

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, QEI, POR, PWM, WDT
Number of I/O	74
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	9K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gs608-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

						•	•••••											
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	_	ADSIDL	SLOWCLK	_	GSWTRG	—	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	_	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302								F	PCFG<15:0	>							0000
ADPCFG2	0304	—	-	_	—	-	—	—	_	—	-	—	_	—	—	PCFG.	<17:16>	0000
ADSTAT	0306	—	_	—	P12RDY		_	—	P8RDY	P7RDY	P6RDY	P5RDY	P4RDY	P3RDY	P2RDY	P1RDY	PORDY	0000
ADBASE	0308								ADBASE <	<15:1>							-	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3	TRGSRC34	TRGSRC33	TRGSRC32	TRGSRC31	TRGSRC30	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCPC2	030E	IRQEN5	PEND5	SWTRG5	TRGSRC54	TRGSRC53	TRGSRC52	TRGSRC51	TRGSRC50	IRQEN4	PEND4	SWTRG4	TRGSRC44	TRGSRC43	TRGSRC42	TRGSRC41	TRGSRC40	0000
ADCPC3	0310	IRQEN7	PEND7	SWTRG7	TRGSRC74	TRGSRC73	TRGSRC72	TRGSRC71	TRGSRC70	IRQEN6	PEND6	SWTRG6	TRGSRC64	TRGSRC63	TRGSRC62	TRGSRC61	TRGSRC640	0000
ADCPC4	0312	_	_	_	_	_	_	_	_	IRQEN8	PEND8	SWTRG8	TRGSRC84	TRGSRC83	TRGSRC82	TRGSRC81	TRGSRC80	0000
ADCPC6	0316	_	_	_	_	_	_	_	_	IRQEN12	PEND12	SWTRG12	TRGSRC124	TRGSRC123	TRGSRC122	TRGSRC121	TRGSRC120	0000
ADCBUF0	0340		ADC Data Buffer 0 xxxx						xxxx									
ADCBUF1	0342		ADC Data Buffer 1						xxxx									
ADCBUF2	0344		ADC Data Buffer 2 xx					XXXX										
ADCBUF3	0346								AD	C Data Buff	er 3							XXXX
ADCBUF4	0348								AD	C Data Buff	er 4							XXXX
ADCBUF5	034A								AD	C Data Buff	er 5							XXXX
ADCBUF6	034C								AD	C Data Buff	er 6							XXXX
ADCBUF7	034E								AD	C Data Buff	er 7							XXXX
ADCBUF8	0350								AD	C Data Buff	er 8							XXXX
ADCBUF9	0352								AD	C Data Buff	er 9							XXXX
ADCBUF10	0354								ADC	Data Buffe	er 10							xxxx
ADCBUF11	0356								ADC	Data Buffe	er 11							XXXX
ADCBUF12	0358								ADC	Data Buffe	er 12							XXXX
ADCBUF13	035A								ADC	Data Buffe	er 13							XXXX
ADCBUF14	035C								ADC	Data Buffe	er 14							xxxx
ADCBUF15	035E								ADC	Data Buffe	er 15							xxxx
ADCBUF16	0360								ADC	Data Buffe	er 16							xxxx
ADCBUF17	0362								ADC	Data Buffe	er 17							xxxx
ADCBUF24	0370								ADC	Data Buffe	er 24							xxxx
ADCBUF25	0372								ADC	Data Buffe	er 25							xxxx

