BYTE_2, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	J.BTM.LH	W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•			
'	63rd_program	_word		
	MOV	HUTCH DVTE 21 M2	΄.	
	ייייע דעדי	HUTOU DITE ST' MS	΄.	Write DM low word into program latab
	TBLWIL	W∠, [W∪] W2 [W0,]	΄.	Write PM high bute into program latch
	TRTMIH	ws, [w0++]	'	write PM nigh byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		, for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

REGISTER 8-5: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD<	15:8> ⁽²⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD<	:7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PAD<15:0>: Peripheral Address Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: See Table 8-1 for a complete list of peripheral addresses.

NOTES:

The Timer2/3/4/5 modules can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous Counter mode, the input clock is derived from the external clock input at the TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 13-1.

Mode	TCS	TGATE
Timer	0	0
Gated Timer	0	1
Synchronous Counter	1	x

TABLE 13-1: TIMER MODE SETTINGS

13.1 16-Bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

13.2 32-Bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control (TxCON<3>) register must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

When configured for 32-bit operation, only the Type B Timerx Control (TxCON) register bits are required for setup and control while the Type C Timer Control register bits are ignored (except the TSIDL bit).

For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The timers that can be combined to form a 32-bit timer are listed in Table 13-2.

	TABLE	13-2:	32-BIT	TIMER
--	-------	-------	--------	-------

Type B Timer (Isw)	Type C Timer (msw)
Timer2	Timer3
TImer4	Timer5

A block diagram representation of the 32-bit timer module is shown in Figure 13-3. The 32-timer module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode

To configure the timer features for 32-bit operation:

- 1. Set the T32 control bit.
- 2. Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 contains the most significant word of the value, while PR2 contains the least significant word.
- 5. If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits, T3IP<2:0>, to set the interrupt priority. While Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the corresponding TON bit.

INPUT CAPTURE 14.0

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70198) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. dsPIC33FJ32GS406/606/608/610 The and dsPIC33FJ64GS406/606/608/610 devices support up to two input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

FIGURE 14-1:

- · Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
- Capture Timer Value on Every Edge (rising and falling)
- Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select one of the two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- · Device Wake-up from Capture Pin during CPU Sleep and Idle modes
- Interrupt on Input Capture Event
- 4-Word FIFO Buffer for Capture Values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- · Use of Input Capture to provide Additional Sources of External Interrupts

INPUT CAPTURE x BLOCK DIAGRAM

REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit
	1 = UxRX Idle state is '0'
	0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	11 = 9-bit data, no parity
	10 = 8-bit data, odd parity
	01 = 8-bit data, even parity
	00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits
	0 = One Stop bit
Note 1:	Refer to "UART" (DS70188) in the "dsPIC33/PIC24 Family Reference Manual" for information or

- enabling the UART module for receive or transmit operation. That section of the manual is available on the Microchip web site: www.microchip.com.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

21.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "ECAN™" (DS70185) in the *dsPIC33/PIC24 Family Reference Manual*, which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN[™]) module is a serial interface, useful for communicating with other ECAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJ64GS606/ 608/610 devices contain one ECAN module.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN Protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and Extended Data Frames
- 0-8 Bytes Data Length
- Programmable Bit Rate, up to 1 Mbit/sec
- Automatic Response to Remote Transmission Requests
- Up to 8 Transmit Buffers with Application-Specified Prioritization and Abort Capability (each buffer can contain up to 8 bytes of data)
- Up to 32 Receive Buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 Full (Standard/Extended Identifier) Acceptance Filters
- Three Full Acceptance Filter Masks
- DeviceNet[™] Addressing Support

- Programmable Wake-up Functionality with Integrated Low-Pass Filter
- Programmable Loopback mode Supports Self-Test Operation
- Signaling via Interrupt Capabilities for all CAN Receiver and Transmitter Error States
- Programmable Clock Source
- Programmable Link to Input Capture module (IC2 for CAN1) for Time-Stamping and Network Synchronization
- Low-Power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

21.2 Frame Types

The CAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:

- Standard Data Frame: A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).
- Extended Data Frame: An extended data frame is similar to a standard data frame, but includes an Extended Identifier as well.
- Remote Frame: It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node sends a data frame as a response to this remote request.
- Error Frame: An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.
- Overload Frame: An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node can generate a maximum of 2 sequential overload frames to delay the start of the next message.
- Interframe Space: Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

