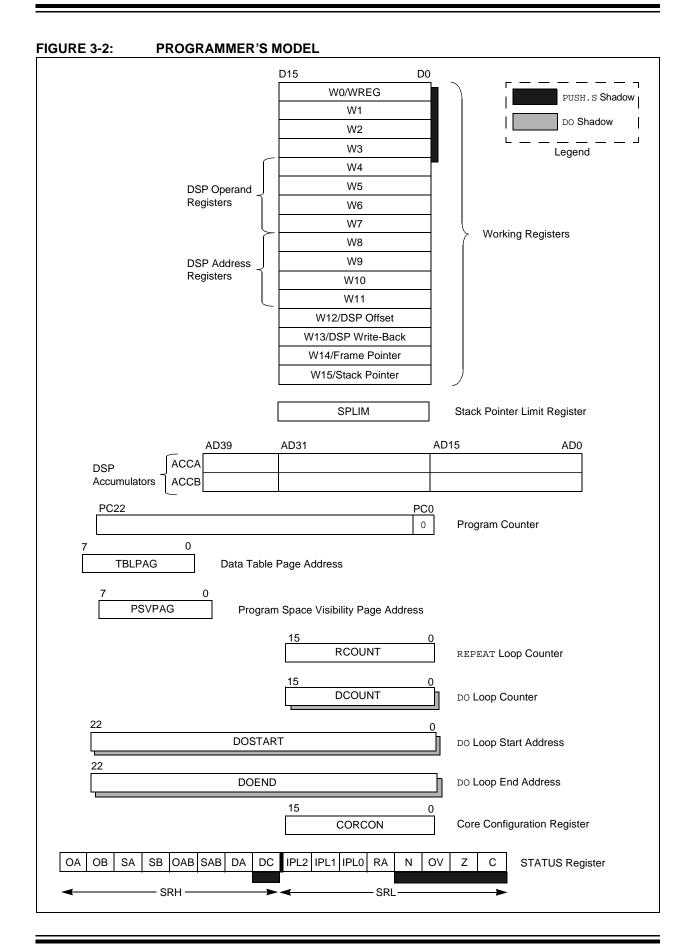


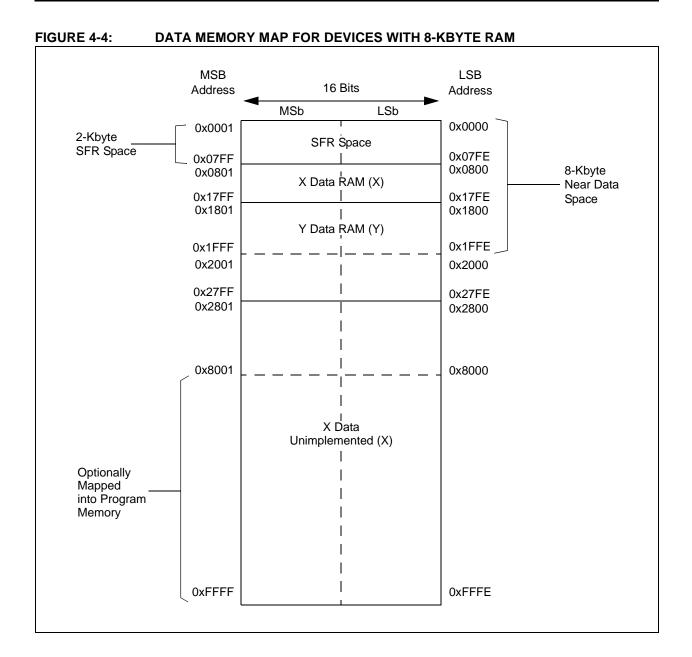
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	9K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gs606-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

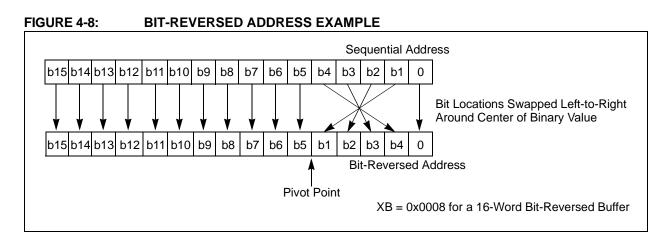


TABLE 4-32: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES ONLY (CONTINUED)