TABLE 4-33: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0					
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—					
bit 7							bit 0					
Legend:	L:4		L:4		a a vata al la itu ya a a							
R = Readable		vv = vvritable	DIT	0 = 0	nented bit, read	1 as U x – Pitio unkn	0000					
-n = value at P	OR	I = DILIS SEL		0 = Dit is cies	areu		IOWI					
bit 15	NSTDIS: Inte	rrunt Nestina F)isahle hit									
Sit 10	1 = Interrupt r	= Interrupt nesting is disabled										
	0 = Interrupt r	nesting is enab	led									
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	lag bit								
	1 = Trap was	caused by an	overflow of Ac	cumulator A								
	0 = Irap was	not caused by	an overflow o	f Accumulator	A							
bit 13	OVBERR: Ac	cumulator B O	verflow I rap H	-lag bit								
	1 = Trap was 0 = Trap was	not caused by and	an overflow of AC	f Accumulator	В							
bit 12	COVAERR: A	Accumulator A	Catastrophic (Overflow Trap F	-lag bit							
	1 = Trap was	caused by a ca	atastrophic ov	erflow of Accur	mulator A							
	0 = Trap was	not caused by	a catastrophic	c overflow of A	ccumulator A							
bit 11	COVBERR: A	Accumulator B	Catastrophic (Overflow Trap F	-lag bit							
	1 = Trap was	caused by a catastrophic overflow of Accumulator B										
bit 10	0 = Trap was	not caused by	rflow Trop En	covernow of A	Comulator B							
bit TO	1 = Trap over	flow of Accum	illator A									
	0 = Trap is dis	sabled										
bit 9	OVBTE: Accu	umulator B Ove	erflow Trap En	able bit								
	1 = Trap over	flow of Accumu	ulator B									
	0 = Trap is dis	sabled										
bit 8	COVTE: Cata	astrophic Overf	low Trap Enat	ble bit	D · · · · ·							
	1 = Irap on a 0 = Trap is dist	catastrophic o sabled	verflow of Acc	cumulator A or	B is enabled							
bit 7	SFTACERR:	Shift Accumula	tor Error Statu	us bit								
2	1 = Math erro	or trap was caus	sed by an inva	alid accumulato	or shift							
	0 = Math erro	or trap was not	caused by an	invalid accumu	lator shift							
bit 6	DIV0ERR: Ar	ithmetic Error S	Status bit									
	1 = Math erro	or trap was caus	sed by a divid caused by a d	e-by-zero livide-by-zero								
bit 5	DMACERR:	DMA Controller	Error Status	bit								
	1 = DMA Con	troller error tra	p has occurre	d								
	0 = DMA Controller error trap has not occurred											
bit 4	MATHERR: A	Arithmetic Error	Status bit									
	1 = Math erro 0 = Math erro	or trap has occu or trap has not c	irred occurred									

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	IC4IF	IC3IF	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15-7	Unimplemen	ted: Read as '	0'						
bit 6	IC4IF: Input C	Capture Channe	el 4 Interrupt F	-lag Status bit					
	1 = Interrupt r	request has oc	curred						
hit E		Request has not		Tea Status hit					
DIL 5		aplure Channe	er sinterrupt r	-lag Status bit					
	0 = Interrupt r	request has not	toccurred						
bit 4	DMA3IF: DM	A Channel 3 D	ata Transfer C	complete Interr	rupt Flag Status	bit			
	1 = Interrupt r	request has oc	curred						
	0 = Interrupt r	request has not	occurred						
bit 3	C1IF: ECAN1	Event Interrup	ot Flag Status	bit ⁽¹⁾					
	1 = Interrupt r	request has oc	curred						
h:: 0		request has not			.(1)				
DIT 2	LIRAIF: ECA			Flag Status bi	[(.)				
	1 = Interrupt r 0 = Interrupt r	request has not	occurred						
bit 1	SPI2IE: SPI2 Event Interrupt Flag Status bit								
2	1 = Interrupt request has occurred								
	0 = Interrupt r	request has not	occurred						
bit 0	SPI2EIF: SPI2 Error Interrupt Flag Status bit								
	1 = Interrupt request has occurred								
	0 = Interrupt r	request has not	occurred						

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—		—	—	—	—	—	—				
bit 15							bit 8				
											
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	ADCP7IF	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF				
bit 7							bit 0				
Legend:	1.5		,								
R = Readable			DIT		nented bit, read						
-n = Value at	POR	1' = Bit is set		0' = Bit is cle	ared	x = Bit is unkr	iown				
		ted. Deed as (<u>.</u>								
DIT 15-6	Unimplemen	ted: Read as 1) [,]								
bit 5	ADCP7IF: AL	DC Pair 7 Conv	ersion Done Ii	nterrupt Flag S	status bit						
	\perp = Interrupt r 0 = Interrupt r	equest has occ	currea								
bit 4	ADCP6IF: AD	C Pair 6 Conv	ersion Done I	nterrupt Flag S	Status bit						
	1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred										
bit 3	ADCP5IF: AD	DC Pair 5 Conv	ersion Done I	nterrupt Flag S	Status bit						
	1 = Interrupt r	equest has occ	curred								
	0 = Interrupt r	equest has not	occurred								
bit 2	ADCP4IF: AD	DC Pair 4 Conv	ersion Done II	nterrupt Flag S	Status bit						
	1 = Interrupt r	equest has occ									
bit 1		C Pair 3 Conv	ersion Done li	nterrunt Flag S	status hit						
bit i	1 = Interrupt r	request has occ	curred	nion up i lug c							
	0 = Interrupt request has not occurred										
bit 0	ADCP2IF: AD	DC Pair 2 Conv	ersion Done li	nterrupt Flag S	Status bit						
	1 = Interrupt r	equest has occ	curred								
	0 = Interrupt r	equest has not	occurred								

