

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, QEI, POR, PWM, WDT
Number of I/O	74
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	9K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gs608-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 Capacitor on Internal Voltage Regulator (VCAP)

A low-ESR (< 0.5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a minimum capacitor of 22 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 27.0 "Electrical Characteristics"** for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 24.2** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides for two specific device functions:

- Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is
 -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS Register (SR):

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits, 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS Register bits support saturation and overflow:

- OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation) or

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

 SB: ACCB saturated (bit 31 overflow and saturation) or

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller"**). This allows the user application to take immediate action, for example, to correct system gain.

IADLL	J.				INOLLI				v usi io	JJI 0520								
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	—	—	_		—	—	—	—	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_		ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF		_	_	_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	_	_	—	_	_	—	—	_	IC4IF	IC3IF	—	_	_	SPI2IF	SPI2EIF	0000
IFS3	008A	_	_	_	—	_	QEI1IF	PSEMIF	—	—	INT4IF	INT3IF	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	008C	_	_	_	—	QEI2IF		PSESMIF	—	—	_	_	_	_	U2EIF	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	ADCP12IF	—	_	_	_	—	—	_	_	_	_	_	ADCP8IF	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	—	_	_	AC4IF	AC3IF	AC2IF	_	PWM8IF	PWM7IF	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	0092	_	_	_	—	_	_	_	—	—	_	ADCP7IF	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF	0000
IEC0	0094	_	_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	—	—	_	_	INT1IE	CNIE	_	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	_	_	—	_	_	_	—	—	IC4IE	IC3IE	_	_	_	SPI2IE	SPI2EIE	0000
IEC3	009A	_	_	_	_	_	QEI1IE	PSEMIE	_	_	INT4IE	INT3IE	_	_	MI2C2IE	SI2C2IE	—	0000
IEC4	009C	_	_	_	_	QEI2IE	_	PSESMIE	_	_	_	_	_	_	U2EIE	U1EIE	—	0000
IEC5	009E	PWM2IE	PWM1IE	ADCP12IE	_	_	_	_	_	_	_	_	_	_	_	ADCP8IE	—	0000
IEC6	00A0	ADCP1IE	ADCP0IE	_	_	_	_	AC4IE	AC3IE	AC2IE	_	PWM8IE	PWM7IE	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	00A2	—		—	—	—	-	—	—	—	—	ADCP7IE	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE	0000
IPC0	00A4	—	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0		INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	—	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0	—	IC2IP2	IC2IP1	IC2IP0			—	_	4440
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0	—	SPI1EIP2	SPI1EIP1	SPI1EIP0		T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_		—	_	—		_	—	—	ADIP2	ADIP1	ADIP0		U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	—	AC1IP2	AC1IP1	AC1IP0	—	MI2C1IP2	MI2C1IP1	MI2C1IP0		SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_		—	_	—		_	—	—	—	_	_		INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	_	T4IP2	T4IP1	T4IP0	—	OC4IP2	OC4IP1	OC4IP0	—	OC3IP2	OC3IP1	OC3IP0			—	—	4440
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	—	U2RXIP2	U2RXIP1	U2RXIP0	—	INT2IP2	INT2IP1	INT2IP0		T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	_		—	_	—		_	—	—	SPI2IP2	SPI2IP1	SPI2IP0		SPI2EIP2	SPI2EIP1	SPI2EIP0	0044
IPC9	00B6	_		—	_	—	IC4IP2	IC4IP1	IC4IP0	—	IC3IP2	IC3IP1	IC3IP0			—	—	0440
IPC12	00BC	_	_	_	_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	_	_	_	0440
IPC13	00BE	_	_	_	_	_	INT4IP2	INT4IP1	INT4IP0	_	INT3IP2	INT3IP1	INT3IP0	_	_	_	_	0440
IPC14	00C0	_	_	_	_	_	QEI1IP2	QEI1IP1	QEI1IP0	_	PSEMIP2	PSEMIP1	PSEMIP0	_	_	_	_	0440
IPC16	00C4	_	—	—	—	—	U2EIP2	U2EIP1	U2EIP0	—	U1EIP2	U1EIP1	U1EIP0	_	—	—	_	0440
IPC18	00C8		QEI2IP2	QEI2IP1	QEI2IP0	—	—		—	_	PSESMIP2	PSESMIP1	PSESMIP0	—	—	_	—	4040
IPC20	00CC		—			_	_	_		_	ADCP8IP2	ADCP8IP1	ADCP8IP0	_	_	_	_	0040

