

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	9K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gs606-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

Pin Diagrams (Continued)

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the latest sections in the "dsPIC33/PIC24 Family Reference Manual", which are available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

This document contains device-specific information for the following dsPIC33F Digital Signal Controller (DSC) devices:

- dsPIC33FJ32GS406
- dsPIC33FJ32GS606
- dsPIC33FJ32GS608
- dsPIC33FJ32GS610
- dsPIC33FJ64GS406
- dsPIC33FJ64GS606
- dsPIC33FJ64GS608
- dsPIC33FJ64GS610

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance 16-bit microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ32GS406/ 606/608/610 and dsPIC33FJ64GS406/606/608/610 devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analogto-Digital input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG and ADPCFG2 registers.

The bits in the registers that correspond to the Analog-to-Digital pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device. If your application needs to use certain Analog-to-Digital pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG and ADPCFG2 registers during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG and ADPCFG2 registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all Analog-to-Digital pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins and drive the output to logic low.

2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-4 through Figure 2-11.

3.4 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB ^(1,4)	DA	DC
bit 15							bit 8
R/W-0 ⁽³	³⁾ R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0
Legend:		C = Clearable	bit				
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	OA: Accumula	ator A Overflov	v Status bit				
	1 = Accumula 0 = Accumula	itor A has over	overflowed				
bit 14	OB: Accumul	ator B Overflov	v Status bit				
	1 = Accumula	tor B has over	flowed				
	0 = Accumula	tor B has not c	verflowed				
bit 13	SA: Accumula	ator A Saturatio	on 'Sticky' Stat	tus bit ⁽¹⁾			
	1 = Accumula	tor A is saturat	ed or has bee	en saturated at	some time		
hit 12		nor A IS not Sat	uraleu n 'Sticky' Stot	tue hit(1)			
DIL 12		tor B is saturat	ed or has hee	ius bil. In saturated at	some time		
	0 = Accumula	tor B is not sat	urated				
bit 11	0AB: OA O	B Combined A	.ccumulator O	verflow Status	bit		
	1 = Accumula	tor A or B has	overflowed				
	0 = Neither A	ccumulator A o	r B has overfl	owed	(4.4)		
bit 10	SAB: SA SI	B Combined Ad	cumulator 'St	icky' Status bit	(1,4)		
	1 = Accumula 0 = Neither A	tor A or B is sa	iturated or has	s been saturati	ed at some time	in the past	
bit 9		Active bit					
	1 = D0 loop in	progress					
	0 = DO loop n	ot in progress					
bit 8	DC: MCU AL	J Half Carry/Bo	orrow bit				
	1 = A carry-o	ut from the 4th	low-order bit (for byte-sized of	data) or 8th low-	order bit (for wo	ord-sized data)
	of the res 0 - No carry-	out from the 4	th low-order h	nit (for hyte-siz	ed data) or 8th	low-order bit (f	or word-sized
	data) of t	he result occur	red				
Note 1:	This bit can be rea	d or cleared (n	ot set).				
2:	The IPL<2:0> bits Level (IPL). The va	are concatenat alue in parenthe	ed with the IP	L<3> bit (COF the IPL if IPL	RCON<3>) to for <3> = 1. User in	rm the CPU Inte terrupts are dis	errupt Priority abled when

- IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
- 4: Clearing this bit will clear SA and SB.