FIGURE 21-1: ECANx MODULE BLOCK DIAGRAM

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x		
_	WAKFIL		—	—	SEG2PH2	SEG2PH1	SEG2PH0		
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0		
bit 7							bit 0		
r									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	IOWN		
bit 15	Unimplemen	ted: Read as '	0' 						
bit 14	WAKFIL: Sel	ect ECAN Bus	Line Filter for	Wake-up bit					
	$1 = 0 \sec ECA$ 0 = ECAN but	s line filter is no	of used for wake-up	ke-up					
bit 13-11	Unimplemen	ted: Read as '	0'						
bit 10-8	SEG2PH<2:0	>: Phase Segr	nent 2 bits						
	111 = Length	is 8 x Tq							
	•								
	•								
	000 = Length	is 1 x Tq							
bit 7	SEG2PHTS:	Phase Segmer	nt 2 Time Sele	ect bit					
	1 = Freely programmable								
	0 = Maximum of SEG1PHx bits or Information Processing Time (IPT), whichever is greater								
bit 6	SAM: Sample of the ECAN Bus Line bit								
	1 = Bus line is sampled three times at the sample point								
hit 5 2			e at the sampi mont 1 bits	e point					
bit 5-5	111 - Length	is 8 x To							
	•	130 X 10							
	•								
	•	is 1 x To							
hit 2-0	PRSEG-2.0	Propagation	Time Seamen	t hite					
Dit 2-0	111 = 1 end	is 8 x To	nine Geginen						
	•								
	•								
	• $000 - length$	is 1 v To							
	000 = Lengin								

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK1	F13MSK0	F12MSK1	F12MSK0		
bit 15	·					·	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0		
bit 7	•	·					bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-14	F15MSK<1:0	>: Mask Sourc	e for Filter 15	bits					
	11 = Reserve	ed							
	10 = Accepta	ince Mask 2 reg	gisters contain	mask					
	01 = Acceptance Mask 1 registers contain mask								

REGISTER 21-19: CxFMSKSEL2: ECANx FILTER 15-8 MASK SELECTION REGISTER 2

bit 13-12	F14MSK<1:0>: Mask Source for Filter 14 bits (same values as bits<15:14>)

00 = Acceptance Mask 0 registers contain mask

bit 11-10 F13MSK<1:0>: Mask Source for Filter 13 bits (same values as bits<15:14>)

bit 9-8 F12MSK<1:0>: Mask Source for Filter 12 bits (same values as bits<15:14>)

bit 7-6 **F11MSK<1:0>:** Mask Source for Filter 11 bits (same values as bits<15:14>)

bit 5-4 **F10MSK<1:0>:** Mask Source for Filter 10 bits (same values as bits<15:14>)

bit 3-2 **F9MSK<1:0>:** Mask Source for Filter 9 bits (same values as bits<15:14>)

bit 1-0 F8MSK<1:0>: Mask Source for Filter 8 bits (same values as bits<15:14>)

REGISTER 22-7: ADCPC1: ADC CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)

hit 10 0	TRCCRC2 .4.0 Trigger 2 Course Coloction bits
bit 12-8	TRGSRC3<4:0>: Trigger 3 Source Selection bits Selects trigger source for conversion of analog channels AN7 and AN6. 11111 = Timer2 period match 11110 = PWM Generator 8 current-limit ADC trigger 11101 = PWM Generator 7 current-limit ADC trigger 11011 = PWM Generator 6 current-limit ADC trigger 11010 = PWM Generator 5 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger 11011 = PWM Generator 2 current-limit ADC trigger 10110 = PWM Generator 1 current-limit ADC trigger 10110 = PWM Generator 3 secondary trigger is selected 10101 = PWM Generator 7 secondary trigger is selected 10101 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10011 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10010 = PWM Generator 1 secondary trigger is selected 10010 = PWM Generator 1 secondary trigger is selected 10111 = PWM Generator 1 secondary trigger is selected 01110 = PWM Generator 1 secondary trigger is selected 01110 = PWM Generator 7 primary trigger is selected 01100 = Timer1 period match 01011 = PWM Generator 7 primary trigger is selected 01000 = PWM Generator 7 primary trigger is selected 01001 = PWM Generator 5 primary trigger is selected 01000 = PWM Generator 7 primary trigger is selected 01000 = PWM Generator 7 primary trigger is selected 01001 = PWM Generator 7 primary trigger is selected 01011 = PWM Generator 7 primary trigger is selected
	00111 = PWM Generator 4 primary trigger is selected 00110 = PWM Generator 3 primary trigger is selected 00101 = PWM Generator 2 primary trigger is selected 00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected 00010 = Global software trigger is selected 00001 = Individual software trigger is selected
	00000 = No conversion is enabled
bit 7	IRQEN2: Interrupt Request Enable 2 bit 1 = Enables IRQ generation when requested conversion of Channels AN5 and AN4 is completed 0 = IRQ is not generated
bit 6	PEND2: Pending Conversion Status 2 bit 1 = Conversion of Channels AN5 and AN4 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	 SWTRG2: Software Trigger 2 bit 1 = Starts conversion of AN5 and AN4 (if selected by the TRGSRCx<4:0> bits)⁽¹⁾ This bit is automatically cleared by hardware when the PEND2 bit is set. 0 = Conversion has not started

