

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gs406t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *dsPIC33/PIC24 Family Reference Manual*, **Program Memory**" (DS70203), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access to program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in **Section 4.6 "Interfacing Program and Data Memory Spaces"**.

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory maps are shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAPS FOR dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DEVICES

TABLE 4-	·1:	CPU CO	RE REGIS	STER MA	Р													
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000						V	Vorking Regis	ter 0									0000
WREG1	0002						V	Vorking Regis	ter 1									0000
WREG2	0004						V	Vorking Regis	ter 2									0000
WREG3	0006						V	Vorking Regis	ter 3									0000
WREG4	0008						V	Vorking Regis	ter 4									0000
WREG5	000A		Working Register 5 0000										0000					
WREG6	000C		Working Register 6 0000										0000					
WREG7	000E						V	Vorking Regis	ter 7									0000
WREG8	0010						V	Vorking Regis	ter 8									0000
WREG9	0012						V	Vorking Regis	ter 9									0000
WREG10	0014						W	orking Regist	er 10									0000
WREG11	0016						W	orking Regist	er 11									0000
WREG12	0018						W	orking Regist	er 12									0000
WREG13	001A						W	orking Regist	er 13									0000
WREG14	001C		Working Register 14 00										0000					
WREG15	001E						W	orking Regist	er 15									0800
SPLIM	0020						Stack	Pointer Limit	Register									xxxx
ACCAL	0022							ACCAL										xxxx
ACCAH	0024							ACCAH										xxxx
ACCAU	0026	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>				ACCA	U				xxxx
ACCBL	0028			-				ACCBL		-								xxxx
ACCBH	002A							ACCBH										xxxx
ACCBU	002C	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>				ACCB	U				xxxx
PCL	002E			-			Program (Counter Low E	Byte Register									0000
PCH	0030	—	_	_	—	_	—	—	_			Program	n Counter Hig	gh Byte F	Register			0000
TBLPAG	0032	—	_	_	—	_	—	—	_			Table Pa	age Address	Pointer F	Register			0000
PSVPAG	0034	—	_	_	—	_	—	—	_	F	Program	Memory \	/isibility Page	e Addres	s Pointe	r Registe	ər	0000
RCOUNT	0036			-			REPEAT	Loop Counte	er Register									xxxx
DCOUNT	0038							DCOUNT<15	:0>									xxxx
DOSTARTL	003A		DOSTARTL<15:1> 0 xx							XXXX								
DOSTARTH	003C	—	—	—	—	—	—	—	—	—	—		DO	STARTH	l<5:0>			00xx
DOENDL	003E						DOE	ENDL<15:1>									0	xxxx
DOENDH	0040	—	—	—	—	—	—	—	—	—	—			DOEND	ЭН			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7:	INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES (CONTINUED)
------------	---

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC24	00D4	_	PWM6IP2	PWM6IP1	PWM6IP0	—	PWM5IP2	PWM5IP1	PWM5IP0	—	PWM4IP2	PWM4IP1	PWM4IP0	—	PWM3IP2	PWM3IP1	PWM3IP0	4444
IPC27	00DA	_	ADCP1IP2	ADCP1IP1	ADCP1IP0	_	ADCP0IP2	ADCP0IP1	ADCP0IP0	_	_	_	_	_	_	_	_	4400
IPC28	00DC	_	ADCP5IP2	ADCP5IP1	ADCP5IP0	_	ADCP4IP2	ADCP4IP1	ADCP4IP0	_	ADCP3IP2	ADCP3IP1	ADCP3IP0	_	ADCP2IP2	ADCP2IP1	ADCP2IP0	4444
IPC29	00DE	_	_	_	_	_	_	_	_	_	ADCP7IP2	ADCP7IP1	ADCP7IP0	_	ADCP6IP2	ADCP6IP1	ADCP6IP0	0004
INTTREG	00E0	_	_	_	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

