

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	9K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gs606t-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-7:	INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES (CONTINUED)
------------	---

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC24	00D4	-	PWM6IP2	PWM6IP1	PWM6IP0	—	PWM5IP2	PWM5IP1	PWM5IP0	—	PWM4IP2	PWM4IP1	PWM4IP0	—	PWM3IP2	PWM3IP1	PWM3IP0	4444
IPC27	00DA	_	ADCP1IP2	ADCP1IP1	ADCP1IP0	_	ADCP0IP2	ADCP0IP1	ADCP0IP0	_	_	_	_	_	_	_	_	4400
IPC28	00DC	_	ADCP5IP2	ADCP5IP1	ADCP5IP0	_	ADCP4IP2	ADCP4IP1	ADCP4IP0	_	ADCP3IP2	ADCP3IP1	ADCP3IP0	_	ADCP2IP2	ADCP2IP1	ADCP2IP0	4444
IPC29	00DE	_	_	_	_	_	_	_	_	_	ADCP7IP2	ADCP7IP1	ADCP7IP0	_	ADCP6IP2	ADCP6IP1	ADCP6IP0	0004
INTTREG	00E0	_	_	_	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

TABLE 4-39:	ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1 (CONTINUED)
-------------	--

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	066E		EID<15:0> x											xxxx				
C1RXF12SID	0670	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF12EID	0672								EID	0<15:0>								xxxx
C1RXF13SID	0674	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF13EID	0676								EID	0<15:0>								xxxx
C1RXF14SID	0678	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF14EID	067A								EID	0<15:0>								xxxx
C1RXF15SID	067C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF15EID	067E	EID<15:0> x:										xxxx						

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: ANALOG COMPARATOR CONTROL REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMPCON1	0540	CMPON	—	CMPSIDL	—	—	_	—	DACOE	INSEL1	INSEL0	EXTREF	—	CMPSTAT		CMPPOL	RANGE	0000
CMPDAC1	0542	_	_	-	_	_	_					CMR	EF<9:0>					0000
CMPCON2	0544	CMPON	_	CMPSIDL	_	_	_	_	DACOE	INSEL1	INSEL0	EXTREF	—	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC2	0546	_	_	-	_	_	_					CMR	EF<9:0>					0000
CMPCON3	0548	CMPON	_	CMPSIDL	_	_	_	_	DACOE	INSEL1	INSEL0	EXTREF	—	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC3	054A	_	_	-	_	_	_					CMR	EF<9:0>					0000
CMPCON4	054C	CMPON	_	CMPSIDL	_	_	_	_	DACOE	INSEL1	INSEL0	EXTREF	—	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC4	054E	_	_	_	_	_	_	CMREF<9:0> 00							0000			

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.1 System Reset

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices have two types of Reset:

- Cold Reset
- Warm Reset

A Cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a Cold Reset, the FNOSCx Configuration bits in the FOSC Configuration register select the device clock source.

A Warm Reset is the result of all the other Reset sources, including the RESET instruction. On Warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is described in Figure 6-2.

Oscillator Mode	Oscillator Start-up Delay	Oscillator Start-up Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd ⁽¹⁾	—	_	Toscd ⁽¹⁾
FRCPLL	Toscd ⁽¹⁾	—	ТLОСК ⁽³⁾	Toscd + Tlock ^(1,3)
XT	Toscd ⁽¹⁾	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
HS	Toscd ⁽¹⁾	Tost ⁽²⁾		Toscd + Tost ^(1,2)
EC	—	—	—	—
XTPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	TLOCK ⁽³⁾	Toscd + Tost + Tlock ^(1,2,3)
HSPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	ТLОСК ⁽³⁾	Toscd + Tost + Tlock ^(1,2,3)
ECPLL	—	—	ТLОСК ⁽³⁾	ТLОСК ⁽³⁾
LPRC	Toscd ⁽¹⁾			Toscd ⁽¹⁾

Note 1: ToscD = Oscillator start-up delay (1.1 μs max. for FRC, 70 μs max. for LPRC). Crystal oscillator start-up times vary with the crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer (OST) delay (1024 oscillator clock period). For example, TOST = 102.4 μ s for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal) if PLL is enabled.