Vector Number	Interrupt Request (IQR)	IVT Address	AIVT Address	Interrupt Source		
		Highes	t Natural Order Prio	rity		
8	0	0x000014	0x000114	INT0 – External Interrupt 0		
9	1	0x000016	0x000116	IC1 – Input Capture 1		
10	2	0x000018	0x000118	OC1 – Output Compare 1		
11	3	0x00001A	0x00011A	T1 – Timer1		
12	4	0x00001C	0x00011C	DMA0 – DMA Channel 0		
13	5	0x00001E	0x00011E IC2 – Input Capture 2			
14	6	0x000020	0x000120	OC2 – Output Compare 2		
15	7	0x000022	0x000122	T2 – Timer2		
16	8	0x000024	0x000124	T3 – Timer3		
17	9	0x000026	0x000126	SPI1E – SPI1 Fault		
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done		
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver		
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter		
21	13	0x00002E	0x00012E	ADC – ADC Group Convert Done		
22	14	0x000030	0x000130	DMA1 – DMA Channel 1		
23	15	0x000032	0x000132	Reserved		
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Event		
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Event		
26	18	0x000038	0x000138	CMP1 – Analog Comparator 1 Interrupt		
27	19	0x00003A	0x00013A	CN – Input Change Notification Interrupt		
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1		
29-31	21-23	0x00003E- 0x000042	0x00013E- 0x000142	Reserved		
32	24	0x000044	0x000144	DMA2 – DMA Channel 2		
33	25	0x000046	0x000146	OC3 – Output Compare 3		
34	26	0x000048	0x000148	OC4 – Output Compare 4		
35	27	0x00004A	0x00014A	T4 – Timer4		
36	28	0x00004C	0x00014C	T5 – Timer5		
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2		
38	30	0x000050	0x000150	U2RX – UART2 Receiver		
39	31	0x000052	0x000152	U2TX – UART2 Transmitter		
40	32	0x000054	0x000154	SPI2E – SPI2 Error		
41	33	0x000056	0x000156	SPI2 – SPI2 Transfer Done		
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready		
43	35	0x00005A	0x00015A	C1 – ECAN1 Event		
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3		
45	37	0x00005E	0x00015E	IC3 – Input Capture 3		
46	38	0x000060	0x000160	IC4 – Input Capture 4		
47-56	39-48	0x000062- 0x000074	0x000162- 0x000174	Reserved		
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events		
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events		
59-60	51-52	0x00007A- 0x00007C	0x00017A- 0x00017C	Reserved		
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3		
62	54	0x000080	0x000180	INT4 – External Interrupt 4		

|--|

© 2009-2014 Microchip Technology Inc.

						D/M/ O	DANO			
					R/W-0	R/W-0				
U2TXIE	U2RXIE	INTZIE	15IE	I 4IE	OC4IE	OC3IE	DIMAZIE			
DIL 15							DILO			
11-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		_	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 12	U2TXIE: UAR	T2 Transmitte	r Interrupt Ena	able bit						
	1 = Interrupt r	equest is enab	led							
L:4.4.4		equest is not e	enabled	L. L.'A						
DIT	1 - Interrupt r	receiver is enab	nterrupt Enabl	ie dit						
	0 = Interrupt r	request is not e	enabled							
bit 13	INT2IE: Exter	nal Interrupt 2	Enable bit							
	1 = Interrupt r	equest is enab	led							
	0 = Interrupt r	equest is not e	enabled							
bit 12	T5IE: Timer5	Interrupt Enab	le bit							
	1 = Interrupt request is enabled 0 = Interrupt request is not enabled									
bit 11	T4IE: Timer4	Interrupt Enab	le bit							
	1 = Interrupt r	equest is enab	led							
	0 = Interrupt r	equest is not e	enabled							
bit 10	OC4IE: Outpu	ut Compare Ch	annel 4 Interr	upt Enable bit						
	1 = Interrupt r	equest is enat	enabled							
bit 9	OC3IE: Outpu	ut Compare Ch	annel 3 Interr	upt Enable bit						
	1 = Interrupt r	equest is enab	oled							
	0 = Interrupt r	equest is not e	enabled							
bit 8	DMA2IE: DM	A Channel 2 D	ata Transfer C	Complete Interi	upt Enable bit					
	1 = Interrupt request is enabled									
hit 7-5		ted. Boad as "	0'							
bit 4	INT1IF: Exter	nal Interrunt 1	o Enable bit							
	1 = Interrupt r	request is enab	led							
	0 = Interrupt r	equest is not e	enabled							
bit 3	CNIE: Input C	Change Notifica	ation Interrupt	Enable bit						
	1 = Interrupt r	equest is enab	oled							
hit 2		equest is not e	1 Interrupt En	abla bit						
UIL Z	1 = Interrupt r	equest is enab	i interrupt ⊏n ded	IADIE DIL						
	0 = Interrupt r	equest is not e	enabled							

REGISTER 7-14: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	PWM2IP2	PWM2IP1	PWM2IP0		PWM1IP2	PWM1IP1	PWM1IP0
bit 15	·						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		<u> </u>				—	<u> </u>
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	PWM2IP<2:0	>: PWM2 Inter	rupt Priority bit	S			
	111 = Interrup	pt is Priority 7 (highest priority	()			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	PWM1IP<2:0	>: PWM1 Inter	rupt Priority bit	S			
	111 = Interrup	pt is Priority 7 (highest priority	/)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	pt source is dis	abled				
bit 7-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-39: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