REGISTER 7-12: IFS7: INTERRUPT FLAG STATUS REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	_	—	—	—	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	IC4IE	IC3IE	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15-7	Unimplemen	ted: Read as '	0'					
bit 6	IC4IE: Input C	Capture Chann	el 4 Interrupt I	Enable bit				
	1 = Interrupt r	request is enab	bled					
h:+ C		request is not e						
DIES	1 - Interrupt r	capture Chann	ei 3 interrupt i	Enable bit				
	0 = Interrupt r	request is enac	enabled					
bit 4	DMA3IE: DM	A Channel 3 D	ata Transfer C	Complete Inter	rupt Enable bit			
	1 = Interrupt r	request is enab	oled	•				
	0 = Interrupt r	request is not e	enabled					
bit 3	C1IE: ECAN1	Event Interrup	ot Enable bit ⁽¹⁾)				
	1 = Interrupt r	equest is enab	bled					
h it 0		request is not e	enabled		⊾: .(1)			
bit 2		AN1 Receive D	ata Ready Inte	errupt Enable I	DIK			
	1 = Interrupt r 0 = Interrupt r	request is enac	enabled					
bit 1	SPI2IE: SPI2	Event Interrup	t Enable bit					
	1 = Interrupt request is enabled							
	0 = Interrupt request is not enabled							
bit 0	SPI2EIE: SPI2 Error Interrupt Enable bit							
	1 = Interrupt r	request is enab	bled					
	0 = Interrupt r	request is not e	enabled					

REGISTER 7-15: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

Note 1: Interrupts are disabled on devices without ECAN[™] modules.

	-0. 11 02-1							
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
	PWM6IP2	PWM6IP1	PWM6IP0	_	PWM5IP2	PWM5IP1	PWM5IP0	
bit 15							bit 8	
		D.M.C.	DAALO		D 444 4	DAM 0	DAALO	
0-0	R/W-1	R/W-0	R/W-0	0-0	R/W-1	R/W-0	R/W-0	
	PVVIVI4IP2	PWM4IP1	PWM4IP0	—	PWM3IP2	PWM3IP1	PVVM3IPU	
Dit 7							bit U	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15	Unimplemen	ted: Read as '	0'					
bit 14-12	PWM6IP<2:0	>: PWM6 Inter	rupt Priority bi	ts				
	111 = Interrup	pt is Priority 7 ((highest priority	()				
	•							
	•							
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled							
bit 11	Unimplemen	ted: Read as '	0'					
bit 10-8	PWM5IP<2:0	>: PWM5 Inter	rupt Priority bi	ts				
	111 = Interru	pt is Priority 7 ((highest priority	/)				
	•							
	•							
	001 = Interrup 000 = Interrup	pt is Priority 1 pt source is dis	abled					
bit 7	Unimplemen	ted: Read as '	0'					
bit 6-4	PWM4IP<2:0	>: PWM4 Inter	rupt Priority bi	ts				
	111 = Interru	pt is Priority 7	highest priority	()				
	•			,				
	•							
	• 001 = Interrup	pt is Priority 1	abled					
hit 2		tod: Road as '						
bit 2-0		PWM3 Inter	v rupt Priority bi	te				
Dit 2-0	111 - Interru	>. F WW3 III.el	highest priority	15 /}				
	•	prist nonty /	(ingliest phone)	<i>(</i>)				
	•							
	•	at in Driamity 4						
	001 = Interrup	pt is Priority 1 of source is dis	abled					

REGISTER 7-40: IPC24: INTERRUPT PRIORITY CONTROL REGISTER 24

REGISTER 16-16: DTRx: PWM DEAD-TIME x REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			DTR×	<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTRx	<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-Bit Value for PWMx Dead-Time Unit bits