TABLE 6-1: OSCILLATOR DELAY

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7	·	· · · · · · · · · · · · · · · · · · ·		-			bit 0
Legend:		C = Clearable	bit				
R = Readable	bit	W = Writable b	oit	U = Unimple	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Note 1:	For complete register details, see Register 3-1.	

bit 7-5

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- **3:** The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3)

110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)

111 = CPU Interrupt Priority Level is 7 (15), user interrupts are disabled

REGIOTER /	2. 0010			LOIOTEIX			
U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	_	US	EDT	DL2	DL1	DL0
bit 15							bit 8

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	-n = Value at POR	'1' = Bit is set
0' = Bit is cleared	'x = Bit is unknown	U = Unimplemented bit, read	l as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—		—	—	—	—	—	—				
bit 15							bit 8				
											
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	ADCP7IF	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF				
bit 7							bit 0				
Legend:	1.5		,								
R = Readable			DIT		nented bit, read						
-n = Value at	POR	1' = Bit is set		0' = Bit is cle	ared	x = Bit is unkr	iown				
		ted: Deed as (<u>.</u>								
DIT 15-6	Unimplemen	ted: Read as 1) [,]		м., т.,						
bit 5	ADCP7IF: AL	DC Pair 7 Conv	ersion Done Ii	nterrupt Flag S	status bit						
	\perp = Interrupt r 0 = Interrupt r	equest has occ	currea								
bit 4	ADCP6IF: AD	C Pair 6 Conv	ersion Done I	nterrupt Flag S	Status bit						
	1 = Interrupt r	equest has occ	curred	1 0							
	0 = Interrupt r	equest has not	occurred								
bit 3	ADCP5IF: AD	DC Pair 5 Conv	ersion Done I	nterrupt Flag S	Status bit						
	1 = Interrupt r	equest has occ	curred								
	0 = Interrupt r	equest has not	occurred								
bit 2	ADCP4IF: AD	DC Pair 4 Conv	ersion Done II	nterrupt Flag S	Status bit						
	1 = Interrupt r	equest has occ									
bit 1		U = Interrupt request has not occurred									
bit i	1 = Interrupt r	ADCP3IF: ADC Pair 3 Conversion Done Interrupt Flag Status bit									
	0 = Interrupt r	equest has not	occurred								
bit 0	ADCP2IF: AD	DC Pair 2 Conv	ersion Done li	nterrupt Flag S	Status bit						
	1 = Interrupt r	equest has occ	curred								
	0 = Interrupt r	equest has not	occurred								

REGISTER 7-12: IFS7: INTERRUPT FLAG STATUS REGISTER 7

						D/M/ O	DANO		
					R/W-0	R/W-0			
U2TXIE	U2RXIE	INTZIE	15IE	I 4IE	OC4IE	OC3IE	DIMAZIE		
DIL 15							DILO		
11-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		_	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 12	U2TXIE: UAR	T2 Transmitte	r Interrupt Ena	able bit					
	1 = Interrupt r	equest is enab	led						
L:4.4.4		equest is not e	enabled	L. L.'A					
DIT	1 - Interrupt r	receiver is enab	nterrupt Enabl	ie dit					
	0 = Interrupt r	request is not e	enabled						
bit 13	INT2IE: Exter	nal Interrupt 2	Enable bit						
	1 = Interrupt r	equest is enab	led						
	0 = Interrupt r	equest is not e	enabled						
bit 12	T5IE: Timer5 Interrupt Enable bit								
	\perp = Interrupt r 0 = Interrupt r	request is enactive enaction request is not e	enabled						
bit 11	T4IE: Timer4	Interrupt Enab	le bit						
	1 = Interrupt r	equest is enab	led						
	0 = Interrupt r	equest is not e	enabled						
bit 10	OC4IE: Outpu	ut Compare Ch	annel 4 Interr	upt Enable bit					
	1 = Interrupt r	equest is enat	enabled						
bit 9	OC3IE: Outpu	ut Compare Ch	annel 3 Interr	upt Enable bit					
	1 = Interrupt r	equest is enab	oled						
	0 = Interrupt r	equest is not e	enabled						
bit 8	DMA2IE: DM	A Channel 2 D	ata Transfer C	Complete Interi	upt Enable bit				
	1 = Interrupt r	equest is enab	led						
hit 7-5		ted. Boad as "	0'						
bit 4	INT1IF: Exter	nal Interrunt 1	o Enable bit						
	1 = Interrupt r	request is enab	led						
	0 = Interrupt r	equest is not e	enabled						
bit 3	CNIE: Input C	Change Notifica	ation Interrupt	Enable bit					
	1 = Interrupt r	equest is enab	oled						
hit 2		equest is not e	1 Interrupt En	abla bit					
UIL Z	1 = Interrupt r	equest is enab	i interrupt ⊏n ded	IADIE DIL					
	0 = Interrupt r	equest is not e	enabled						