TABLE	4-23	: HIG	H-SPE	ED PW		IERATO	R 7 REG	ISTER M	IAP (EXC		S dsPIC	33FJ32	GS406 /	ND dsF	PIC33FJ	64GS406	DEVICE	ES)
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON7	04E0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP		MTBS	CAM	XPRES	IUE	0000
IOCON7	04E2	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON7	04E4	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC7	04E6	PDC7<15:0> 0									0000							
PHASE7	04E8	PHASE7<15:0> 0									0000							
DTR7	04EA	— — DTR7<13:0> 00									0000							
ALTDTR7	04EA	_	— — ALTDTR7<13:0> 00									0000						
SDC7	04EE								SDC	7<15:0>								0000
SPHASE7	04F0								SPHAS	SE7<15:0>								0000
TRIG7	04F2							TRGCMP<12	2:0>						_	_	_	0000
TRGCON7	04F4	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	-	-	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG7	04F6							STRGCMP<1	2:0>						_	_	_	0000
PWMCAP7	04F8							PWMCAP<12	2:0>						_	_	_	0000
LEBCON7	04FA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	-	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY7	04FC	—	_	—	_				L	EB<8:0>					-	_	—	0000
AUXCON7	04FE	HRPDIS	HRDDIS		—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 27-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the Table Write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 27-12).

EQUATION 5-1: PROGRAMMING TIME

 $\frac{T}{7.37 \text{ MHz} \times (FRC \text{ Accuracy})\% \times (FRC \text{ Tuning})\%}$

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 2\%$. If the TUN<5:0> bits (see Register 9-4) are set to `b000000, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

Tow -	11064 Cycles	- 1 173 ms
IKW —	$\overline{7.37 MHz} \times (1 + 0.02) \times (1 - 0.000938)$	-1.4/3 ms

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

Tow -	11064 Cycles	- 1 533 ms
1KW -	$7.37 MHz \times (1 - 0.02) \times (1 - 0.000938)$	– 1.555 ms

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

6.4 External Reset (EXTR)

The External Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt Trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to **Section 27.0 "Electrical Characteristics"** for minimum pulse width specifications. The External Reset (MCLR) pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

6.4.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate Reset signals to reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to reset the device when the rest of system is reset.

6.4.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to reset the device, the External Reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The External Reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

6.5 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle and the Reset vector fetch will commence.

The Software Reset (SWR) flag (instruction) in the Reset Control (RCON<6>) register is set to indicate the Software Reset.

6.6 Watchdog Timer Time-out Reset (WDTO)

Whenever a Watchdog Timer Time-out Reset occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out (WDTO) flag in the Reset Control (RCON<4>) register is set to indicate the Watchdog Timer Reset. Refer to **Section 24.4 "Watchdog Timer (WDT)**" for more information on the Watchdog Timer Reset.

6.7 Trap Conflict Reset

If a lower priority hard trap occurs while a higher priority trap is being processed, a hard Trap Conflict Reset occurs. The hard traps include exceptions of Priority Level 13 through Level 15, inclusive. The address error (Level 13) and oscillator error (Level 14) traps fall into this category.

The Trap Reset (TRAPR) flag in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to **Section 7.0 "Interrupt Controller"** for more information on Trap Conflict Resets.

6.8 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

The Illegal Opcode or Uninitialized W Access Reset (IOPUWR) flag in the Reset Control (RCON<14>) register is set to indicate the illegal condition device Reset.

6.8.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The Illegal Opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the Illegal Opcode Reset, use only the lower 16 bits of each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

6.8.2 UNINITIALIZED W REGISTER RESET

Any attempt to use the Uninitialized W register as an Address Pointer will reset the device. The W register array (with the exception of W15) is cleared during all Resets and is considered uninitialized until written to.

6.8.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a Security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a call, jump, computed jump, return, return from subroutine or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an interrupt or trap vector.

Refer to Section 24.8 "Code Protection and CodeGuard™ Security" for more information on Security Reset.