REGISTER 16-17: ALTDTRx: PWM ALTERNATE DEAD-TIME x REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—			ALTDTI	Rx<13:8>			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ALTDT	Rx<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR $(1' = Bit is set)$ $(0' = Bit is cleared)$ x = Bit is unknown					nown			

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Value for PWMx Dead-Time Unit bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL			
bit 15					I		bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
OVRDAT1	OVRDAT0	FLTDAT1 ⁽²⁾	FLTDAT0 ⁽²⁾	CLDAT1 ⁽²⁾	CLDAT0 ⁽²⁾	SWAP	OSYNC			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	x = Bit is unkr	nown				
			·							
bit 15	PENH: PWM	xH Output Pin	Ownership bit							
	1 = PWM mo	dule controls P	WMxH pin							
hit 11										
Dit 14	1 = PWM mo	dule controls P	WMxL nin							
	0 = GPIO mo	dule controls F	WMxL pin							
bit 13	POLH: PWM	xH Output Pin	Polarity bit							
	1 = PWMxH p	oin is active-low	v							
	0 = PWMxH p	oin is active-hig	gh							
bit 12		xL Output Pin F	Polarity bit							
	1 = PWWXL p 0 = PWMxL p	oin is active-low	/ h							
bit 11-10	PMOD<1:0>:	PWM # I/O Pi	n Mode bits ⁽¹⁾							
	11 = PWM I/0	O pin pair is in	the True Indep	endent Output	t mode					
	10 = PWM I/0	D pin pair is in [·]	the Push-Pull	Output mode						
	01 = PWWI/(0) $00 = PWM I/(0)$	$\mu = PWW I/O pin pair is in the Redundant Output mode0 = PWM I/O pin pair is in the Complementary Output mode$								
bit 9	OVRENH: O	verride Enable	for PWMxH P	in bit						
	1 = OVRDAT	<1> provides d	ata for output	on PWMxH pi	n					
	0 = PWM ger	nerator provide	s data for outp	out on PWMxH	pin					
bit 8	OVRENL: OV	verride Enable	for PWMxL Pi	n bit						
	1 = OVRDAT 0 = PWM der	<0> provides d perator provide	ata for output s data for outr	on PWMxL pir	ו nin					
bit 7-6	OVRDAT<1:	>: Data for PV	VMxH PWMxI	Pins if Overri	de is Enabled b	oits				
	If OVERENH	= 1, OVRDAT	<1> provides of	ata for PWMx	H					
	If OVERENL	= 1, OVRDAT<	<0> provides d	ata for PWMxI	-					
bit 5-4	FLTDAT<1:0	State for PW	/MxH and PW	MxL Pins if FL	TMOD is Enable	ed bits ⁽²⁾				
	IFLTMOD (FC	CLCONx<15>)	= 0: Normal F	ault mode:						
	If Fault is acti	ve, then FLID	AI <1> provide AT<0> provide	es the state for	PWMxH. PWMyI					
	IFLTMOD (FC	CLCONx<15>)	= 1: Independ	ent Fault mode						
	If current-limit	t is active, then	FLTDAT<1>	provides the st	<u></u> ate for PWMxH					
	If Fault is acti	ve, then FLTD	AT<0> provide	s the state for	PWMxL.					
Note 1. The	an hite chould	not ha abanaa	d offer the DW	M modulo io o	nobled (DTEN	1)				

REGISTER 16-19: IOCONX: PWM I/O CONTROL X REGISTER

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

REGISTER 22-1: ADCON: ADC CONTROL REGISTER (CONTINUED)

- bit 4 ASYNCSAMP: Asynchronous Dedicated S&H Sampling Enable bit⁽¹⁾
 - 1 = The dedicated S&H is constantly sampling and then terminates sampling as soon as the trigger pulse is detected
 - 0 = The dedicated S&H starts sampling when the trigger event is detected and completes the sampling process in two ADC clock cycles
- bit 3 Unimplemented: Read as '0'
- bit 2-0 ADCS<2:0>: Analog-to-Digital Conversion Clock Divider Select bits⁽¹⁾
 - 111 = FADC/8 110 = FADC/7 101 = FADC/6 100 = FADC/5
 - 011 = FADC/4 (default)
 - 011 = FADC/4
 - 010 = FADC/3001 = FADC/2
 - 000 = FADC/1
- **Note 1:** This control bit can only be changed while the ADC is disabled (ADON = 0).
 - 2: This control bit is only active on devices that have one SAR.