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCBUF22	036C		ADC Data Buffer 22 xx								xxxx							
ADCBUF23	036E								ADC Dat	a Buffer 23								XXXX
ADCBUF24	0370		ADC Data Buffer 24							XXXX								
ADCBUF25	0372		ADC Data Buffer 25								xxxx							

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE	TABLE 4-67: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)											
		Norma	al Addres	SS	Bit-Reversed Address							
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal			
0	0	0	0	0	0	0	0	0	0			
0	0	0	1	1	1	0	0	0	8			
0	0	1	0	2	0	1	0	0	4			
0	0	1	1	3	1	1	0	0	12			
0	1	0	0	4	0	0	1	0	2			
0	1	0	1	5	1	0	1	0	10			
0	1	1	0	6	0	1	1	0	6			
0	1	1	1	7	1	1	1	0	14			
1	0	0	0	8	0	0	0	1	1			
1	0	0	1	9	1	0	0	1	9			
1	0	1	0	10	0	1	0	1	5			
1	0	1	1	11	1	1	0	1	13			
1	1	0	0	12	0	0	1	1	3			
1	1	0	1	13	1	0	1	1	11			
1	1	1	0	14	0	1	1	1	7			
1	1	1	1	15	1	1	1	1	15			

TABLE 4-67: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
—	—	—	—	—	QEI1IP2	QEI1IP1	QEI1IP0			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
	PSEMIP2	PSEMIP1	PSEMIP0	—	—		_			
bit 7							bit 0			
Legend:										
R = Readabl		W = Writable		•	mented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 10-8	5-11 Unimplemented: Read as '0' QEI1IP<2:0>: QEI1 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) • • 001 = Interrupt is Priority 1 000 = Interrupt source is disabled									
	•	ted: Read as '								
bit 6-4	-4 PSEMIP<2:0>: PWM Special Event Match Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) • • • • • • • • • • • • •									
bit 3-0	Unimplemen	ted: Read as '	0'							

REGISTER 7-33: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	_	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	ADCP12IP2	ADCP12IP1	ADCP12IP0	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at POR							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
-n = Value at bit 15-7		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	Unimplemen	ted: Read as '	0'		ared pt 1 Priority bits		nown
bit 15-7	Unimplemen ADCP12IP<2	ted: Read as '	^{0'} 12 Conversior	n Done Interru			nown
bit 15-7	Unimplemen ADCP12IP<2	ted: Read as ' :0>: ADC Pair	^{0'} 12 Conversior	n Done Interru			nown
bit 15-7	Unimplemen ADCP12IP<2	ted: Read as ' :0>: ADC Pair	^{0'} 12 Conversior	n Done Interru			nown
bit 15-7	Unimplement ADCP12IP<2 111 = Interrup • •	ted: Read as ' : 0>: ADC Pair ot is Priority 7 (^{0'} 12 Conversior	n Done Interru			nown
bit 15-7	Unimplement ADCP12IP<2 111 = Interrup • • • 001 = Interrup	ted: Read as ' : 0>: ADC Pair ot is Priority 7 (ot is Priority 1	0' 12 Conversior highest priority	n Done Interru			nown
bit 15-7	Unimplement ADCP12IP<2 111 = Interrup • • • 001 = Interrup	ted: Read as ' : 0>: ADC Pair ot is Priority 7 (0' 12 Conversior highest priority	n Done Interru			nown

REGISTER 7-38: IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

Complete the following steps to configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are							
	initialized	such	that	all	user	interrupt		
	sources ar	e assi	gned	to P	riority	Level 4.		

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development toolsuite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, program will re-enter the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

The following steps outline the procedure to disable all user interrupts:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, EOh, with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(Level 8-Level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

REGISTER 8-5: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD<	15:8> (2)			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	ıd as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PAD<15:0>: Peripheral Address Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: See Table 8-1 for a complete list of peripheral addresses.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD	R<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	t	U = Unimplemen	ted bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleare	d	x = Bit is unkr	nown