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

TABLE 4-9: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS608

x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Legend:

TABLE 4-9: INT	ERRUPT CONTROLLER REGISTER	MAP FOR dsPIC33FJ32GS608 (C	ONTINUED)
----------------	----------------------------	-----------------------------	-----------

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC21	00CE	-	—	—	_		—	—	—	_	ADCP12IP2	ADCP12IP1	ADCP12IP1	—	-	—	_	0040
IPC23	00D2	_	PWM2IP2	PWM2IP1	PWM2IP0	_	PWM1IP2	PWM1IP1	PWM1IP0	_	_	_	_	_	_	_	_	4400
IPC24	00D4	_	PWM6IP2	PWM6IP1	PWM6IP0	_	PWM5IP2	PWM5IP1	PWM5IP0	_	PWM4IP2	PWM4IP1	PWM4IP0	_	PWM3IP2	PWM3IP1	PWM3IP0	4444
IPC25	00D6	_	AC2IP2	AC2IP1	AC2IP0	_	_	_	_	_	PWM8IP2	PWM8IP1	PWM8IP0	_	PWM7IP2	PWM7IP1	PWM7IP0	4044
IPC26	00D8	_	—	_	_	_	_	_	_	_	AC4IP2	AC4IP1	AC4IP0	_	AC3IP2	AC3IP1	AC3IP0	0044
IPC27	00DA	_	ADCP1IP2	ADCP1IP1	ADCP1IP0	_	ADCP0IP2	ADCP0IP1	ADCP0IP0	_	_	_	_	_	_	_	_	4400
IPC28	00DC	_	ADCP5IP2	ADCP5IP1	ADCP5IP0	_	ADCP4IP2	ADCP4IP1	ADCP4IP0	—	ADCP3IP2	ADCP3IP1	ADCP3IP0	_	ADCP2IP2	ADCP2IP1	ADCP2IP0	4444
IPC29	00DE	_	—	—	—	_	_	—	_	—	ADCP7IP2	ADCP7IP1	ADCP7IP0	—	ADCP6IP2	ADCP6IP1	ADCP6IP0	0044
INTTREG	00E0	_	_	_	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	_	—	—	—	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxx(1)
OSCCON	0742	—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0	CLKLOCK	_	LOCK	—	CF	—	_	OSWEN	0300 (2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	0040
PLLFBD	0746	—	—	_	—	—	_	_				PLI	_DIV<8:0>					0030
OSCTUN	0748	—	_	_	—	—	_	_	_	_	_			TUN	l<5:0>			0000
REFOCON	074E	ROON	_	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	—	_	—	_	—	0000
ACLKCON	0750	ENAPLL	APLLCK	SELACLK	—	—	APSTSCLR2	APSTSCLR1	APSTSCLR0	ASRCSEL	FRCSEL	—	—		_	_	_	2300

x = unknown value on Reset, ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1:

The RCON register Reset values are dependent on the type of Reset. The OSCCON register Reset values are dependent on the FOSCX Configuration bits and on the type of Reset. 2:

TABLE 4-58: NVM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	—	—	—	—	—	ERASE	—	—	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000(1
NVMKEY	0766	_		_	_	_	_	_	_				NVMK	EY<7:0>				0000

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The Reset value shown is for POR only. The value on other Reset states is dependent on the state of the memory write or erase operations at the time of Reset.

