

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	9K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gs606t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analogto-Digital input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG and ADPCFG2 registers.

The bits in the registers that correspond to the Analog-to-Digital pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device. If your application needs to use certain Analog-to-Digital pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG and ADPCFG2 registers during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG and ADPCFG2 registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all Analog-to-Digital pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins and drive the output to logic low.

2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-4 through Figure 2-11.

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/ 16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (for example, ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write-Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	A = A + (x * y)	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	A = x * y	No
MPY	$A = x^2$	No
MPY.N	A = -x * y	No
MSC	A = A - x * y	Yes

TABLE 4-1: CPU CORE REGISTER MAP (CONTINUED)

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CORCON	0044	_	—	_	US	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0000
MODCON	0046	XMODEN	YMODEN	-	_	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000
XMODSRT	0048						Х	(S<15:1>									0	xxxx
XMODEND	004A						Х	(E<15:1>									1	xxxx
YMODSRT	004C						Y	′S<15:1>									0	xxxx
YMODEND	004E						Y	′E<15:1>									1	xxxx
XBREV	0050	BREN	XB14	XB13	XB12	XB11	XB10	XB9	XB8	XB7	XB6	XB5	XB4	XB3	XB2	XB1	XB0	xxxx
DISICNT	0052	_	—					Disable I	nterrupts Cou	nter Reg	ister							xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: TIMERS REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1 Re	gister								0000
PR1	0102								Period Reg	ister 1								FFFF
T1CON	0104	TON	—	TSIDL	_	_	—	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106								Timer2 Re	gister								0000
TMR3HLD	0108						Timer3 H	Holding Reg	gister (for 32	2-bit timer o	perations of	only)						xxxx
TMR3	010A		Timer3 Register										0000					
PR2	010C		Period Register 2										FFFF					
PR3	010E								Period Reg	ister 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
TMR4	0114								Timer4 Re	gister								0000
TMR5HLD	0116						Timer5 H	Holding Reg	gister (for 32	2-bit timer o	perations of	only)						xxxx
TMR5	0118								Timer5 Re	gister								0000
PR4	011A		Period Register 4									FFFF						
PR5	011C		Period Register 5									FFFF						
T4CON	011E	TON	_	TSIDL	_	_	_	—	—	-	TGATE	TCKPS1	TCKPS0	T32	_	TCS		0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: INPUT CAPTURE REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140							Inpu	t 1 Capture	e Register								xxxx
IC1CON	0142	_	—	ICSIDL	_	_	_	_	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2BUF	0144							Inpu	t 2 Capture	e Register								xxxx
IC2CON	0146	_	—	ICSIDL	_	—	—		—	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3BUF	0148							Inpu	t 3 Capture	e Register								xxxx
IC3CON	014A	_	—	ICSIDL	_	_	_	_	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC4BUF	014C							Inpu	t 4 Capture	e Register								xxxx
IC4CON	014E	_	—	ICSIDL	_	_	_	_	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: HIGH-SPEED PWM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0400	PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2	0402	_		-	_	-	_	_	_	_	_	_	_	_	P	CLKDIV<2:0)>	0000
PTPER	0404								PT	PER<15:0>								FFF8
SEVTCMP	0406		SEVTCMP<12:0> 0										0000					
MDC	040A								N	IDC<15:0>								0000
STCON	040E	_		-	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
STCON2	0410	_		-	_	-	_	_	_	_	_	_	_	_	P	CLKDIV<2:0)>	0000
STPER	0412								ST	PER<15:0>								FFF8
SSEVTCMP	0414		SSEVTCMP<15:3> 00										0000					
CHOP	041A	CHPCLKEN	_	—	_	—	_	CHOPCLK6	CHOPCLK5	CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	—	_	—	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: HIGH-SPEED PWM GENERATOR 1 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0420	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON1	0422	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON1	0424	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC1	0426								PD	C1<15:0>								0000
PHASE1	0428								PHA	SE1<15:0>								0000
DTR1	042A	_									0000							
ALTDTR1	042C	_	_	ALTDTR1<13:0> 0								0000						
SDC1	042E								SD	C1<15:0>								0000
SPHASE1	0430								SPHA	SE1<15:0>								0000
TRIG1	0432							TRGCMP<1	2:0>								_	0000
TRGCON1	0434	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	-	_		_	DTM		TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG1	0436							STRGCMP<	12:0>								_	0000
PWMCAP1	0438							PWMCAP<1	2:0>								_	0000
LEBCON1	043A	PHR	HR PHF PLR PLF FLTLEBEN CLLEBEN — — — BCH BCL BPHH BPHL BPLH BPLL 0000															
LEBDLY1	043C	—		_	_				L	EB<8:0>							_	0000
AUXCON1	043E	HRPDIS	PDIS HRDDIS — — BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 — — CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000															

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.2 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed. The delay, TPOR, ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 27.0 "Electrical Characteristics" for details.