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
ADCP1IE	ADCP0IE	—	—	—	_	AC4IE	AC3IE				
bit 15							bit 8				
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
AC2IE		—		PWM6IE	PWM5IE	PWM4IE	PWM3IE				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	ADCP1IE: AI	DC Pair 1 Conve	ersion Done	Interrupt Enable	e bit						
	1 = Interrupt	request is enabl	ed								
h :+ 4 4		request is not el		laters at Each	- h:t						
DIT 14	ADCPUIE: AL	JC Pair 0 Conve	ad	Interrupt Enable	e bit						
	1 = Interrupt 0 = Interrupt	request is enabl	eu nabled								
bit 13-10	Unimplemen	Unimplemented: Read as '0'									
bit 9	AC4IE: Analo	og Comparator 4	1 Interrupt Er	nable bit							
	1 = Interrupt	request is enabl	ed								
	0 = Interrupt	request is not ei	nabled								
bit 8	AC3IE: Analo	og Comparator 3	3 Interrupt Er	nable bit							
	1 = Interrupt	request is enabl	ed								
h it 7		request is not ei	habled								
DIT /		og Comparator 2	2 Interrupt Er	nadie dit							
	1 = Interrupt 0 = Interrupt	request is enabl	eu nabled								
bit 6-4	Unimplemen	ted: Read as '0)'								
bit 3	PWM6IE: PW	/M6 Interrupt Er	nable bit								
	1 = Interrupt	request is enabl	ed								
	0 = Interrupt	request is not e	nabled								
bit 2	PWM5IE: PW	/M5 Interrupt Er	nable bit								
	1 = Interrupt	request is enabl	ed								
	0 = Interrupt	request is not er	nabled								
bit 1	PWM4IE: PW	/M4 Interrupt Er	hable bit								
	$\perp = \text{Interrupt}$	request is enabl	ed nabled								
bit 0		/M3 Interrunt Fr	nable hit								
	1 = Interrupt	request is enabl	ed								
	0 = Interrupt	request is not er	nabled								

REGISTER 7-19: IEC6: INTERRUPT ENABLE CONTROL REGISTER 6

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	T1IP<2:0>: ⊺	imer1 Interrupt	Priority bits				
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru 000 = Interru	ot is Priority 1 ot source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	OC1IP<2:0>:	Output Compa	are Channel 1	Interrupt Prior	rity bits		
	111 = Interru	ot is Priority 7 (highest priorit	y interrupt)	2		
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	IC1IP<2:0>:	nput Capture (Channel 1 Inte	errupt Priority b	oits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	INT0IP<2:0>:	External Inter	rupt 0 Priority	bits			
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				

REGISTER 7-21: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

	. 20. 11 07.									
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0			
bit 15		·	·		-	·	bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
6:4 <i>4 C</i>		tad: Daad aa (0'							
DIT 15			U	t Duiovitus kito						
DIT 14-12		•: UARIZ Iran	smitter interrup	t Priority bits						
	⊥⊥⊥ = interru∣ ●	pl is Phonly 7	ingnest phonty	y interrupt)						
	•									
	•									
	001 = Interru	pt is Priority 1 pt source is dis	abled							
bit 11	Unimplemen	ted: Read as '	0'							
bit 10-8	U2RXIP<2:0	: UART2 Rece	eiver Interrupt	Prioritv bits						
	111 = Interruption	ot is Priority 7	highest priority	/ interrupt)						
	•		5	, , , , , , , , , , , , , , , , , , , ,						
	•									
	• 001 – Intorru	ot is Priority 1								
	001 = Interrul	pt is Fhonty 1 ot source is dis	abled							
bit 7	Unimplemen	ted: Read as '	0'							
bit 6-4		External Inter	° runt 2 Priority ł	nits						
	111 = Interru	ot is Priority 7 (highest priority	v interrupt)						
	•		ingreet priority	, interrupt)						
	•									
	•	ntin Drierity (
	001 = Interru	pt is Priority 1 pt source is dis	abled							
bit 3	Unimplemen	ted: Read as '	0'							
bit 2-0	T5IP<2:0>: ⊺	imer5 Interrupt	Priority bits							
	111 = Interruption	ot is Priority 7 (highest priority	/ interrupt)						
	•		5	, , , , , , , , , , , , , , , , , , , ,						
	•									
	• 001 - Intorru	nt is Driarity 1								
	001 = Interru	pt is Friority 1	abled							

REGISTER 7-28: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	CF: Clock Fail	Detect bit	(read/clear	by application)