REGISTER 7-14: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

REGISTER 7-14: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

- bit 1 MI2C1IE: I2C1 Master Events Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 0 SI2C1IE: I2C1 Slave Events Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

R/W-0	R-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1
ENAPLL	APLLCK	SELACLK		—	APSTSCLR2	APSTSCLR1	APSTSCLR0
bit 15							bit 8
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
ASRCSEL	FRCSEL	—		—	_	_	—
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	it	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
L							
bit 15	ENAPLL: Aux	kiliary PLL Enab	ole bit				
	1 = APLL is ei	nabled					
	0 = APLL is di	isabled					
bit 14	APLLCK: API	LL Locked Statu	us bit (read-or	nly)			
	1 = Indicates t	that auxiliary PL	L is in lock				
	0 = Indicates t	that auxiliary PL	L is not in loc	ck			
bit 13	SELACLK: Se	elect Auxiliary C	Clock Source	for Auxiliary C	lock Divider bit		
	1 = Auxiliary c 0 = Primary P	oscillators provid LL (Fvco) provi	de the source des the source	clock for the a	auxiliary clock d e auxiliary clock	ivider divider	
bit 12-11	Unimplement	ted: Read as '0	,		-		
bit 10-8	APSTSCLR<	2:0>: Auxiliary (Clock Output	Divider bits			
	111 = Divided	l by 1	·				
	110 = Divided	by 2					
	101 = Divided	l by 4					
	100 = Divided	1 DY 8 I by 16					
	010 = Divided	l by 32					
	001 = Divided	l by 64					
	000 = Divided	l by 256					
bit 7	ASRCSEL: Se	elect Reference	Clock Sourc	e for Auxiliary	Clock bit		
	1 = Primary os 0 = No clock i	scillator is the c nput is selected	lock source				
bit 6	FRCSEL: Sel	ect Reference C	Clock Source	for Auxiliary P	LL bit		
	1 = Selects FF	RC clock for au	kiliary PLL				
	0 = Input clock	k source is dete	rmined by the	e ASRCSEL b	it setting		
bit 5-0	Unimplement	ted: Read as '0	,				

REGISTER 9-5: ACLKCON: AUXILIARY CLOCK DIVISOR CONTROL REGISTER

REGISTER 16-4:	SEVTCMP: PWM SPECIAL EVENT COMPARE REGISTER ⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTO	CMP<12:5>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	S	SEVTCMP<4:0	>		—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkno				nown			

bit 15-3 SEVTCMP<12:0>: Special Event Compare Count Value bits

bit 2-0 Unimplemented: Read as '0'

Note 1: One LSB = 1.04 ns (at fastest auxiliary clock rate); therefore, the minimum SEVTCMP resolution is 8.32 ns.

REGISTER 16-8: SSEVTCMP: PWM SECONDARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SSEVTC	MP<12:5>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	S	SSEVTCMP<4:0	0>		—	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown

bit 15-3 SSEVTCMP<12:0>: Special Event Compare Count Value bits

bit 2-0 Unimplemented: Read as '0'

REGISTER 16-9: CHOP: PWM CHOP CLOCK GENERATOR REGISTER⁽¹⁾

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	—	—	—	—	—	CHOPCLK6	CHOPCLK5
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CHPCLKEN: Enable Chop Clock Generator bit 1 = Chop clock generator is enabled 0 = Chop clock generator is disabled
bit 14-10	Unimplemented: Read as '0'
bit 9-3	CHOPCLK<6:0>: Chop Clock Divider bits
	Value in 8.32 ns increments. The frequency of the chop clock signal is given by the following expression:
	Chop Frequency = 1/(16.64 * (CHOPCLK<6:0> + 1) * Primary Master PWM Input Clock Period)
bit 2-0	Unimplemented: Read as '0'

Note 1: The chop clock generator operates with the primary PWM clock prescaler (PCLKDIV<2:0>) in the PTCON2 register (Register 16-2).