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD ⁽¹⁾	_
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	ADCMD
bit 7							bit
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	T5MD: Timer	5 Module Disal	ole bit				
		odule is disable					
		odule is enable					
bit 14		4 Module Disal					
		odule is disable odule is enable					
bit 13		3 Module Disat					
		odule is disable					
	0 = Timer3 m	odule is enable	ed				
bit 12	T2MD: Timer	2 Module Disat	ole bit				
		odule is disable odule is enable					
bit 11	T1MD: Timer	1 Module Disat	ole bit				
		odule is disable odule is enable					
bit 10	QEI1MD: QE	I1 Module Disa	ble bit				
		dule is disabled					
		dule is enabled	(1)				
bit 9		/M Module Disa					
		dule is disabled dule is enabled					
bit 8	Unimplemen	ted: Read as '	0'				
bit 7	12C1MD: 12C	1 Module Disat	ole bit				
		lule is disabled lule is enabled					
bit 6	U2MD: UART	2 Module Disa	ble bit				
	-	odule is disabl odule is enable					
bit 5	U1MD: UART	1 Module Disa	ble bit				
		odule is disabl odule is enable					
bit 4		2 Module Disa					
-	1 = SPI2 mod	lule is disabled					

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be re-initialized.

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70205) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as a time counter for the Real-Time Clock (RTC), or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low-power 32.767 kHz crystal oscillator available on the device.
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

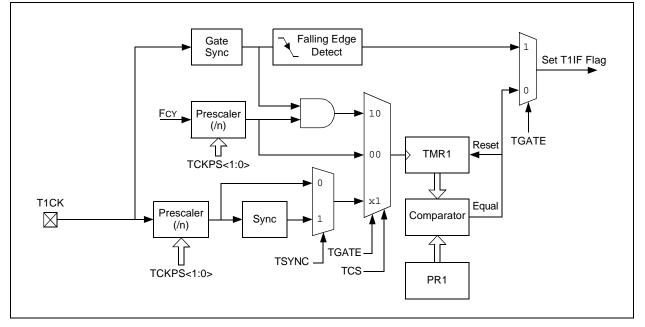
The unique features of Timer1 allow it to be used for Real-Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit: TCS (T1CON<1>)
- Timer Synchronization Control bit: TSYNC (T1CON<2>)
- Timer Gate Control bit: TGATE (T1CON<6>)

The timer control bit settings for different operating modes are given in the Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated Timer	0	1	х
Synchronous Counter	1	х	1
Asynchronous Counter	1	x	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

NOTES:

REGISTER 21-16: CxRXFnSID: ECANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

DAAL	DAAL	DAA	D AA/	D ///	D ///	D ///	D ///
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	EXIDE	—	EID17	EID16
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$			nown
bit 4	0 = Message	address bit, SI address bit, SI ited: Read as '(Dx, must be '				
bit 3	•	nded Identifier E					
-		only messages only messages :hen:					
bit 2	Unimplemen	ted: Read as ')'				
bit 1-0	EID<17:16>:	Extended Ident	ifier bits				
	•	address bit, El address bit, El					

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

BUFFER 21-5: ECANx MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_			Ву	te 3			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_			Ву	te 2			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-8	Byte 3<15:8>: ECANx Message Byte 3
bit 7-0	Byte 2<7:0>: ECANx Message Byte 2

BUFFER 21-6: ECANx MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			B	/te 5			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			B	/te 4			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable b	oit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is set		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