REGISTER 22-10: ADCPC4: ADC CONVERT PAIR CONTROL REGISTER 4 (CONTINUED)

bit 4-0	TRGSRC8<4:0>: Trigger 8 Source Selection bits
	Selects trigger source for conversion of Analog Channels AN17 and AN16.
	11111 = Timer2 period match
	11110 = PWM Generator 8 current-limit ADC trigger
	11101 = PWM Generator 7 current-limit ADC trigger
	11100 = PWM Generator 6 current-limit ADC trigger
	11011 = PWM Generator 5 current-limit ADC trigger
	11010 = PWM Generator 4 current-limit ADC trigger
	11001 = PWM Generator 3 current-limit ADC trigger
	11000 = PWM Generator 2 current-limit ADC trigger
	10111 = PWM Generator 1 current-limit ADC trigger
	10110 = PWM Generator 9 secondary trigger selected
	10101 = PWM Generator 8 secondary trigger selected
	10100 = PWM Generator 7 secondary trigger selected
	10011 = PWM Generator 6 secondary trigger selected
	10010 = PWM Generator 5 secondary trigger selected
	10001 = PWM Generator 4 secondary trigger selected
	10000 = PWM Generator 3 secondary trigger selected
	01111 = PWM Generator 2 secondary trigger selected
	01110 = PWM Generator 1 secondary trigger selected
	01101 = PWW secondary Special Event Trigger selected
	01100 = 1 Imeri period match
	01011 = PWM Generator 7 primary trigger selected
	01010 = PWW Generator 6 primary trigger selected
	01001 = PWM Generator 5 primary trigger selected
	01000 = PWM Generator 4 primary trigger selected
	00110 - PWM Cenerator 3 primary trigger selected
	0.0101 - PWM Generator 2 primary trigger selected
	0.0100 = PWM Generator 1 primary trigger selected
	00011 = PWM Special Event Trigger selected
	00010 = Global software trigger selected
	00001 = Individual software trigger selected
	00000 = No conversion is enabled

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

R/W-0	R/W-0	R/\/_0		-	-		
			R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN11	PEND11	SWTRG11	TRGSRC114	TRGSRC113	TRGSRC112	TRGSRC111	TRGSRC110
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN10	PEND10	SWTRG10	TRGSRC104	TRGSRC103	TRGSRC102	TRGSRC101	TRGSRC100
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	IRQEN11: Inte	errupt Request	Enable 11 bit				
	1 = Enables IF	RQ generation	when requeste	ed conversion a	of Channels AN	23 and AN22 is	s completed
	0 = IRQ is not	generated					
bit 14	PEND11: Pen	ding Conversion	on Status 11 bit	t			
	 1 = Conversion of Channels AN23 and AN22 is pending; set when selected trigger is asserted 0 = Conversion is complete 					serted	
bit 13	SWTRG11: Se	oftware Trigge	r 11 bit				
1 = Starts conversion of AN23 and AN22 (if selected by the TRGSRCx<4:0> bits) ⁽¹⁾ This bit is automatically cleared by bardware when the PEND11 bit is set							
	0 = Conversio	on is not starte	d				

