

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, QEI, POR, PWM, WDT
Number of I/O	58
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	9K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gs606t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

NOTES:

4.2 Data Address Space

The CPU has a separate 16-bit-wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps is shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15>=0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 devices implement up to 9 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] that results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

TABLE 4-1: CPU CORE REGISTER MAP (CONTINUED)

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CORCON	0044	-	_	_	US	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0000
MODCON	0046	XMODEN	YMODEN	_	—	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000
XMODSRT	0048	XS<15:1>														0	xxxx	
XMODEND	004A	XE<15:1>												1	xxxx			
YMODSRT	004C						Y	′S<15:1>									0	xxxx
YMODEND	004E						Y	′E<15:1>									1	xxxx
XBREV	0050	BREN	BREN XB14 XB13 XB12 XB11 XB10 XB9 XB8 XB7 XB6 XB5 XB4 XB2 XB1 XB0											xxxx				
DISICNT	0052	_	— — Disable Interrupts Counter Register													xxxx		

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: HIGH-SPEED PWM GENERATOR 2 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0440	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON2	0442	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON2	0444	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC2	0446			PDC2<15:0> 0												0000		
PHASE2	0448		PHASE2<15:0> 00												0000			
DTR2	044A	—	_		DTR2<13:0>									0000				
ALTDTR2	044C	—	ALTDTR2<13:0> 00													0000		
SDC2	044E	SDC2<15:0>														0000		
SPHASE2	0450								SPHAS	E2<15:0>								0000
TRIG2	0452							TRGCMP<12	2:0>						_	_	_	0000
TRGCON2	0454	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	DTM	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG2	0456							STRGCMP<1	2:0>						_	_	_	0000
PWMCAP2	0458			PWMCAP<12:0> 0									0000					
LEBCON2	045A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	045C	_	—	_	—				L	EB<8:0>					—	_	_	0000
AUXCON2	045E	HRPDIS	HRDDIS		_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES ONLY (CONTINUED)

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCBUF22	036C		ADC Data Buffer 22													xxxx		
ADCBUF23	036E		ADC Data Buffer 23												XXXX			
ADCBUF24	0370	ADC Data Buffer 24												xxxx				
ADCBUF25	0372	ADC Data Buffer 25												xxxx				

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-41: PORTA REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA	<15:14>	-	—	—	TRISA<10:9> —		—				TRISA	<7:0>				C6FF
PORTA	02C2	RA<1	5:14>	4>		_	RA<1	10:9>	_				RA<	7:0>				xxxx
LATA	02C4	LATA<	15:14>	_	_	_	LATA<	:10:9>	_				LATA	<7:0>				0000
ODCA	02C6	ODCA<	<15:14>	—	_	_	ODCA.	<10:9>	_	_	_	ODCA-	<5:4>	_	_	ODCA	<1:0>	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-42: PORTA REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA	<15:14>	_	—	—	TRISA	<10:9>		_	—	_	—	—	—	_	_	C600
PORTA	02C2	RA<1	5:14>	_	_	_	RA<1	0:9>	_	—	_	_	_	_	_	_	_	xxxx
LATA	02C4	LATA<	15:14>	_	_	_	LATA<	:10:9>	_	—	_	_	_	_	_	_	_	0000
ODCA	02C6	ODCA<	<15:14>	_	_	—	ODCA<	<10:9>		—	_		_	_	_	_	—	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-43: PORTB REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8		TRISB<15:0>													FFFF		
PORTB	02CA		RB<15:0> x:												xxxx			
LATB	02CC	LATB<15:0> 000													0000			

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: PORTC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0		TRISC	C<15:12>		—	—	—	—	—	—	—		TRISC	<4:1>		—	F01E
PORTC	02D2		RC<	RC<15:12>		_	_	_	_	_	_	_		RC<	4:1>		_	xxxx
LATC	02D4		LATC	<15:12>		_	—	-	_	_	-	_		LATC	<4:1>			0000

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.9 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset.

Note:	The status bits in the RCON register
	should be cleared after they are read so
	that the next RCON register value after a
	device Reset will be meaningful.

TABLE 6-3: RESET FLAG BIT OPERATION

Flag Bit **Cleared by:** Set by: TRAPR (RCON<15>) Trap Conflict Event POR, BOR IOPWR (RCON<14>) Illegal Opcode or Uninitialized W register POR, BOR Access or Security Reset MCLR Reset POR EXTR (RCON<7>) SWR (RCON<6>) **RESET** Instruction POR, BOR WDTO (RCON<4>) WDT Time-out PWRSAV Instruction, CLRWDT Instruction, POR, BOR SLEEP (RCON<3>) POR, BOR PWRSAV #SLEEP Instruction IDLE (RCON<2>) **PWRSAV #IDLE Instruction** POR, BOR BOR (RCON<1>) POR, BOR ____ **POR** (RCON<0>) POR ____

Note: All Reset flag bits can be set or cleared by user software.