TABLE 4-59: PMD REGISTER MAP FOR dsPIC33FJ64GS610 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	ADCMD	0000
PMD2	0772	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	-	CMPMD	_	_	_	_	QEI2MD	_	_	_	I2C2MD	_	0000
PMD4	0776	-	_	-	_	-	_	-	_	_	_	_	_	REFOMD	_	_	—	0000
PMD6	077A	PWM8MD	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	—	0000
PMD7	077C	_	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	—	_	_	PWM9MD	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-60: PMD REGISTER MAP FOR dsPIC33FJ32GS610 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD		I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	ADCMD	0000
PMD2	0772	_	—	_		IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	—	_		_	CMPMD	_	_	_	_	QEI2MD	_	_	_	I2C2MD	_	0000
PMD4	0776	_	—	_		—	_	-					_	REFOMD		_	_	0000
PMD6	077A	PWM8MD	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD				_	—		_	_	0000
PMD7	077C	_	_	_	-	CMP4MD	CMP3MD	CMP2MD	CMP1MD	—		-	_	_	_	_	PWM9MD	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-61: PMD REGISTER MAP FOR dsPIC33FJ64GS608 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD		C1MD	ADCMD	0000
PMD2	0772	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	—	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	_	_	_	_	QEI2MD	—	_	_	I2C2MD	_	0000
PMD4	0776	_	_	_	_	_	_	_	_	_	_	_	—	REFOMD	_	_	_	0000
PMD6	077A	PWM8MD	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	—	_	_	_	_	0000
PMD7	077C	_	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	_	_		_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-62: PMD REGISTER MAP FOR dsPIC33FJ32GS608 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD		I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	ADCMD	0000
PMD2	0772	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	_	_	_	_	QEI2MD	_	_	_	I2C2MD	_	0000
PMD4	0776	_			_	_		-		_	—	_	—	REFOMD	—	_		0000
PMD6	077A	PWM8MD	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	—	_	—		_	_		0000
PMD7	077C	_	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INT0IF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	U-0
	—		_	QEI2IF	—	PSESMIF	_
bit 15	·			•			bit 8
U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
—	C1TXIF ⁽¹⁾	—	—	—	U2EIF	U1EIF	—
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-12	Unimplemen	ted: Read as '	0'				
bit 11	QEI2IF: QEI2	Event Interrup	ot Flag Status	bit			
	1 = Interrupt r	equest has oc	curred				
	0 = Interrupt r	equest has no	t occurred				
bit 10	Unimplemen	ted: Read as '	0'				
bit 9	PSESMIF: PV	VM Special Ev	ent Secondar	y Match Interru	ipt Flag Status b	bit	
	1 = Interrupt r	equest has oc	curred t occurred				
hit 8-7	Unimplemen	ted: Read as '	0'				
bit 6	C1TXIF: ECA	N1 Transmit Γ	°)ata Request I	nterrupt Flag S	Status bit(1)		
bit 0	1 = Interrupt r	equest has oc	curred	interrupt i lag e			
	0 = Interrupt r	equest has no	t occurred				
bit 5-3	Unimplemen	ted: Read as '	0'				
bit 2	U2EIF: UART	2 Error Interru	pt Flag Status	bit			
	1 = Interrupt r	equest has oc	curred				
	0 = Interrupt r	equest has no	t occurred				
bit 1	U1EIF: UART	1 Error Interru	pt Flag Status	bit			
	1 = Interrupt r	equest has oc	curred				
1.11.0		equest has no	t occurred				
DIT U	Unimplemen	tea: Read as '	0.				
Note 1:	Interrupts are disal	oled on device	s without ECA	N™ modules.			

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
	- INT2IP2 INT2IP1 INT2IP0 - T5IP2 T5IP1							
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15	Unimplemen	ted: Read as '	0'					
bit 14-12	U21XIP<2:0>	UARI2 Iran	smitter Interrup	ot Priority bits				
		pt is Priority 7 (nignest priority	(interrupt)				
	•							
	•							
	001 = Interrul	pt is Priority 1 pt source is dis	abled					
bit 11		ited: Read as '	0'					
bit 10-8	U2RXIP<2:0	: UART2 Rece	eiver Interrupt	Priority bits				
	111 = Interru	pt is Priority 7	highest priority	/ interrupt)				
	•			,				
	•							
	• 001 = Interru	ot is Priority 1						
	000 = Interru	pt source is dis	abled					
bit 7	Unimplemen	ted: Read as '	0'					
bit 6-4	INT2IP<2:0>:	: External Inter	rupt 2 Priority I	oits				
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)				
	•							
	•							
	001 = Interru	pt is Priority 1						
	000 = Interru	pt source is dis	abled					
bit 3	Unimplemen	ted: Read as '	0'					
bit 2-0	T5IP<2:0>: ⊤	imer5 Interrupt	Priority bits					
	111 = Interru	pt is Priority 7	highest priority	/ interrupt)				
	•							
	•							
	001 = Interru	pt is Priority 1	chlod					
	000 = Interru	pi source is dis	auleu					