The Power-on Reset (POR) status bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

6.3 Brown-out Reset (BOR) and Power-up Timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses the

VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.

The Brown-out Reset (BOR) status bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides a Power-up Time Delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The Power-up Timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select (FPWRT<2:0>) bits in the FPOR Configuration (FPOR<2:0>) register, which provides eight settings (from 0 ms to 128 ms). Refer to **Section 24.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The Reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

FIGURE 6-3: BROWN-OUT SITUATIONS

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—		_	—	—	_	_
bit 15	• •						bit 8
	D 444 c	D A U O	DA440	D 444 o	D 444 o	D 444 o	D 444 o
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	IC4IE	IC3IE	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimplement						
bit 6	IC4IE: Input C	•	•	Enable bit			
	1 = Interrupt r						
bit 5	0 = Interrupt r IC3IE: Input C	•		- noble bit			
DIUD	1 = Interrupt r	•	•				
	0 = Interrupt n						
bit 4	DMA3IE: DM	A Channel 3 E	ata Transfer C	Complete Interr	rupt Enable bit		
	1 = Interrupt r						
	0 = Interrupt r	•					
bit 3	C1IE: ECAN1						
	1 = Interrupt r						
bit 2	0 = Interrupt r C1RXIE: ECA	•		arrupt Epoble I	h:#(1)		
DILZ	1 = Interrupt r		•	errupt Enable i	UIC		
	0 = Interrupt n						
bit 1	SPI2IE: SPI2	-					
	1 = Interrupt r	•					
	0 = Interrupt r	equest is not e	enabled				
bit 0	SPI2EIE: SPI2						
	1 = Interrupt r						
	0 = Interrupt r	equest is not e	enabled				

REGISTER 7-15: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	CNIP2	CNIP1	CNIP0	—	AC1IP2	AC1IP1	AC1IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	emented bit, read	t as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cl		x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	CNIP<2:0>: (Change Notific	ation Interrupt	Priority bits			
	111 = Interru	pt is Priority 7	(highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	sabled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	AC1IP<2:0>:	Analog Comp	arator 1 Interro	upt Priority bite	S		
	111 = Interru	pt is Priority 7	(highest priorit	y interrupt)			
	•						
	•						
		pt is Priority 1 pt source is dis	sabled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	MI2C1IP<2:0	>: I2C1 Maste	r Events Interr	upt Priority bit	ts		
	111 = Interru	pt is Priority 7	(highest priorit	y interrupt)			
	•						
	•						
		pt is Priority 1 pt source is dis	sabled				
bit 3		ited: Read as '					
bit 2-0	-	>: I2C1 Slave I		ot Priority hits			
		pt is Priority 7		-			
	•	prior nonty i	(ingriced priorit	y monuply			
	•						
	• 001 - Intorre:	pt is Priority 1					

REGISTER 7-25: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1 TO 4)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	_	OCSIDL	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Output Compare x Stop in Idle Mode Control bit
	 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare x Timer Select bit
	 1 = Timer3 is the clock source for Output Compare x 0 = Timer2 is the clock source for Output Compare x
bit 2-0	OCM<2:0>: Output Compare x Mode Select bits
	 111 = PWM mode on OCx, Fault pin is enabled 110 = PWM mode on OCx, Fault pin is disabled 101 = Initializes OCx pin low, generates continuous output pulses on OCx pin 100 = Initializes OCx pin low, generates single output pulse on OCx pin 011 = Compare event toggles OCx pin 010 = Initializes OCx pin high, compare event forces OCx pin low 001 = Initializes OCx pin low, compare event forces OCx pin high 000 = Output compare channel is disabled

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15 b						bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3(1)	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7 bit							bit 0