11.0	11.0		11.0							
0-0	U-0	0-0	0-0	R/C-0	R/C-U	R/C-0				
	—	—	_	PWCOL3	PWCOL2	PWCOL1	PWCOL0			
bit 15							bit 8			
				D/0 0						
0-0	0-0	0-0	0-0	R/C-0	R/C-0	R/C-0	R/C-0			
	—	—	—	XWCOL3	XWCOL2	XWCOL1	XWCOLO			
Dit 7							bit 0			
Logond		C – Cloarabla	hit							
R – Roadable	bit	C = Clearable	bit	II – Unimpler	mented bit read	1 25 (0)				
		1' = Rit is set	UIL	$0^{\circ} = 0^{\circ}$	arad	v – Ritic unkr				
	OR				aleu		101111			
bit 15-12	Unimplemen	ted: Read as '	ז'							
bit 11	PWCOL3: Ch	hannel 3 Periph	eral Write Co	ollision Flag bit						
	1 = Write coll	lision is detecte	d							
	0 = No write	collision is dete	cted							
bit 10	PWCOL2: Channel 2 Peripheral Write Collision Flag bit									
	1 = Write coll	lision is detecte	d							
	0 = No write 0	collision is dete	cted							
bit 9	PWCOL1: Ch	hannel 1 Periph	eral Write Co	ollision Flag bit						
	1 = Write coll	lision is detected	d stod							
bit 8		hannel () Perinh	oral Write Co	ullision Flag hit						
bit o	1 – Write coll	lision is detected	d	nision riag bit						
	0 = No write 0	collision is dete	cted							
bit 7-4	Unimplemen	ted: Read as ')'							
bit 3	XWCOL3: CI	hannel 3 DMA F	RAM Write C	ollision Flag bit						
	1 = Write coll	lision is detecte	d							
	0 = No write	collision is dete	cted							
bit 2	XWCOL2: CI	hannel 2 DMA F	RAM Write C	ollision Flag bit						
	1 = Write coll	lision is detecte	d ata d							
h:4 d				ellicica Flor bit						
DIT		hannel 1 DiviA F	AIVI WITTE C	ollision Flag bit						
	0 = No write 0	collision is dete	cted							
bit 0	XWCOLO: CI	hannel 0 DMA F	RAM Write C	ollision Flag bit						
-	1 = Write coll	lision is detecte	d							
	0 = No write	collision is dete	cted							

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0

9.5 Clock Switching Operation

Applications are free to switch among any of the four clock sources (primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices have a safeguard lock built into the switch process.

Note: Primary oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from primary oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

9.5.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the FOSC Configuration register must be programmed to '0'. (Refer to **Section 24.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled; this is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC<2:0> Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

9.5.2 OSCILLATOR SWITCHING SEQUENCE

To perform a clock switch, the following basic sequence is required:

- 1. If desired, read the COSCx bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSCx control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

 The clock switching hardware compares the COSCx status bits with the new value of the NOSCx control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bit values are transferred to the COSCx status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to "Oscillator (Part IV)" (DS70307) in the "dsPIC33/PIC24 Family Reference Manual" for details.

9.6 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then, the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a Warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STRGC	MP<12:5>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		STRGCMP<4:0>			—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplem	ented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-3	STRGCMP	<12:0>: PWM Secor	ndary Trigg	ger Compare Valu	ue bits		

REGISTER 16-22: STRIGX: PWM SECONDARY TRIGGER x COMPARE VALUE REGISTER⁽¹⁾

t 15-3 **STRGCMP<12:0>:** PWM Secondary Trigger Compare Value bits When the secondary PWM functions in a local time base, this register contains the compare values that can trigger the ADC module.

bit 2-0 Unimplemented: Read as '0'

Note 1: STRIGx cannot generate the PWM trigger interrupts.