REGISTER 7-28: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	QEI2IP2	QEI2IP1	QEI2IP0	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	PSESMIP2	PSESMIP1	PSESMIP0	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	QEI2IP<2:0>	: QEI2 Interrup	ot Priority bits				
	111 = Interru	pt is Priority 7	(highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11-7	Unimplemen	ted: Read as '	0'				
bit 6-4	PSESMIP<2:	0>: PWM Spec	cial Event Sec	ondary Match	Interrupt Priority	y bits	
	111 = Interru	pt is Priority 7	(highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	0'				
	-						

REGISTER 7-36: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	PWM2IP2	PWM2IP1	PWM2IP0	—	PWM1IP2	PWM1IP1	PWM1IP0
bit 15	·						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		<u> </u>				—	<u> </u>
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	PWM2IP<2:0	>: PWM2 Inter	rupt Priority bit	is			
	111 = Interrup	pt is Priority 7 (highest priority	/)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	PWM1IP<2:0	>: PWM1 Inter	rupt Priority bit	ts			
	111 = Interrup	pt is Priority 7 (highest priority	/)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	pt source is dis	abled				
bit 7-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-39: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	_	_			_	_	
bit 15					1	•	bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
	ADCP7IP2	ADCP7IP1	ADCP7IP0		ADCP6IP2	ADCP6IP1	ADCP6IP0	
bit 7						•	bit 0	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown		
bit 15-7	Unimplemen	ted: Read as '	0'					
bit 6-4	ADCP7IP<2:	0>: ADC Pair 7	Conversion	Done Interrupt	1 Priority bits			
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)				
	•							
	•							
	001 = Interru	pt is Priority 1						
	000 = Interru	pt source is dis	abled					
bit 3	Unimplemen	ted: Read as '	0'					
bit 2-0	ADCP6IP<2:	0>: ADC Pair 6	Conversion	Done Interrupt	1 Priority bits			
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)				
	•							
	•							
	001 = Interru	pt is Priority 1						
	000 = Interru	pt source is dis	abled					