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

REGISTER 22-10: ADCPC4: ADC CONVERT PAIR CONTROL REGISTER 4 (CONTINUED)

bit 4-0	TRGSRC8<4:0>: Trigger 8 Source Selection bits
	Selects trigger source for conversion of Analog Channels AN17 and AN16.
	11111 = Timer2 period match
	11110 = PWM Generator 8 current-limit ADC trigger
	11101 = PWM Generator 7 current-limit ADC trigger
	11100 = PWM Generator 6 current-limit ADC trigger
	11011 = PWM Generator 5 current-limit ADC trigger
	11010 = PWM Generator 4 current-limit ADC trigger
	11001 = PWM Generator 3 current-limit ADC trigger
	11000 = PWM Generator 2 current-limit ADC trigger
	10111 = PWM Generator 1 current-limit ADC trigger
	10110 = PWM Generator 9 secondary trigger selected
	10101 = PWM Generator 8 secondary trigger selected
	10100 = PWM Generator 7 secondary trigger selected
	10011 = PWM Generator 6 secondary trigger selected
	10010 = PWM Generator 5 secondary trigger selected
	10001 = PWM Generator 4 secondary trigger selected
	10000 = PWM Generator 3 secondary trigger selected
	01111 = PWM Generator 2 secondary trigger selected
	01110 = PWM Generator 1 secondary trigger selected
	01101 = PWW secondary Special Event Trigger selected
	01100 = 1 Imeri period match
	01011 = PWM Generator 7 primary trigger selected
	01010 = PWW Generator 6 primary trigger selected
	01001 = PWM Generator 5 primary trigger selected
	01000 = PWM Generator 4 primary trigger selected
	00110 - PWM Cenerator 3 primary trigger selected
	0.0101 - PWM Generator 2 primary trigger selected
	0.0100 = PWM Generator 1 primary trigger selected
	00011 = PWM Special Event Trigger selected
	00010 = Global software trigger selected
	00001 = Individual software trigger selected
	00000 = No conversion is enabled

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

25.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33F/PIC24H Family Manual" sections. Reference The information in this data sheet supersedes the information in the FRM.

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- Literal operations
- DSP operations
- · Control operations

Table 25-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 25-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value, 'f'
- The destination, which could be either the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register, 'Wn', or a literal value

The control instructions can use some of the following operands:

- · A program memory address
- The mode of the Table Read and Table Write instructions

Section Name	Update Description
Section 27.0 "Electrical Characteristics" (Continued)	Updated the Timer1, Timer2, and Timer3 External Clock Timing Requirements (see Table 27-23, Table 27-24, and Table 27-25).
	Updated the Simple OC/PWM Mode Timing Requirements (see Table 27-28).
	Updated all SPI Timing specifications (see Figure 27-11-Figure 27-18 and Table 27-30-Table 27-37).
	Added Note 2 to the 10-bit High-Speed ADC Module Specifications (see Table 27-40).
	Added Note 2 to the 10-bit High-Speed ADC Module Timing Requirements (see Table 27-41).
	Added parameter DA08 to the DAC Module Specifications (see Table 27-43).
	Updated parameter DA16 in the DAC Output Buffer Specifications (see Table 27-44).
	Added DMA Read/Write Timing Requirements (see Table 27-49).
Section 28.0 "50 MIPS Electrical Characteristics"	Added new chapter with electrical specifications for 50 MIPS devices.
Section 29.0 "DC and AC Device Characteristics Graphs"	Added new chapter.

TABLE B-3: MAJOR SECTION UPDATES (CONTINUED)

Revision E (October 2012)

This revision removes the Preliminary watermark and includes minor typographical and formatting changes throughout the data sheet.

Revision F (July 2014)

Changes CHOP bit to CHOPCLK in the High Speed PWM Register Map and CHOPCLK PWMCHOP Clock Generator Register (see Register 4-16 and Register 16-9).

Changes values in the Minimum Row Write Time and Maximum Row Write time equation examples (see Equation 5-2 and Equation 5-3).

Adds the Oscillator Delay table (see Table 6-2).

Updates TUN bit ranges in the OSCTUN: Oscillator Tuning Register (see Register 9-4).

Updates the Type C Timer Block Diagram (see Figure 13-2).

Adds Note 1 to the CxFCTRL: ECANx FIFO Control Register (see Register 21-4).

Adds Note 10 to the DC Characteristics: I/O Pin Input Specifications (see Table 27-9).

Updates values in the DC Characteristics: Program Memory Table (see Table 27-12).

Adds Register 29-7 through Register 29-12 to Section 29.0 "DC and AC Device Characteristics Graphs"

Also includes minor typographical and formatting changes throughout the data sheet.