- 1 = FSCM has detected clock failure
- 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to the selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to "Oscillator (Part IV)" (DS70307) in the "dsPIC33/PIC24 Family Reference Manual" for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 3 SPI1MD: SPI1 Module Disable bit
 - 1 = SPI1 module is disabled 0 = SPI1 module is enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 **C1MD:** ECAN1 Module Disable bit 1 = ECAN1 module is disabled
 - 0 = ECAN1 module is enabled
- bit 0 ADCMD: ADC Module Disable bit 1 = ADC module is disabled
 - 0 = ADC module is enabled
- **Note 1:** Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be re-initialized.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON		TSIDL	—	—	—	—					
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	—				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown				
bit 15	TON: Timer1	On bit									
	1 = Starts 16-	bit Timer1									
	0 = Stops 16-	bit Timer1									
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	TSIDL: Timer	1 Stop in Idle N	Node bit								
	1 = Discontin 0 = Continues	ues module op s module opera	eration when ation in Idle m	device enters ode	Idle mode						
bit 12-7	Unimplemen	ted: Read as '	0'								
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit										
	When TCS = This bit is ign	<u>1:</u> ored.									
	When TCS =	0:									
	1 = Gated tim 0 = Gated tim	ne accumulation	n is enabled n is disabled								
bit 5-4	TCKPS<1:0>	Timer1 Input	Clock Prescal	e Select bits							
	11 = 1:256										
	10 = 1:64										
	01 = 1:8 00 - 1:1										
bit 3	Unimplemen	ted: Read as '	0'								
bit 2	TSYNC: Time	er1 External Cl	o ck Input Svn	chronization S	elect bit						
Dit L	When TCS =	1:	on input offi								
	1 = Synchron	izes external c	lock input								
	0 = Does not	synchronize ex	ternal clock i	nput							
	When TCS = This bit is ign	<u>0:</u> ored.									
bit 1	TCS: Timer1	Clock Source S	Select bit								
	1 = External o 0 = Internal c	clock from T1C lock (Fcy)	K pin (on the	rising edge)							
bit 0	Unimplemen	ted: Read as '	0'								
	-										

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7BP3	F7BP2	F7BP1	F7BP0	F6BP3	F6BP2	F6BP1	F6BP0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F5BP3	F5BP3 F5BP2		F5BP0	F4BP3	F4BP2	F4BP1	F4BP0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplei	mented bit, read	l as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-12	F7BP<3:0>:	RX Buffer Masl	k for Filter 7 b	its			
1111 = Filter hit		hits received in	n RX FIFO bu				
1110 = Filte r		hits received in	n RX Buffer 14	4			
	•						
	•						
	0001 – Filter hits received in RX Buffer 1						
	0000 = Filter hits received in RX Buffer 0						
bit 11-8	F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bits<15:12>)						
bit 7-4	F5BP<3:0>:	RX Buffer Masl	k for Filter 5 b	its (same value	es as bits<15:12	2>)	
bit 3-0	F4BP<3:0>:	RX Buffer Masl	k for Filter 4 b	its (same value	es as bits<15:12	2>)	

REGISTER 21-13: CxBUFPNT2: ECANx FILTER 4-7 BUFFER POINTER REGISTER 2

22.3 Module Functionality

The High-Speed, 10-Bit ADC is designed to support power conversion applications when used with the High-Speed PWM module. The ADC may have one or two SAR modules, depending on the device variant. If two SARs are present on a device, two conversions can be processed at a time, yielding 4 Msps conversion rate. If only one SAR is present on a device, only one conversion can be processed at a time, yielding 2 Msps conversion rate. The High-Speed, 10-Bit ADC produces two 10-bit conversion results in a 0.5 microsecond.

The ADC module supports up to 24 external analog inputs and two internal analog inputs. To monitor reference voltage, two internal inputs, AN24 and AN25, are connected to EXTREF and INTREF, respectively.

The analog reference voltage is defined as the device supply voltage (AVDD/AVSS).

The ADC module uses the following control and status registers:

- ADCON: ADC Control Register
- ADSTAT: ADC Status Register
- ADBASE: ADC Base Register^(1,2)
- ADPCFG: ADC Port Configuration Register
- ADPCFG2: ADC Port Configuration Register 2
- ADCPC0: ADC Convert Pair Control Register 0
- ADCPC1: ADC Convert Pair Control Register 1
- ADCPC2: ADC Convert Pair Control Register 2
- ADCPC3: ADC Convert Pair Control Register 3
- ADCPC4: ADC Convert Pair Control Register 4
- ADCPC5: ADC Convert Pair Control Register 5
- ADCPC6: ADC Convert Pair Control Register 6(2)

The ADCON register controls the operation of the ADC module. The ADSTAT register displays the status of the conversion processes. The ADPCFG registers configure the port pins as analog inputs or as digital I/O. The ADCPCx registers control the triggering of the ADC conversions. See Register 22-1 through Register 22-12 for detailed bit configurations.