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70005185) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters and so on. The SPI module is compatible with the Motorola[®] SPI and SIOP modules.

The SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of these four pins:

- SDIx (Serial Data Input)
- SDOx (Serial Data Output)
- SCKx (Shift Clock Input Or Output)
- SSx (Active-Low Slave Select)

In Master mode operation, SCK is a clock output; in Slave mode, it is a clock input.

FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

REGISTER 22-1:	ADCON: ADC CONTROL REGISTER
----------------	-----------------------------

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
ADON	—	ADSIDL	SLOWCLK ⁽¹⁾	—	GSWTRG	—	FORM ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1
EIE ⁽¹⁾	ORDER ^(1,2)	SEQSAMP ^(1,2)	ASYNCSAMP ⁽¹⁾	—	ADCS2 ⁽¹⁾	ADCS1 ⁽¹⁾	ADCS0 ⁽¹⁾
bit 7							bit 0

Legend:				
R = Reada	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	ADON: A	DC Module Operating Mode	bit	
	1 = ADC	module is operating		
	0 = ADC	module is off		
bit 14	Unimplei	mented: Read as '0'		
bit 13	ADSIDL:	ADC Stop in Idle Mode bit		
	1 = Disco0 = Conti	ntinues module operation wh nues module operation in Idle	en device enters Idle mode e mode	
bit 12	SLOWCL	K: Enable the Slow Clock Div	vider bit ⁽¹⁾	
	1 = ADC	is clocked by the auxiliary PL	LL (ACLK)	
L:1.44	0 = ADC	is clock by the primary PLL (FVCO)	
DIT 11	Unimplei	mented: Read as '0'		
DIT 10	GSWIRC	Si Global Software Trigger bit		
	ADCPCx	registers. This bit must be cle	rigger conversions if selected by the user prior to initiating	another global trigger (i.e. this
	bit is not	auto-clearing).		anothor global anggor (noi, ano
bit 9	Unimple	mented: Read as '0'		
bit 8	FORM: D	ata Output Format bit ⁽¹⁾		
	1 = Fract	ional (Dout = dddd dddd d	1000 0000)	
	0 = Intege	er (DOUT = 0000 00dd dddd)	d dddd)	
bit 7	EIE: Early	y Interrupt Enable bit ⁽¹⁾		
	1 = Interr	upt is generated after first cor	nversion is completed	
hit 6		Conversion Order hit(1,2)		
	1 = 0 dd r	numbered analog input is con	verted first followed by conversion	on of even numbered input
	0 = Even	numbered analog input is col	nverted first, followed by conversi	on of odd numbered input
bit 5	SEQSAN	IP: Sequential S&H Sampling) Enable bit ^(1,2)	
	1 = Shar	ed Sample-and-Hold (S&H)	circuit is sampled at the start	of the second conversion if
	ORD	EK = 0. If OKDER = 1, then the same set of	the snared S&H is sampled at the	e start of the first conversion.
	rently	/ busy with an existing convers	sion process. If the shared S&H is	busy at the time the dedicated
	S&H	is sampled, then the shared S	&H will sample at the start of the n	ew conversion cycle.
Note 1:	This control b	it can only be changed while	the ADC is disabled (ADON = 0).	
2:	This control b	it is only active on devices that	at have one SAR.	