R = Readable bit W = Writable bit U = Unimplemented bit, read as	
	'0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = I	Bit is unknown

bit 15	PTEN: PWM Module Enable bit
	 1 = PWM module is enabled 0 = PWM module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWM Time Base Stop in Idle Mode bit
	 1 = PWM time base halts in CPU Idle mode 0 = PWM time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	1 = Special event interrupt is pending0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	 1 = Special event interrupt is enabled 0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	 1 = Active Period register is updated immediately 0 = Active Period register updates occur on PWM cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCIx/SYNCO1 polarity is inverted (active-low)0 = SYNCIx/SYNCO1 is active-high
bit 8	SYNCOEN: Primary Time Base Synchronization Enable bit ⁽¹⁾
	1 = SYNCO1 output is enabled0 = SYNCO1 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾
	 1 = External synchronization of primary time base is enabled 0 = External synchronization of primary time base is disabled
bit 6-4	SYNCSRC<2:0>: Synchronous Source Selection bits ⁽¹⁾
	111 = Reserved 101 = Reserved 100 = Reserved 011 = SYNCI4 010 = SYNCI3 001 = SYNCI2 000 = SYNCI1
Note 1.	These bits should be shanged only when DTEN. A In addition when using the SVNChy facture, the

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 16-21: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL x REGISTER (CONTINUED)

bit 9		CLPOL: Current-Limit Polarity for PWM Generator # bit ⁽¹⁾
		1 = The selected current-limit source is active-low
		0 = The selected current-limit source is active-high
bit 8		CLMOD: Current-Limit Mode Enable for PWM Generator # bit
		1 = Current-Limit mode is enabled
		0 = Current-Limit mode is disabled
bit 7-3	5	FLTSRC<4:0>: Fault Control Signal Source Select for PWM Generator # bits ^(2,3)
		11111 = Reserved
		11110 = Fault 23 11101 = Fault 22
		11101 = Fault 22 11100 = Fault 21
		11001 = Fault 20
		11010 = Fault 19
		11001 = Fault 18
		11000 = Fault 17
		10111 = Fault 16
		10110 = Fault 15
		10101 = Fault 14 10100 = Fault 13
		10100 = Fault 13 10011 = Fault 12
		10011 = Fault 12 10010 = Fault 11
		10001 = Fault 10
		10000 = Fault 9
		01111 = Fault 8
		01110 = Fault 7
		01101 = Fault 6
		01100 = Fault 5 01011 = Fault 4
		01011 = Fault 4 01010 = Fault 3
		01001 = Fault 2
		01000 = Fault 1
		00111 = Reserved
		00110 = Reserved
		00101 = Reserved
		00100 = Reserved
		00011 = Analog Comparator 4
		00010 = Analog Comparator 3 00001 = Analog Comparator 2
		00000 = Analog Comparator 1
bit 2		FLTPOL: Fault Polarity for PWM Generator # bit ⁽¹⁾
5112		1 = The selected Fault source is active-low
		0 = The selected Fault source is active-high
bit 1-0		FLTMOD<1:0>: Fault Mode for PWM Generator # bits
		11 = Fault input is disabled
		10 = Reserved
		01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)
		00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)
Noto	4.	These bits should be changed only when PTEN (PTCON<15>) = 0 .
		When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Current-Limit mode
	č .	(CLSRC<4:0> = $b0000$), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused
		Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
:	3:	When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode
		(FLTSRC<4:0> = $b0000$), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused
		current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware clears at the end of the master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I^2C master)
	1 = Enables Receive mode for I^2C . Hardware clears at the end of the eighth bit of the master receive data byte.
	0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiates Stop condition on SDAx and SCLx pins. Hardware clears at the end of the master Stop sequence.
	0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware clears at the end of the master Repeated Start sequence.
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDAx and SCLx pins. Hardware clears at the end of the master Start sequence.
	0 = Start condition is not in progress