Note: A unique feature of the ADC module is its ability to sample inputs in an asynchronous manner. Individual Sample-and-Hold circuits can be triggered independently of each other.

REGISTER 22-11: ADCPC5: ADC CONVERT PAIR CONTROL REGISTER 5 (CONTINUED)

bit 4-0	TRGSRC10<4:0>: Trigger 10 Source Selection bits							
	Selects trigger source for conversion of analog channels AN21 and AN20.							
	11111 = Timer2 period match							
	11110 = PWM Generator 8 current-limit ADC trigger							
	11101 = PWM Generator 7 current-limit ADC trigger							
	11100 = PWM Generator 6 current-limit ADC trigger							
	11011 = PWM Generator 5 current-limit ADC trigger							
	11010 = PWM Generator 4 current-limit ADC trigger							
	11001 = PWM Generator 3 current-limit ADC trigger							
	11000 = PWM Generator 2 current-limit ADC trigger							
	10111 = PWM Generator 1 current-limit ADC trigger							
	10110 = PWM Generator 9 secondary trigger selected							
	10101 = PWM Generator 8 secondary trigger selected							
	10100 = PWM Generator 7 secondary trigger selected							
	10011 = PWM Generator 6 secondary trigger selected							
	10010 = PWM Generator 5 secondary trigger selected							
	10001 = PWM Generator 4 secondary trigger selected							
	10000 = PWM Generator 3 secondary trigger selected							
	01111 = PWM Generator 2 secondary trigger selected							
	01110 = PWM Generator 1 secondary trigger selected							
	01101 = PWM secondary Special Event Trigger selected							
	01100 = limer1 period match							
	01011 = PWM Generator 8 primary trigger selected							
	01010 = PWM Generator 7 primary trigger selected							
	01001 = PWM Generator 6 primary trigger selected							
	01000 = PWM Generator 5 primary trigger selected							
	00111 = PWM Generator 4 primary trigger selected							
	00110 = PWM Generator 3 primary trigger selected							
	00101 = PWM Generator 2 primary trigger selected							
	00100 = PWM Generator 1 primary trigger selected							
	00011 = PWM Special Event Trigger selected							
	00010 = Global Software trigger selected							
	00001 = Individual software trigger selected							
	00000 = No conversion enabled							

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
	_	—	—	_		CMRE	F<9:8>		
bit 15		•		•		•	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			CMRE	F<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-10 bit 9-0	Unimplemen CMREF<9:0> 111111111	ted: Read as ' : Comparator I = (CMREF * RANGE bit	^{0'} Reference Vo INTREF/102 or (CMREF *	ltage Select bit 4) or (CMREF EXTREF/1024	s [:] * (AVdd/2)/10 4) if EXTREF is	24) volts depe set	ending on the		
	000000000000000000000000000000000000000	= 0.0 Volts							

REGISTER 23-2: CMPDACx: COMPARATOR DAC CONTROL x REGISTER

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
	VIL	Input Low Voltage						
DI10		I/O Pins	Vss	—	0.2 Vdd	V		
DI15		MCLR	Vss	_	0.2 Vdd	V		
DI16		I/O Pins with OSC1 or SOSCI	Vss	—	0.2 Vdd	V		
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 Vdd	V	SMBus disabled	
DI19		I/O Pins with SDAx, SCLx	Vss	_	0.8	V	SMBus enabled	
	Viн	Input High Voltage						
DI20		I/O Pins Non 5V Tolerant ⁽⁴⁾	0.7 Vdd	—	Vdd	V		
DI21		I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd	—	5.5	V		
DI28		SDAx, SCLx	0.7 VDD	—	5.5	V	SMBus disabled	
DI29		SDAX, SCLX	2.1		5.5	v		
	ICNPU	CNX Full-up Current		250				
DISU	lu .	Input Leakage Current ^(2,3,4)		230		μΛ	VDD = 3.5V, VPIN = V33	
D150		I/O Pins with: 4x Driver Pins: RA0-RA7, RA14, RA15, RB0-RB15 ⁽¹⁰⁾ , RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15	_	_	±2	μA	VSS ≤ VPIN ≤ VDD, Pin at high-impedance	
		8x Driver Pins: RC15	_	—	±4	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &{\sf Pin} \text{ at high-impedance} \end{split}$	
		16x Driver Pins: RA9, RA10, RD3-RD7, RD13, RE0-RE7, RG12, RG13	_	—	±8	μA	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD}, \\ &\text{Pin at high-impedance} \end{split}$	
DI55		MCLR	—	—	±2	μΑ	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	—	—	±2	μΑ	VSS \leq VPIN \leq VDD, XT and HS modes	