REGISTER 22-6: ADCPC0: ADC CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)

bit 12-8	TRGSRC1<4:0>: Trigger 1 Source Selection bits Selects trigger source for conversion of Analog Channels AN3 and AN2. 11111 = Timer2 period match 11100 = PWM Generator 8 current-limit ADC trigger 11101 = PWM Generator 7 current-limit ADC trigger 11100 = PWM Generator 6 current-limit ADC trigger 11011 = PWM Generator 5 current-limit ADC trigger 11010 = PWM Generator 5 current-limit ADC trigger 11010 = PWM Generator 4 current-limit ADC trigger
	11000 = PWM Generator 2 current-limit ADC trigger 10111 = PWM Generator 1 current-limit ADC trigger 10110 = PWM Generator 9 secondary trigger is selected 10101 = PWM Generator 8 secondary trigger is selected 10100 = PWM Generator 7 secondary trigger is selected 10011 = PWM Generator 6 secondary trigger is selected 10010 = PWM Generator 5 secondary trigger is selected 10001 = PWM Generator 4 secondary trigger is selected 10001 = PWM Generator 3 secondary trigger is selected
	10000 = PWM Generator 3 secondary trigger is selected 01111 = PWM Generator 2 secondary trigger is selected 01101 = PWM Generator 1 secondary trigger is selected 01101 = PWM secondary Special Event Trigger is selected 01011 = PWM Generator 8 primary trigger is selected 01010 = PWM Generator 7 primary trigger is selected 01001 = PWM Generator 6 primary trigger is selected 01000 = PWM Generator 5 primary trigger is selected 01000 = PWM Generator 5 primary trigger is selected 0111 = PWM Generator 5 primary trigger is selected 0110 = PWM Generator 7 primary trigger is selected 0111 = PWM Generator 7 primary trigger is selected 0110 = PWM Generator 7 primary trigger is selected 00110 = PWM Generator 7 primary trigger is selected 00110 = PWM Generator 7 primary trigger is selected 00110 = PWM Generator 7 primary trigger is selected 00101 = PWM Generator 7 primary trigger is selected 00101 = PWM Generator 1 primary trigger is selected 00101 = PWM Generator 1 primary trigger is selected 00101 = PWM Special Event Trigger selected 00011 = PWM Special Event Trigger is selected 00010 = Global software trigger is selected 00010 = Individual software trigger is selected 00000 = No conversion is enabled
bit 7	IRQEN0: Interrupt Request Enable 0 bit 1 = Enables IRQ generation when requested conversion of Channels AN1 and AN0 is completed 0 = IRQ is not generated
bit 6	PEND0: Pending Conversion Status 0 bit 1 = Conversion of Channels AN1 and AN0 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	 SWTRG0: Software Trigger 0 bit 1 = Starts conversion of AN1 and AN0 (if selected by the TRGSRCx<4:0> bits)⁽¹⁾ This bit is automatically cleared by hardware when the PEND0 bit is set. 0 = Conversion has not started.

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

Bit Field	Register	RTSP Effect	Description
CMPPOL1	FCMP	Immediate	Comparator Hysteresis Polarity bit (for odd numbered comparators) 1 = Hysteresis is applied to falling edge 0 = Hysteresis is applied to rising edge
HYST1<1:0>	FCMP	Immediate	Comparator Hysteresis Select bits 11 = 45 mV hysteresis 10 = 30 mV hysteresis 01 = 15 mV hysteresis 00 = No hysteresis

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f - WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - Iit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb - Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f.WREG	WREG = WREG - f - (\overline{C})	1	1	C.DC.N.OV.Z
		SUBBR	Wh Ws Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	
		CIIDDD	wb,#B;#G	Wd = Vic Vic (0)	1	1	
76	CWAD	SUBBR	WD,#IICJ,Wd	$W_{0} = Nibble Swap W_{0}$	1	1	None
10	SWAF	SWAP.D	WII	Wn - Byte Swap Wn	1	1	None
77	נותם זפיד	JWAP TOT DU	WII Wa Wd	Read Prog_23:16> to W/d_7:0>	1	2	None
78			WS,WO	Read Prog<25.15% to Wd	1	2	None
70		TDI WTU	WS,WQ	Write Ws-7:0> to Prog-23:16>	1	2	None
. <u>.</u> 80	TRI,WTI	TBLWTL	Ws.Wd	Write Ws to Prog<15:0	1	2	None
81	III.NK	TETMIT		Unlink Frame Pointer	1	1	None
82	XOR	XOB	f	f = f XOR WREG	1	1	NI 7
5 <u>2</u>	AUN	XOP	f WREG		1	1	N 7
		XOP	#lit10 Wn	Wd = lit10 XOR Wd	1	1	N 7
		XOR	Wh Ws Wd	Wd = Wb XOB Ws	1	1	N 7
		XOP	Wb #lit5 Wd	Wd = Wb XOR lit5	1	1	N 7
02	7 12	ZE	We Wed	Wind - Zoro Extend Win	1	1	C 7 N