REGISTER 16-23: LEBCONX: LEADING-EDGE BLANKING CONTROL x REGISTER (CONTINUED)

bit 1	BPLH: Blanking in PWMxL High Enable bit
	 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high
bit 0	BPLL: Blanking in PWMxL Low Enable bit
	 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low 0 = No blanking when PWMxL output is low

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

REGISTER 16-26: PWMCAPx: PRIMARY PWM TIME BASE CAPTURE x REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PWMCAP<	<12:5> ^(1,2,3,4)			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	U-0	U-0	U-0
	PWI	MCAP<4:0> ^{(1,2}	2,3,4)		—	—	—
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable I	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown

bit 15-3 **PWMCAP<12:0>:** Captured PWM Time Base Value bits^(1,2,3,4) The value in this register represents the captured PWM time base value when a leading edge is detected on the current-limit input.

bit 2-0 Unimplemented: Read as '0'

Note 1: The capture feature is only available on the primary output (PWMxH).

2: This feature is active only after LEB processing on the current-limit input signal is complete.

3: The minimum capture resolution is 8.32 ns.

4: This feature can be used when the XPRES bit (PWMCONx<1>) is set to '0'.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—		DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽³	B) CKP	MSTEN	SPRE2 ⁽²⁾	SPRE1 ⁽²⁾	SPRE0 ⁽²⁾	PPRE1 ⁽²⁾	PPRE0 ⁽²⁾
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
DIT 15-13		ted: Read as					
DIT 12	1 - Internal S	able SCKX Pin	DIT (SPI Maste	tions as I/O			
	0 = Internal S	PI clock is ena	bled	10115 85 1/0			
bit 11	DISSDO: Dis	able SDOx Pin	bit				
	1 = SDOx pin	is not used by	module; pin f	unctions as I/C)		
	0 = SDOx pin	is controlled b	y the module				
bit 10	MODE16: Wo	ord/Byte Comm	nunication Sele	ect bit			
	1 = Communi	ication is word-	wide (16 bits)				
hit Q		ata Input Sam	Nice (0 bits)				
DIT 3	Master mode						
	1 = Input data	<u>.</u> a is sampled at	the end of dat	ta output time			
	0 = Input data	a is sampled at	the middle of	data output tin	ne		
	Slave mode:	alograd when	SDIv is used i	n Slova mada			
hit 8		lock Edge Sele	or ix is used i	II Slave IIIoue	•		
DILO	1 = Serial out	put data chanc	ies on transitio	on from active	clock state to Id	le clock state (s	see bit 6)
	0 = Serial out	put data chang	jes on transitio	on from Idle clo	ock state to activ	e clock state (s	see bit 6)
bit 7	SSEN: Slave	Select Enable	bit (Slave mo	de) ⁽³⁾			
	$1 = \overline{SSx}$ pin is	s used for Slav	e mode				
	0 = SSx pin is	s not used by n	nodule; pin is o	controlled by p	ort function		
bit 6	CKP: Clock F	Polarity Select I	Dit				
	\perp = Idle state 0 = Idle state	for clock is a lo	ign ievel; activ	e state is a lov	w ievei h level		
bit 5	MSTEN: Mas	ter Mode Enab	ole bit	o claic le a mg			
	1 = Master m	ode					
	0 = Slave mo	de					
Note 1:	The CKE bit is not	used in the Fra	amed SPI mod	des. Prodram t	this bit to '0' for	the Framed SP	I modes
	(FRMEN = 1).						
2:	Do not set both pri	imary and seco	ondary prescal	ers to a value	of 1:1.		
9 -	This hit must be al	oorod when Fr					

REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1

This bit must be cleared when FRMEN = 1. 3:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11BP3	F11BP2	F11BP1	F11BP0	F10BP3	F10BP2	F10BP1	F10BP0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-12	F11BP<3:0>:	RX Buffer Mas	sk for Filter 11	bits			
	1111 = Filter	hits received in	RX FIFO but	fer			
	1110 = Filter	hits received ir	RX Buffer 14	Ļ			
	•						
	0001 = Filter	hits received ir	RX Buffer 1				
	0000 = Filter	hits received in	RX Buffer 0				
bit 11-8	F10BP<3:0>:	RX Buffer Mas	sk for Filter 10) bits (same va	lues as bits<15:	:12>)	
hit 7 1	F9BP<3:0>: RX Buffer Mask for Filter 9 bits (same values as bits<15:12>)						

REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3

bit 3-0 **F8BP<3:0>:** RX Buffer Mask for Filter 8 bits (same values as bits<15:12>)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
Byte 7										
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
	Byte 6									
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			

bit 7-0 Byte 6<7:0>: ECANx Message Byte 6

BUFFER 21-8: ECANx MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
		—			FILHIT<4:0>(1)				
bit 15	-						bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
		—	—	—	_	_	—		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable k			bit	U = Unimplemented bit, read as '0'					

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
-------------------	------------------	----------------------	--------------------

bit 15-13 Unimplemented: Read as '0'

bit 12-8 FILHIT<4:0>: Filter Hit Code bits⁽¹⁾

Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

NOTES:

Bit Field	Register	RTSP Effect	Description		
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection bit		
			1 = Boot segment can be written		
R66 (2)();	ГРО	Immediate	0 = Bool segment is white-protected		
855<2:0>	FB2	Immediate	Boot Segment Program Flash Code Protection Size bits		
			XII = No boot program Flash segment		
			110 = Standard security; boot program Flash segment ends at 0x0003FE		
			010 = High security; boot program Flash segment ends at 0x0003FE		
			Boot Space is 768 Instruction Words (except interrupt vectors):		
			101 = Standard security; boot program Flash segment ends at 0x0007FE		
			001 = High security; boot program Flash segment ends at 0x0007FE		
			Boot Space is 1792 Instruction Words (except interrupt vectors):		
			0x000FFE		
			000 = High security; boot program Flash segment ends at 0x000FFE		
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bits		
			11 = User program memory is not code-protected		
			10 = Standard security		
	FCS	Immediate	Ganaral Sagmant Write Brotact bit		
GWKF	FGS	Inneciate	1 - User program memory is not write-protected		
			1 = 0 set program memory is not write-protected		
IESO	FOSCSEL	Immediate	Two-Speed Oscillator Start-up Enable bit		
			1 = Start-up device with FRC, then automatically switch to the user		
			selected oscillator source when ready		
			0 = Start-up device with user selected oscillator source		
FNOSC<2:0>	FOSCSEL	If clock switch	Initial Oscillator Source Selection bits		
		is enabled,	111 = Internal Fast RC (FRC) Oscillator with Postscaler		
		KISP effect	110 = Internal Fast RC (FRC) Oscillator with Divide-by-16		
		device Reset:	101 = LPRC Oscillator 100 - Secondary (LP) Oscillator		
		otherwise,	011 = Primary (XT, HS, EC) Oscillator with PLL		
		immediate	010 = Primary (XT, HS, EC) Oscillator		
			001 = Internal Fast RC (FRC) Oscillator with PLL		
			000 = FRC Oscillator		
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits		
			1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled		
			$01 = \text{Clock switching is enabled. Fail-Sale Clock Monitor is disabled 00 = \text{Clock switching is enabled. Fail-Safe Clock Monitor is enabled}$		
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes)		
			1 = OSC2 is the clock output		
			0 = OSC2 is the general purpose digital I/O pin		
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits		
			11 = Primary Oscillator is disabled		
			10 = HS Crystal Oscillator mode		
			01 = XT Crystal Oscillator mode		
1	1	1	00 = C (External Clock) mode		

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Max	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)		μs		
			400 kHz mode	Tcy/2 (BRG + 1)		μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)		μs		
			400 kHz mode	Tcy/2 (BRG + 1)		μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	300	ns		
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns		
			400 kHz mode	100		ns		
			1 MHz mode ⁽²⁾	40		ns		
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0		μS		
			400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	0.2		μS		
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)		μs	Only relevant for	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	condition	
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	After this period, the	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	generated	
IM33	IM33 Tsu:sto	Stop Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs		
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs		
IM34	THD:STO	Stop Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	—	ns		
			400 kHz mode	Tcy/2 (BRG + 1)	—	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns		
IM40 TAA:SCL	TAA:SCL	Output Valid from Clock	100 kHz mode	—	3500	ns		
			400 kHz mode	—	1000	ns		
			1 MHz mode ⁽²⁾	—	400	ns		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be	
			400 kHz mode	1.3	—	μS	free before a new	
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start	
IM50	Св	Bus Capacitive L	oading	—	400	pF		
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	See Note 3	

TABLE 27-38: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l²CTM Baud Rate Generator. Refer to "Inter-Integrated CircuitTM (l²CTM)" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B