 bit 15-8
 Byte 5<15:8>: ECANx Message Byte 5

 bit 7-0
 Byte 4<7:0>: ECANx Message Byte 4

© 2009-2014 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PEND5	SWTRG5	TRGSRC54	TRGSRC53	TRGSRC52	TRGSRC51	TRGSRC50
		•				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PEND4	SWTRG4	TRGSRC44	TRGSRC43	TRGSRC42	TRGSRC41	TRGSRC40
						bit (
e bit	W = Writable bit		U = Unimplemented bit, read as '0'			
POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
.			ed conversion	of Channels Al	N11 and AN10	is completed
	0	n Status 5 bit				
 1 = Conversion of Channels AN11 and AN10 is pending; set when selected trigger is asserted 0 = Conversion is complete 						
1 = Starts co	nversion of AN	111 and AN10 (
	PEND5 R/W-0 PEND4 PEND4 POR IRQEN5: Inte 1 = Enables I 0 = IRQ is no PEND5: Pend 1 = Conversid 0 = Conversid SWTRG5: Sc 1 = Starts co	PEND5 SWTRG5 R/W-0 R/W-0 PEND4 SWTRG4 e bit W = Writable POR '1' = Bit is set IRQEN5: Interrupt Request 1 = Enables IRQ generation 0 = IRQ is not generated PEND5: Pending Conversion 1 = Conversion of Channels 0 = Conversion is complete SWTRG5: Software Trigger 1 = Starts conversion of AN	PEND5 SWTRG5 TRGSRC54 R/W-0 R/W-0 R/W-0 PEND4 SWTRG4 TRGSRC44 e bit W = Writable bit POR '1' = Bit is set IRQEN5: Interrupt Request Enable 5 bit 1 = Enables IRQ generation when request 0 = IRQ is not generated PEND5: Pending Conversion Status 5 bit 1 = Conversion of Channels AN11 and AN 0 = Conversion is complete SWTRG5: Software Trigger 5 bit 1 = Starts conversion of AN11 and AN10 (PEND5 SWTRG5 TRGSRC54 TRGSRC53 R/W-0 R/W-0 R/W-0 R/W-0 PEND4 SWTRG4 TRGSRC44 TRGSRC43 e bit W = Writable bit U = Unimpler POR '1' = Bit is set '0' = Bit is cle IRQEN5: Interrupt Request Enable 5 bit 1 = Enables IRQ generation when requested conversion 0 = IRQ is not generated PEND5: Pending Conversion Status 5 bit 1 = Conversion of Channels AN11 and AN10 is pending; 0 = Conversion is complete SWTRG5: Software Trigger 5 bit 1 = Starts conversion of AN11 and AN10 (if selected by	PEND5 SWTRG5 TRGSRC54 TRGSRC53 TRGSRC52 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PEND4 SWTRG4 TRGSRC44 TRGSRC43 TRGSRC42 e bit W = Writable bit U = Unimplemented bit, read POR '1' = Bit is set '0' = Bit is cleared IRQEN5: Interrupt Request Enable 5 bit 1 1 = Enables IRQ generation when requested conversion of Channels AI 0 = IRQ is not generated PEND5: Pending Conversion Status 5 bit 1 1 = Conversion of Channels AN11 and AN10 is pending; set when select 0 = Conversion is complete SWTRG5: Software Trigger 5 bit 1 1 = Starts conversion of AN11 and AN10 (if selected by the TRGSRCx 1	PEND5 SWTRG5 TRGSRC54 TRGSRC53 TRGSRC52 TRGSRC51 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PEND4 SWTRG4 TRGSRC44 TRGSRC43 TRGSRC42 TRGSRC41 e bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr IRQEN5: Interrupt Request Enable 5 bit 1 = Enables IRQ generation when requested conversion of Channels AN11 and AN10 0 = IRQ is not generated PEND5: Pending Conversion Status 5 bit 1 = Conversion of Channels AN11 and AN10 is pending; set when selected trigger is a 0 = Conversion is complete

REGISTER 22-8: ADCPC2: ADC CONVERT PAIR CONTROL REGISTER 2

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

23.0 HIGH-SPEED ANALOG COMPARATOR

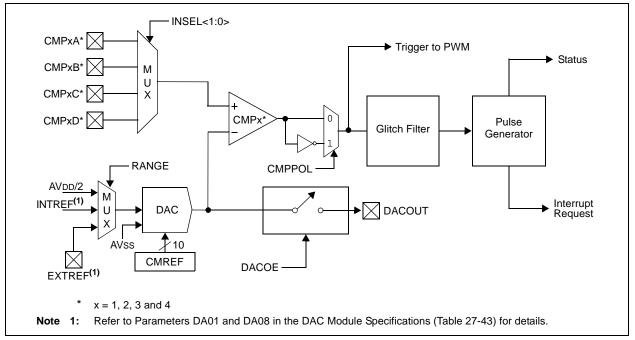
- This data sheet summarizes the features of Note 1: dsPIC33FJ32GS406/606/608/610 the dsPIC33FJ64GS406/606/608/610 and families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed Analog Comparator" (DS70296) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33F Switch Mode Power Supply (SMPS) comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

23.1 Features Overview

The SMPS comparator module offers the following major features:

- 16 Selectable Comparator Inputs
- Up to Four Analog Comparators


- 10-Bit DAC for each Analog Comparator
- Programmable Output Polarity
- Interrupt Generation Capability
- DACOUT Pin to provide DAC Output
- DAC has Three Ranges of Operation:
 - AVdd/2
 - Internal Reference (INTREF)
 - External Reference (EXTREF)
- ADC Sample-and-Convert Trigger Capability
- · Disable Capability reduces Power Consumption
- Functional Support for PWM module:
 - PWM duty cycle control
 - PWM period control
 - PWM Fault detect

23.2 Module Description

Figure 23-1 shows a functional block diagram of one analog comparator from the SMPS comparator module. The analog comparator provides high-speed operation with a typical delay of 20 ns. The comparator has a typical offset voltage of ± 5 mV. The negative input of the comparator is always connected to the DAC circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin.