REGISTER 22-10: ADCPC4: ADC CONVERT PAIR CONTROL REGISTER 4 (CONTINUED)

bit 4-0	TRGSRC8<4:0>: Trigger 8 Source Selection bits
	Selects trigger source for conversion of Analog Channels AN17 and AN16.
	11111 = Timer2 period match
	11110 = PWM Generator 8 current-limit ADC trigger
	11101 = PWM Generator 7 current-limit ADC trigger
	11100 = PWM Generator 6 current-limit ADC trigger
	11011 = PWM Generator 5 current-limit ADC trigger
	11010 = PWM Generator 4 current-limit ADC trigger
	11001 = PWM Generator 3 current-limit ADC trigger
	11000 = PWM Generator 2 current-limit ADC trigger
	10111 = PWM Generator 1 current-limit ADC trigger
	10110 = PWM Generator 9 secondary trigger selected
	10101 = PWM Generator 8 secondary trigger selected
	10100 = PWM Generator 7 secondary trigger selected
	10011 = PWM Generator 6 secondary trigger selected
	10010 = PWM Generator 5 secondary trigger selected
	10001 = PWM Generator 4 secondary trigger selected
	10000 = PWM Generator 3 secondary trigger selected
	01111 = PWM Generator 2 secondary trigger selected
	01110 = PWM Generator 1 secondary trigger selected
	01101 = PWM secondary Special Event Trigger selected
	01100 = Timer1 period match
	01011 = PWM Generator 8 primary trigger selected
	01010 = PWM Generator 7 primary trigger selected
	01001 = PWM Generator 6 primary trigger selected 01000 = PWM Generator 5 primary trigger selected
	00111 = PWM Generator 4 primary trigger selected
	00110 = PWM Generator 3 primary trigger selected
	00101 = PWM Generator 2 primary trigger selected
	00100 = PWM Generator 1 primary trigger selected
	00011 = PWM Special Event Trigger selected
	00010 = Global software trigger selected
	00001 = Individual software trigger selected
	00000 = No conversion is enabled

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,2
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,2
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,2
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,2
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,2
		SUBR	f,WREG	WREG = WREG - f	1	1	C,DC,N,OV,2
		SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,2
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG - f - (\overline{C})	1	1	C,DC,N,OV,2
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,2
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
		SWAP	Wn	Wn = Byte Swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N

TABLE 25-2:	INSTRUCTION SET OVERVIEW ((CONTINUED)

FIGURE 27-6: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

TABLE 27-26: INPUT CAPTURE x TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾		Min	Мах	Units	Conditions	
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20		ns		
			With Prescaler	10	_	ns		
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20		ns		
			With Prescaler	10	_	ns		
IC15	TccP	ICx Input Period		(Tcy + 40)/N	_	ns	N = Prescale value (1, 4, 16)	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 27-7: OUTPUT COMPARE x (OCx) MODULE TIMING CHARACTERISTICS

TABLE 27-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions	
OC10	TccF	OCx Output Fall Time	_		_	ns	See Parameter DO32	
OC11	TccR	OCx Output Rise Time	—	_	—	ns	See Parameter DO31	

Note 1: These parameters are characterized but not tested in manufacturing.

^{© 2009-2014} Microchip Technology Inc.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V^{(2)}} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
		Cloc	k Parame	ters			
AD50b	TAD	ADC Clock Period	35.8	—		ns	
		Con	version F	late			
AD55b	tCONV	Conversion Time	_	14 Tad	_	—	
AD56b	FCNV	Throughput Rate					
		Devices with Single SAR		—	2.0	Msps	
		Devices with Dual SARs		_	4.0	Msps	
	-	Timin	g Param	eters			
AD63b	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾	1.0	_	10	μS	

TABLE 27-41: 10-BIT, HIGH-SPEED ADC MODULE TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Overall functional device operation at VBOR < VDD < VDDMIN is guaranteed but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN.

FIGURE 27-23: ANALOG-TO-DIGITAL CONVERSION TIMING PER INPUT

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical	Мах	Doze Ratio Units Conditions			litions	
Doze Current (IDO	ZE) ⁽¹⁾						
MDC74a	49	70	1:2	mA			
MDC74f	43	70	1:64	mA	-40°C	3.3V	50 MIPS
MDC74g	43	70	1:128	mA			
MDC75a	47	70	1:2	mA			
MDC75f	41	70	1:64	mA	+25°C	3.3V	50 MIPS
MDC75g	41	70	1:128	mA			
MDC76a	46	70	1:2	mA			
MDC76f	40	70	1:64	mA	+85°C	3.3V	50 MIPS
MDC76g	40	70	1:128	mA]		