TABLE 27-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the list of 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- 7: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.
- **10:** RB11 has also been tested up to $\pm 8 \mu A$ test limits.

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic		Min	Мах	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μS		
IS11	IS11 THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μs		
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
		1 MHz mode ⁽¹⁾	—	300	ns			
IS25 TSU:DAT	Data Input	100 kHz mode	250		ns			
		Setup Time	400 kHz mode	100		ns		
		1 MHz mode ⁽¹⁾	100	_	ns			
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0		μs		
			400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7		μS	Only relevant for Repeated	
			400 kHz mode	0.6		μS	Start condition	
			1 MHz mode ⁽¹⁾	0.25		μS		
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4.0		μS	After this period, the first	
			400 kHz mode	0.6		μS	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μs		
IS33	TSU:STO	Stop Condition Setup Time	100 kHz mode	4.7	—	μs		
			400 kHz mode	0.6	—	μs		
			1 MHz mode ⁽¹⁾	0.6	—	μS		
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns		
		Hold Time	400 kHz mode	600	—	ns		
			1 MHz mode ⁽¹⁾	250		ns		
IS40	TAA:SCL	Output Valid From Clock	100 kHz mode	0	3500	ns		
			400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free	
			400 kHz mode	1.3	—	μS	perore a new transmission	
			1 MHz mode ⁽¹⁾	0.5	—	μS		
IS50	Св	Bus Capacitive Lo	—	400	pF			

TABLE 27-39: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V and 3.6V ⁽²⁾ (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions			
Device Supply										
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	_	Lesser of VDD + 0.3 or 3.6	V				
AD02	AVss	Module Vss Supply	Vss – 0.3	—	Vss + 0.3	V				
			Analog I	nput			·			
AD10	VINH-VINL	Full-Scale Input Span	Vss	_	Vdd	V				
AD11	Vin	Absolute Input Voltage	AVss		AVdd	V				
AD12	Iad	Operating Current	—	8	—	mA				
AD13	_	Leakage Current	_	±0.6	—	μΑ	VINL = AVSS = 0V, AVDD = 3.3V, Source Impedance = 100 Ω			
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	_	100	Ω				
	-		DC Accu	iracy		-				
AD20	Nr	Resolution	1	0 data bi	its	bits				
AD21A	INL	Integral Nonlinearity	> -2	±0.5	< 2	LSb	VINL = AVSS = 0V, AVDD = 3.3V			
AD22A	DNL	Differential Nonlinearity	> -1	±0.5	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.3V			
AD23A	Gerr	Gain Error	> -5	±2.0	< 5	LSb	VINL = AVSS = 0V, AVDD = 3.3V			
AD24A	EOFF	Offset Error	> -3	±0.75	< 3	LSb	VINL = AVSS = VSS = 0V, AVDD = VDD = 3.3V			
AD25	—	Monotonicity ⁽¹⁾	_	—	—	—	Guaranteed			
Dynamic Performance										
AD30	THD	Total Harmonic Distortion	—	-73	—	dB				
AD31	SINAD	Signal to Noise and Distortion	—	58		dB				
AD32	SFDR	Spurious Free Dynamic Range	—	-73	_	dB				
AD33	Fnyq	Input Signal Bandwidth	—	—	1	MHz				
AD34	ENOB	Effective Number of Bits	_	9.4	_	bits				

TABLE 27-40: 10-BIT, HIGH-SPEED ADC MODULE SPECIFICATIONS

Note 1: The Analog-to-Digital conversion result never decreases with an increase in the input voltage and has no missing codes.

2: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.