The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

FIGURE 23-1: HIGH-SPEED ANALOG COMPARATOR x MODULE BLOCK DIAGRAM

TABLE 27-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	_	_	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	_		_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_			ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4

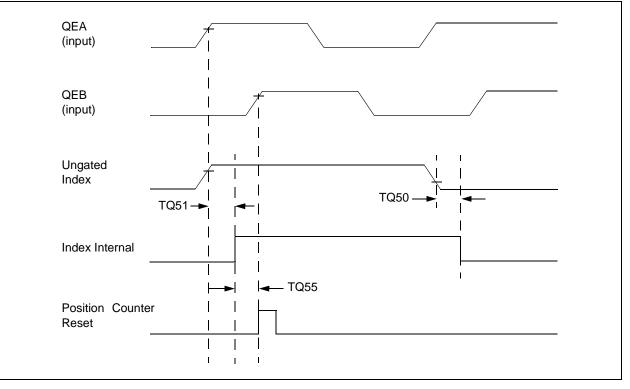
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock, generated by the master, must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

			(unle	dard Operating ss otherwise s ating temperatu	stated) re -40°0	C ≤ TA ≤ +	to 3.6V 85°C for Industrial 125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾		Тур ⁽²⁾	Max	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time		6 Tcy	_	ns	
TQ31	ΤουΗ	Quadrature Input High Time		6 Tcy	—	ns	
TQ35	TQUIN	Quadrature Input Period		12 TCY	—	ns	
TQ36	ΤουΡ	Quadrature Phase Period		3 TCY	—	ns	
TQ40	TQUFL	Filter Time to Recognize Lov with Digital Filter	Ι,	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter		3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)


TABLE 27-45: QUADRATURE DECODER TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70208) in the "dsPIC33/PIC24 Family Reference Manual".

FIGURE 27-25: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS

Revision D (January 2012)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All occurrences of PGCn and PGDn (where n = 1, 2, or 3) were updated to: PGECn and PGEDn throughout the document.

All other changes are referenced by their respective section in Table B-3.

TABLE B-3: MAJOR SECTION UPDATES

Section Name	Update Description
"16-Bit Digital Signal Controllers with	Added 50 MIPS to Operating Range.
High-Speed PWM, ADC and Comparators"	Changed the Oscillator frequency range in System Management.
	Added the "Referenced Sources" section.
Section 1.0 "Device Overview"	Updated the block diagram of the core and peripheral modules (see Figure 1-1).
Section 2.0 "Guidelines for Getting Started with 16-Bit Digital Signal	Updated the Recommended Minimum Connection diagram (see Figure 2-1).
Controllers"	Updated the VCAP pin capacitor specification in Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP)".
Section 4.0 "Memory Organization"	Removed IPC20 and updated IFS5, IFS7, IEC5, IEC7, and IPC29 in the Interrupt Controller Register Map for dsPIC33FJ64GS606 devices (see Table 4-6).
	Removed IPC20 and IPC21 and updated IFS5, IFS7, IEC5, IEC7, and IPC29 in the Interrupt Controller Register Map for dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices (see Table 4-7).
	Removed IPC20 and updated IFS5, IFS7, IEC5, IEC7, and IPC29 in the Interrupt Controller Register Map for dsPIC33FJ32GS606 devices (see Table 4-10).
	Added High-Speed 10-bit ADC Register Map for dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices (see Table 4-35).
	Updated ODCG in PORTG Register Map for dsPIC33FJ32GS610 and dsPIC33FJ64GS610 devices (see Table 4-54).
	Updated ODCG in PORTG Register Map for dsPIC33FJ32GS608 and dsPIC33FJ64GS608 devices (see Table 4-55).
	Updated ODCG in PORTG Register Map for dsPIC33FJ32GS406/606 and dsPIC33FJ64GS406/606 devices (see Table 4-56).
Section 9.0 "Oscillator Configuration"	Changed the High-Speed Crystal (HS) frequency range in Section 9.1.1 "System Clock sources".
	Updated the device operating speed to up to 50 MHz in Section 9.1.2 "System Clock Selection".
	Updated Section 9.1.3 "PLL Configuration " to reflect the new operating range/speed of 50 MIPS/50 MHz.
	Updated Section 9.2 "Auxiliary Clock Generation".