Table 6-3 provides a summary of the Reset flag bit operation.

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7	·	· · · · · · · · · · · · · · · · · · ·		-			bit 0
Legend:		C = Clearable	bit				
R = Readable	bit	W = Writable b	oit	U = Unimple	mented bit, read	d as '0'	
-n = Value at F	n = Value at POR			'0' = Bit is cle	eared	x = Bit is unki	nown

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Note 1:	For complete register details, see Register 3-1.	

bit 7-5

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- **3:** The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3)

110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)

111 = CPU Interrupt Priority Level is 7 (15), user interrupts are disabled

REGIOTER /	2. 0010			LOIOTEIX			
U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	_	US	EDT	DL2	DL1	DL0
bit 15							bit 8

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	-n = Value at POR	'1' = Bit is set
0' = Bit is cleared	'x = Bit is unknown	U = Unimplemented bit, read	l as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

11.0	11.0	11.0	11.0	11.0	D /// /	D/11/0	D MAL O
0-0	U-0	U-0	U-0	0-0	R/VV-1	R/VV-0	R/W-0
	—	—		—	MI2C2IP2	MI2C2IP1	MI2C2IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	SI2C2IP2	SI2C2IP1	SI2C2IP0	—	—		—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, rea		ıd as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-11	bit 15-11 Unimplemented: Read as '0'						
bit 10-8 MI2C2IP<2:0>: I2C2 Master Events Interrupt Priority bits							
	111 = Interrupt is Priority 7 (highest priority interrupt)						
	•						
	•						
• 001 – Interrupt is Priority 1							
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled						
bit 7	bit 7 Unimplemented: Read as '0'						
bit 6-4	t 6.4 SI2C2IP-2:0-: I2C2 Slave Events Interrupt Priority hits						
	111 - Interrupt is Priority 7 (highest priority interrupt)						
	•		ingricot priorit	y monopty			
	•						
	•						
001 = Interrupt is Priority 1							
	000 = Interrupt source is disabled						
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-31: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

NOTES:

© 2009-2014 Microchip Technology Inc.

REGISTER 17-1: QEIXCON: QEIX CONTROL REGISTER (x = 1 or 2) (CONTINUED)

bit 5	TQGATE: Timer Gated Time Accumulation Enable bit
	 1 = Timer gated time accumulation is enabled 0 = Timer gated time accumulation is disabled
bit 4-3	TQCKPS<1:0>: Timer Input Clock Prescale Select bits ⁽³⁾
	 11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value
bit 2	POSRES: Position Counter Reset Enable bit ⁽⁴⁾
	 1 = Index pulse resets the position counter 0 = Index pulse does not reset the position counter
bit 1	TQCS: Timer Clock Source Select bit
	1 = External clock from pin, QEAx (on the rising edge) 0 = Internal clock (Tcy)
bit 0	UPDN_SRC: Position Counter Direction Selection Control bit ⁽⁵⁾
	 1 = QEBx pin state defines the position counter direction 0 = Control/status bit, UPDN (QEIxCON<11>), defines the timer counter (POSxCNT) direction
Note 1:	CNTERR flag only applies when $QEIM < 2:0 > = 110$ or 100.
•	

- 2: Read-only bit when QEIM<2:0> = 1xx; read/write bit when QEIM<2:0> = 001.
- **3:** Prescaler utilized for 16-Bit Timer mode only.
- 4: This bit applies only when QEIM < 2:0 > = 100 or 110.
- 5: When configured for QEI mode, this control bit is a 'don't care'.

19.0 INTER-INTEGRATED CIRCUIT (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 dsPIC33FJ64GS406/606/608/610 and families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit[™] (I²C[™])" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C Interface Supporting Both Master and Slave modes of Operation
- I²C Slave mode Supports 7-Bit and 10-Bit Addressing
- I²C Master mode Supports 7-Bit and 10-Bit Addressing
- I²C Port allows Bidirectional Transfers Between Master and Slaves
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control)
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates Accordingly

19.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, refer to the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest "*dsPIC33/PIC24 Family Reference Manual*" sections.

19.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it.
- I2CxRCV is the receive buffer and the register to which data bytes are written or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- The I2CxADD register holds the slave address.
- A status bit, ADD10, indicates 10-Bit Addressing mode.
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated.