TABLE 28-4: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

· CLKO is configured as an I/O input pin in the Configuration Word

• All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD, WDT and FSCM are disabled

• CPU, SRAM, program memory and data memory are operational

 No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are '0's)

• CPU executing while(1) statement

• JTAG is disabled

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	/ILLIMETER	S
Dimensio	Dimension Limits		NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

INDEX

L	7
r	•

AC Characteristics	382
10-Bit, High-Speed ADC	410
Internal FRC Accuracy	385
Internal LPRC Accuracy	385
Load Conditions	382
Temperature and Voltage Specifications	382
Arithmetic Logic Unit (ALU)	39
Assembler	
MPASM Assembler	366

В

Barrel Shifter	
Bit-Reversed Addressing	
Example	103
Implementation	102
Sequence Table (16-Entry)	103
Block Diagrams	
16-Bit Timer1 Module	
AC-to-DC Power Supply with PFC and 3 Outputs	
ADC Module with 1 SAR for dsPIC33FJ32GS406	ί,
dsPIC33FJ64GS406 Devices	
ADC Module with 2 SARs for dsPIC33FJ32GS60	6,
dsPIC33FJ64GS606 Devices	316
ADC Module with 2 SARs for dsPIC33FJ32GS60	8,
dsPIC33FJ64GS608 Devices	317
ADC Module with 2 SARs for dsPIC33FJ32GS61	0,
dsPIC33FJ64GS610 Devices	
Boost Converter Implementation	
Conceptual High-Speed PWMx	
Connections for On-Chip Voltage Regulator	
Digital PFC	
DMA Top Level Architecture Using Dedicated	
Transaction Bus	180
DSP Engine	
dsPIC33FJ32GS406/606/608/610 and	-
dsPIC33FJ64GS406/606/608/610	18
dsPIC33FJ32GS406/606/608/610 and	
dsPIC33FJ64GS406/606/608/610 CPU Cor	e34
ECANx Module	
High-Speed Analog Comparator x Module	
High-Speed PWMx Architecture	
I2Cx Module	
Input Capture x	
Interleaved PFC	
MCLR Pin Connections	
Minimum Connections	
Multi-Phase Synchronous Buck Converter	
Off-Line Ups	
Oscillator Circuit Placement	25
Oscillator System	
Output Compare x Module	
Phase-Shifted Full-Bridge Converter	227 31
PLL	
Quadrature Encoder Interface x	-
Reset System	
Shared Port Structure	
Simplified UARTx Module	
Single-Phase Synchronous Buck Converter	
Single-Phase Synchronous Buck Converter SPIx Module	
Timer2/3/4/5 (32-Bit)	
1111012/J/4/J (JZ-DIL)	

Type B Timer	
Type C Timer	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	120, 349, 353

С

C Compilers	
MPLAB XC Compilers 36	36
Clock Generation	
Auxiliary 19) 3
Reference 19	93
Clock Switching 20)1
Enabling 20)1
Sequence 20)1
Code Examples	
Erasing a Program Memory Page11	13
Initiating a Programming Sequence11	14
Loading Write Buffers 11	4
Port Write/Read 21	15
PWRSAV Instruction Syntax 20)3
Code Protection	56
CodeGuard Security	56
Configuration Bits	49
Description	50
Configuration Register Map 34	49
Configuring Analog Port Pins	
CPU	
Control Registers 3	36
Data Addressing Overview	33
DSP Engine Overview	33
Special MCU Features 3	34
CPU Clocking System 19	
PLL Configuration 19	
Selection	
Sources	
Customer Change Notification Service 45	55
Customer Notification Service 45	
Customer Support 45	

D

Data Accumulators and Adder/Subtracter	
Data Space Write Saturation	
Overflow and Saturation	41
Round Logic	42
Write-Back	42
Data Address Space	47
Alignment	
Memory Map for 4-Kbyte RAM Devices	
Memory Map for 8-Kbyte RAM Devices	
Memory Map for 9-Kbyte RAM Devices	
Near Data Space	
SFR Space	
Software Stack	
Width	
DC and AC Characteristics	
Graphs and Tables	423
DC Characteristics	
Brown-out Reset (BOR)	380
Doze Current (IDOZE)	
, ,	
I/O Pin Input Specifications	
I/O Pin Output Specifications	379