TABLE 25-2:	INSTRUCTION SET OVERVIEW	(CONTINUED)

27.1 DC Characteristics

	Voo Bongo	Tomp Bongo	Max MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610		
	3.0-3.6V ⁽¹⁾	-40°C to +85°C	40		
	3.0-3.6V ⁽¹⁾	-40°C to +125°C	40		

TABLE 27-1: OPERATING MIPS vs. VOLTAGE

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. See Parameter BO10 in Table 27-11 for the BOR values.

TABLE 27-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range		-40		+140	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$		Pint + Pi/o		W	
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 27-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 64-Pin QFN (9x9x0.9 mm)	θJA	28	—	°C/W	1
Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm)		39		°C/W	1
Package Thermal Resistance, 80-Pin TQFP (12x12x1 mm)		53.1		°C/W	1
Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm)		43		°C/W	1
Package Thermal Resistance, 100-Pin TQFP (14x14x1 mm)	θJA	43		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

30.2 Package Details

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

Microchip Technology Drawing C04-149C Sheet 1 of 2

Revision C (February 2010)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other changes are referenced by their respective section in Table B-2.

TABLE B-2:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description			
Section 16.0 "High-Speed PWM"	Added Note 2 to PTPER (Register 16-3).			
	Added Note 1 to SEVTCMP (Register 16-4).			
	Updated Note 1 in MDC (Register 16-10).			
	Updated Note 5 and added Note 6 to PWMCONx (Register 16-11).			
	Updated Note 1 in PDCx (Register 16-12).			
	Updated Note 1 in SDCx (Register 16-13).			
	Updated Note 1 and Note 2 in PHASEx (Register 16-14).			
	Updated Note 2 in SPHASEx (Register 16-15).			
	Updated Note 1 in FCLCONx (Register 16-21).			
	Added Note 1 to STRIGx (Register 16-22).			
	Updated Leading-Edge Blanking Delay increment value from 8.4 ns to 8.32 ns and added a shaded note in LEBDLYx (Register 16-24).			
	Added Note 3 and Note 4 to PWMCAPx (Register 16-26).			
Section 27.0 "Electrical Characteristics"	Updated the Min and Typ values for the Internal Voltage Regulator specifications in Table 27-13.			
	Updated the Min and Max values for the Internal RC Accuracy specifications in Table 27-20.			

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

dsPIC 33 FJ 32 GS4 06 <u>T</u> - 50 I / <u>PT</u> - XXX				Examples:
Microchip Trade Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fl Speed Temperature Ran Package Pattern	mark amily / v Size (ag (if a nge	Kbyt	 res) cable)	 a) dsPIC33FJ32GS406-50-I/PT: SMPS dsPIC33, 32-Kbyte program memory, 64-pin, 50 MIPS, Industrial temp., TQFP package.
Architecture:	33	=	16-Bit Digital Signal Controller	
Flash Memory Family:	FJ	=	Flash program memory, 3.3V	
Product Group:	GS4 GS6	= =	Switch Mode Power Supply (SMPS) family Switch Mode Power Supply (SMPS) family	
Pin Count:	06 08 10	= = =	64-pin 80-pin 100-pin	
Speed:	50	= =	50 MIPS 40 MIPS (marking intentionally absent)	
Temperature Range:	I E	= =	-40°C to +85°C (Industrial) -40°C to +125°C (Extended)	
Package:	PT PT PF MR	= = =	Plastic Thin Quad Flatpack – 10x10x1 mm body (TQFP) Plastic Thin Quad Flatpack – 12x12x1 mm body (TQFP) Plastic Thin Quad Flatpack – 14x14x1 mm body (TQFP) Plastic Quad Flat, No Lead Package – 9x9x0.9 mm body (QFN)	