REGISTER 7-45: IPC29: INTERRUPT PRIORITY CONTROL REGISTER 29

9.4 Oscillator Control Registers

U-0	R-y	R-y	R-y	U-0	R/W-y	R/W-y	R/W-y			
	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSC0 ⁽²⁾			
bit 15							bit 8			
R/W-0	U-0	R-0	U-0	R/C-0	R/C-0 U-0 R					
CLKLOC	СК —	LOCK	—	CF		—	OSWEN			
bit 7 b										
Logondi		C - Clearable	hit		from Configuro	tion hite on DO	D			
Legena:	abla hit	C = Clearable	; DIL	y = value set	monted bit roos		ĸ			
n = Value		41° = Rit is set	DI	0' = 0 in the element of $0' = 0$	nienieu bil, ieau	v – Ritic unkn				
	alfOn				eareu		IOWIT			
bit 15	Unimpleme	nted: Read as '	0'							
bit 14-12	COSC<2.02	Current Oscilla	- ator Selection	bits (read-only	()					
511 17 12	111 = Fast F	RC Oscillator (F	RC) with Divic	le-bv-n	,					
	110 = Fast F	RC Oscillator (F	RC) with Divid	le-by-16						
	101 = Low-F	Power RC Oscill	ator (LPRC)							
	100 = Seco	ndary Oscillator	(SOSC)							
	011 = Prima	ary Oscillator (X	r, HS, EC) wit	h PLL						
	010 = Prima	ary Oscillator (X	F, HS, EC)							
	001 = Fast f	RC Oscillator (F	RC) with PLL							
bit 11	Unimpleme	nted: Read as '	0'							
bit 10-8	NOSC<2:0>	: New Oscillato	Selection bits	_S (2)						
	111 = Fast F	RC Oscillator (F	RC) with Divid	le-by-n						
	110 = Fast F	RC Oscillator (F	RC) with Divid	le-by-16						
	101 = Low-F	Power RC Oscill	ator (LPRC)							
	100 = Secor	ndary Oscillator	(SOSC)	h DI I						
	011 = Prima	ary Oscillator (X	LHS EC) with							
	001 = Fast F	RC Oscillator (F	RC) with PLL							
	000 = Fast f	RC Oscillator (F	RC)							
bit 7	CLKLOCK:	Clock Lock Ena	ble bit							
	If Clock Swit	tching is Enable	d and FSCM i	s Disabled (FC	CKSM<1:0> (FO	SC<7:6>) = 0b	01):			
	1 = Clock s	witching is disat	oled, system c	lock source is	locked	v clock switchin	a			
bit 6		nted: Read as '	0'				9			
bit 5	LOCK: PU	Lock Status bit	- (read-onlv)							
	1 = Indicates	s that PLL is in I	ock or PLL sta	art-up timer is s	satisfied					
	0 = Indicates	s that PLL is out	of lock, start-	up timer is in p	progress or PLL	is disabled				
bit 4	Unimpleme	nted: Read as '	0'							
Note 1:	Writes to this regi "dsPIC33/PIC24	ister require an Family Referenc	unlock sequer ce <i>Manual"</i> for	nce. Refer to " details.	Oscillator (Part	t IV)" (DS70307	7) in the			

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes. NOTES:

HS/HC- FLTSTAT bit 15 R/W-0	0 HS/HC-0 (1) CLSTAT ⁽¹⁾	HS/HC-0 TRGSTAT	R/W-0 FLTIEN	R/W-0 CLIEN	R/W-0 TRGIEN	R/W-0 ITB ⁽³⁾	R/W-0 MDCS ⁽³⁾
FLTSTAT bit 15 R/W-0	-(1) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽³⁾	MDCS ⁽³⁾
bit 15 R/W-0							
R/W-0							bit 8
R/W-0							
	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
DTC1	DTC0	DTCP ⁽⁴⁾		MTBS	CAM ^(2,3,5)	XPRES ⁽⁶⁾	IUE
bit 7							bit 0
Logondi		UC - Hardwara	Clearable bit		ara Sattabla bit		
R - Road	ahla hit	W = Writable bi			mented bit read	d as '0'	
		'1' - Bit is set	L	$0^{\circ} - \text{Bit is cle}$	ared	v – Ritisunki	nown
					ealeu		
bit 15	FLTSTAT: Fa	ult Interrupt Statu	us bit(1)				
Sit 10	1 = Fault inter	rrupt is pending					
	0 = No Fault i	nterrupt is pendi	ng				
	This bit is clea	ared by setting F	$LTIEN = 0. \tag{1}$				
bit 14	CLSTAT: Cur	rent-Limit Interru	pt Status bit ⁽¹⁾				
	1 = Current-III0 = No current	mit interrupt is pe it-limit interrupt is	ending spending				
	This bit is clea	ared by setting C	LIEN = 0.				
bit 13	TRGSTAT: Tr	igger Interrupt St	atus bit				
	1 = Trigger in	terrupt is pending	g				
	0 = No trigger	r interrupt is pend ared by setting T	ding RCIEN – 0				
bit 12	FI TIEN: Faul	t Interrupt Enable	e bit				
SR 12	1 = Fault inter	rrupt is enabled	5 510				
	0 = Fault inter	rrupt is disabled	and FLTSTAT b	it is cleared			
bit 11	CLIEN: Curre	ent-Limit Interrupt	Enable bit				
	1 = Current-li 0 = Current-li	mit interrupt is er mit interrupt is di	habled sabled and CLS	STAT bit is clea	ared		
bit 10	TRGIEN: Trig	ger Interrupt Ena	able bit				
	1 = A trigger e 0 = Trigger ev	event generates /ent interrupts ar	an interrupt req e disabled and	uest TRGSTAT bit	is cleared		
bit 9	ITB: Independ	dent Time Base I	Mode bit ⁽³⁾				
	1 = PHASEx/ 0 = PTPER re	SPHASEx regist egister provides t	ers provide time iming for this P	e base period WM generator	for this PWM ge	enerator	
bit 8	MDCS: Maste	er Duty Cycle Re	gister Select bit	(3)			
	1 = MDC regi 0 = PDCx and	ster provides dut d SDCx registers	y cycle informa provide duty cy	tion for this P\ cle informatic	WM generator on for this PWM	generator	
Note 1.	Software must cle	ar the interrupt	status here and	in the corresp	onding IFSx bit	in the interrup	t controller
2:	The Independent	Time Base mode	e (ITB = 1) mus	t be enabled to	o use Center-Al	ligned mode. If	TTB = 0, the
3:	These bits should	∽. I not be chanɑed	after the PWM	is enabled by	settina PTEN (PTCON<15>)	= 1.
4:	For DTCP to be e	effective, DTC<1:	0> must be set	to '11'; otherv	vise, DTCP is ig	gnored.	
5:	Center-Aligned m registers. The hig	ode ignores the hest Center-Alig	Least Significar ned mode resol	nt 3 bits of the lution available	Duty Cycle, Ph e is 8.32 ns with	ase and Dead the clock pres	-Time scaler set to
	the factort clack						