INDEX

L	7
r	•

AC Characteristics	382
10-Bit, High-Speed ADC	410
Internal FRC Accuracy	385
Internal LPRC Accuracy	385
Load Conditions	382
Temperature and Voltage Specifications	382
Arithmetic Logic Unit (ALU)	39
Assembler	
MPASM Assembler	366

В

Barrel Shifter	
Bit-Reversed Addressing	
Example	103
Implementation	102
Sequence Table (16-Entry)	103
Block Diagrams	
16-Bit Timer1 Module	
AC-to-DC Power Supply with PFC and 3 Outputs	32
ADC Module with 1 SAR for dsPIC33FJ32GS406	ί,
dsPIC33FJ64GS406 Devices	
ADC Module with 2 SARs for dsPIC33FJ32GS60	6,
dsPIC33FJ64GS606 Devices	316
ADC Module with 2 SARs for dsPIC33FJ32GS60	8,
dsPIC33FJ64GS608 Devices	317
ADC Module with 2 SARs for dsPIC33FJ32GS61	0,
dsPIC33FJ64GS610 Devices	
Boost Converter Implementation	
Conceptual High-Speed PWMx	
Connections for On-Chip Voltage Regulator	
Digital PFC	
DMA Top Level Architecture Using Dedicated	
Transaction Bus	180
DSP Engine	
dsPIC33FJ32GS406/606/608/610 and	-
dsPIC33FJ64GS406/606/608/610	18
dsPIC33FJ32GS406/606/608/610 and	
dsPIC33FJ64GS406/606/608/610 CPU Cor	e 34
ECANx Module	
High-Speed Analog Comparator x Module	
High-Speed PWMx Architecture	
I2Cx Module	
Input Capture x	
Interleaved PFC	
MCLR Pin Connections	
Minimum Connections	
Multi-Phase Synchronous Buck Converter	
Off-Line Ups	
Oscillator Circuit Placement	25
Oscillator System	
Output Compare x Module	
Phase-Shifted Full-Bridge Converter	227 31
PLL	
Quadrature Encoder Interface x	-
Reset System	
Shared Port Structure	
Simplified UARTx Module	
Single-Phase Synchronous Buck Converter	
Single-Phase Synchronous Buck Converter SPIx Module	
Timer2/3/4/5 (32-Bit)	
1111612/J/4/J (JZ-DIL)	۲۲ ۱

Type B Timer	
Type C Timer	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	120, 349, 353

С

C Compilers	
MPLAB XC Compilers 36	36
Clock Generation	
Auxiliary 19) 3
Reference 19	93
Clock Switching 20)1
Enabling 20)1
Sequence 20)1
Code Examples	
Erasing a Program Memory Page11	13
Initiating a Programming Sequence11	14
Loading Write Buffers 11	4
Port Write/Read 21	15
PWRSAV Instruction Syntax 20)3
Code Protection	56
CodeGuard Security	56
Configuration Bits	49
Description	50
Configuration Register Map 34	49
Configuring Analog Port Pins	
CPU	
Control Registers 3	36
Data Addressing Overview	33
DSP Engine Overview	33
Special MCU Features 3	34
CPU Clocking System 19	
PLL Configuration 19	
Selection	
Sources	
Customer Change Notification Service 45	55
Customer Notification Service 45	
Customer Support 45	

D

Data Accumulators and Adder/Subtracter	
Data Space Write Saturation	
Overflow and Saturation	41
Round Logic	42
Write-Back	42
Data Address Space	47
Alignment	
Memory Map for 4-Kbyte RAM Devices	
Memory Map for 8-Kbyte RAM Devices	
Memory Map for 9-Kbyte RAM Devices	
Near Data Space	
SFR Space	
Software Stack	
Width	
DC and AC Characteristics	
Graphs and Tables	423
DC Characteristics	
Brown-out Reset (BOR)	380
Doze Current (IDOZE)	
,	
I/O Pin Input Specifications	
I/O Pin Output Specifications	379