FIGURE 22-1: ADC BLOCK DIAGRAM FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES WITH ONE SAR

REGISTER 22-11: ADCPC5: ADC CONVERT PAIR CONTROL REGISTER 5 (CONTINUED)

bit 12-8	TRGSRC11<4:0>: Trigger 11 Source Selection bits
	11111 = Timer2 period match
	11110 = PWM Generator 8 current-limit ADC trigger
	11101 = PWM Generator 7 current-limit ADC trigger
	11100 = PWM Generator 6 current-limit ADC trigger
	11011 = PWM Generator 5 current-limit ADC trigger
	11010 = PWM Generator 4 current-limit ADC trigger
	11001 = PWM Generator 3 current-limit ADC trigger
	11000 = PWM Generator 2 current-limit ADC trigger
	10111 = PWM Generator 1 current-limit ADC trigger
	10110 = PWM Generator 9 secondary trigger selected
	10101 = PWM Generator 8 secondary trigger selected
	10100 = PWM Generator 7 secondary trigger selected
	10011 = PWM Generator 6 secondary trigger selected
	10010 = PWM Generator 5 secondary trigger selected
	10001 = PWM Generator 4 secondary trigger selected
	10000 = PWM Generator 3 secondary trigger selected
	01111 = PWM Generator 1 secondary trigger selected
	01101 – PWM secondary Special Event Trigger selected
	01100 = Timer1 period match
	01011 = PWM Generator 8 primary trigger selected
	01010 = PWM Generator 7 primary trigger selected
	01001 = PWM Generator 6 primary trigger selected
	01000 = PWM Generator 5 primary trigger selected
	00111 = PWM Generator 4 primary trigger selected
	00110 = PWM Generator 3 primary trigger selected
	00101 = PWM Generator 2 primary trigger selected
	00100 = PWM Generator 1 primary trigger selected
	00011 = PWM Special Event Trigger selected
	00010 = Global software trigger selected
	00001 = Individual software trigger selected
	00000 = No conversion is enabled
bit 7	IRQEN10: Interrupt Request Enable 10 bit
	1 = Enables IRQ generation when requested conversion of Channels AN21 and AN20 is completed
	0 = IRQ is not generated
bit 6	PEND10: Pending Conversion Status 10 bit
	1 = Conversion of Channels AN21 and AN20 is pending; set when selected trigger is asserted
	0 = Conversion is complete
hit 5	SWTPG10: Software Trigger 10 bit
DIL J	1. Starte conversion of AN24 and AN20 (if calcoted by the TDCCDCy, 4.0, bits)(1)
	I = Stans conversion of ANZT and ANZU (II selected by the TRGSRUX<4:0> Dits)." This bit is automatically cleared by bardware when the DEND10 bit is act.
	0 - Conversion has not started

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

Field	Description		
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}		
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}		
Wn	One of 16 Working registers ∈ {W0W15}		
Wnd	One of 16 Destination Working registers ∈ {W0W15}		
Wns	One of 16 Source Working registers ∈ {W0W15}		
WREG	W0 (Working register used in file register instructions)		
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }		
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }		
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}		
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}		
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}		
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}		

TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

FIGURE 27-18: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

Section Name	Update Description
Section 9.0 "Oscillator Configuration"	Removed Section 9.2 "FRC Tuning".
	Removed the PRCDEN, TSEQEN, and LPOSCEN bits from the Oscillator Control Register (see Register 9-1).
	Updated the Oscillator Tuning Register (see Register 9-4).
	Removed the Oscillator Tuning Register 2 and the Linear Feedback Shift Register.
	Updated the default Reset values from R/W-0 to R/W-1 for the SELACLK and APSTSCLR<2:0> bits in the ACLKCON register (see Register 9-5).
	Renamed the ROSIDL bit to ROSSLP in the REFOCON register (see Register 9-6).
Section 10.0 "Power-Saving Features"	Updated the last paragraph of Section 10.2.2 " Idle Mode " to clarify when instruction execution begins.
	Added Note 1 to the PMD1 register (see Register 10-1).
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 " Open-Drain Configuration ".
Section 16.0 "High-Speed PWM"	Updated the High-Speed PWM Module Register Interconnect Diagram (see Figure 16-2).
	Updated the SYNCSRC<2:0> = 111, 101, and 100 definitions to Reserved in the PTCON and STCON registers (see Register 16-1 and Register 16-5).
	Updated the PWM time base maximum value from 0xFFFB to 0xFFF8 in the PTPER register (Register 16-3).
	Updated the smallest pulse width value from 0x0008 to 0x0009 in Note 1 of the shaded note that follows the MDC register (see Register 16-10).
	Updated the smallest pulse width value from 0x0008 to 0x0009 in Note 2 of the shaded note that follows the PDCx and SDCx registers (see Register 16-12 and Register 16-13).
	Added Note 2 and updated the FLTDAT<1:0> and CLDAT<1:0> bits, changing the word 'data' to 'state' in the IOCONx register (see Register 16-19).
Section 20.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 22.0 "High-Speed 10-bit Analog-to-Digital Converter (ADC)"	Updated the TRGSRCx<4:0> = 01101 definition from Reserved to PWM secondary special event trigger selected, and updated Note 1 in the ADCP0-ADCP6 registers (see Register 22-6 through Register 22-12).
Section 24.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 24.1 "Configuration Bits" .
	Updated the Device Configuration Register Map (see Table 24-1).

TABLE B-1: MAJOR SECTION UPDATES (CONTINUED)