REGISTER 16-11: PWMCONX: PWM CONTROL x REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15	•			•			bit 8
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	—	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-10	EID<5:0>: E>	ktended Identifi	er bits				
bit 9	RTR: Remote	e Transmission	Request bit				
	1 = Message 0 = Normal m	will request rei nessage	mote transmi	ssion			

BUFFER 21-3: ECANx MESSAGE BUFFER WORD 2

	User must set this bit to '0' per ECAN™ protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per ECAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

RB1: Reserved Bit 1

bit 8

BUFFER 21-4: ECANx MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			B	yte 1			
bit 15				-			bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			B	yte 0			
bit 7							bit 0
L							
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15-8	Byte 1<15:8	B>: ECANx Mes	sage Byte 1				
bit 7-0	Byte 0<7:0>	ECANx Mess	age Byte 0				

FIGURE 22-4: ADC BLOCK DIAGRAM FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES WITH TWO SARs

NOTES:

27.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to VSS	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum current sourced/sunk by any 4x I/O pin	15 mA
Maximum current sourced/sunk by any 8x I/O pin	
Maximum current sourced/sunk by any 16x I/O pin	
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of the device maximum power dissipation (see Table 27-2).

3: See the **"Pin Diagrams**" section for 5V tolerant pins.

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol	ymbol Characteristic Min		Тур	Мах	Units	Comments	
DA10	RLOAD	Resistive Output Load Impedance	ЗК	_	—	Ω		
DA11	CLOAD	Output Load Capacitance	—	20	35	pF		
DA12	Ιουτ	Output Current Drive Strength	200	300	400	μΑ	Sink and source	
DA13	VRANGE	Full Output Drive Strength Voltage Range	AVss + 250 mV	_	AVDD – 900 mV	V		
DA14	VLRANGE	Output Drive Voltage Range at Reduced Current Drive of 50 μA	AVss + 50 mV	—	AVDD – 500 mV	V		
DA15	IDD	Current Consumed when Module is Enabled, High-Power Mode	_	_	1.3 x юит	μΑ	Module will always consume this current even if no load is connected to the output	
DA16	ROUTON	Output Impedance when Module is Enabled	—	500	—	Ω		

TABLE 27-44: DAC OUTPUT BUFFER SPECIFICATIONS

FIGURE 27-24: QEA/QEB INPUT CHARACTERISTICS