REGISTER 22-11: ADCPC5: ADC CONVERT PAIR CONTROL REGISTER 5

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

26.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

26.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

26.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

26.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

26.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

DC CHA	DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic	Min.	Min. Typ. Max. Units Condit				
DO20A	VOH1	Output High Voltage I/O Pins: 4x Sink Driver Pins – RA0-RA7,	1.5			V	Іон ≥ -12 mA, Voo = 3.3V (See Note 1)	
		RA14, RA15, RB0-RB15, RC1-RC4, RC12-RC14, RD0-RD2,	2.0	—	—	V	ІОн ≥ -11 mA, VDD = 3.3V (See Note 1)	
	RD8-RD12, RE RE9, RF0-RF8 RG0-RG3, RG	RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15	3.0	_	_	V	IOH ≥ -3 mA, VDD = 3.3V (See Note 1)	
		Output High Voltage I/O Pins: 8x Sink Driver Pin – RC15	1.5	_	_	V	Іон ≥ -16 mA, Voo = 3.3V (See Note 1)	
			2.0	—	—	V	$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3\text{V}$ (See Note 1)	
			3.0	—	—	V	$IOH \ge -4 \text{ mA}, \text{ VDD} = 3.3\text{V}$ (See Note 1)	
		Output High Voltage I/O Pins: 16x Sink Driver Pins – RA9, RA10, RD3-RD7, RD13, RE0-RE7, RG12, RG13	1.5	_	_	V	Іон ≥ -30 mA, Voo = 3.3V (See Note 1)	
			2.0	—	—	V	$IOH \ge -25 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$ (See Note 1)	
			3.0	—	_	V	$IOH \ge -8 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ (See Note 1)	

TABLE 27-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)

Note 1: Parameters are characterized, but not tested.

TABLE 27-11: ELECTRICAL CHARACTERISTICS: BROWN-OUT RESET (BOR)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V ⁽³⁾ (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low		2.6	—	2.95	V	See Note 2

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The device will operate as normal until the VDDMIN threshold is reached.

3: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.

TABLE 27-19:	AC CHARACTERISTICS: INTERNAL FRC ACCURACY
--------------	---

AC CHA	RACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
Internal	Internal FRC Accuracy @ FRC Frequency = 7.37 MHz ⁽¹⁾							
F20a	FRC	-1	—	+1	%	$\textbf{-40^{\circ}C} \leq \textbf{TA} \leq \textbf{+85^{\circ}C}$	VDD = 3.0-3.6V	
F20b	FRC	-2		+2	%	$-40^{\circ}C \le TA \le +125^{\circ}C$	VDD = 3.0-3.6V	

Note 1: Frequency calibrated at +25°C and 3.3V. The TUN<5:0> bits can be used to compensate for temperature drift.

TABLE 27-20: AC CHARACTERISTICS: INTERNAL LPRC ACCURACY

AC CHA	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No. Characteristic		Min	Тур	Max	Units	Conditions	
LPRC @	LPRC @ 32.768 kHz ⁽¹⁾						
F21a	LPRC	-40	—	+40	%	$-40^{\circ}C \le TA \le +85^{\circ}C$	
F21b	LPRC	-50		+50	%	$-40^{\circ}C \le TA \le +125^{\circ}C$	

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 27-9: HIGH-SPEED PWMx MODULE FAULT TIMING CHARACTERISTICS

FIGURE 27-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS

TABLE 27-29: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
MP10	TFPWM	PWMx Output Fall Time	_	2.5	—	ns			
MP11	TRPWM	PWMx Output Rise Time	—	2.5	—	ns			
MP20	Tfd	Fault Input ↓ to PWMx I/O Change	—	_	15	ns	DTC<1:0> = 10		
MP30	Тғн	Minimum PWMx Fault Pulse Width	8	—	—	ns			
MP31	TPDLY	Tap Delay	1.04	—	—	ns	ACLK = 120 MHz		
MP32	ACLK	PWMx Input Clock	_	_	120	MHz	See Note 2		

Note 1: These parameters are characterized but not tested in manufacturing.

2: This parameter is a maximum allowed input clock for the PWM module.

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

Section Name	Update Description
Section 27.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Updated all Operating Current (IDD) Typical and Max values in Table 27-5.
	Updated all Idle Current (IIDLE) Typical and Max values in Table 27-6.
	Updated all Power-Down Current (IPD) Typical and Max values in Table 27-7.
	Updated all Doze Current (IDOZE) Typical and Max values in Table 27-8.
	Updated the Typ and Max values for parameter D150 and removed parameters DI26, DI28, and DI29 from the I/O Pin Input Specifications (see Table 27-9).
	Updated the Typ and Max values for parameter DO10 and DO27 and the Min and Typ values for parameter DO20 in the I/O Pin Output Specifications (see Table 27-10).
	Added parameter numbers to the Auxiliary PLL Clock Timing Specifications (see Table 27-18).
	Added parameters numbers and updated the Internal RC Accuracy Min, Typ, and Max values (see Table 27-19 and Table 27-20).
	Added parameter numbers, Note 2, updated the Min and Typ parameter values for MP31 and MP32, and removed the conditions for MP10 and MP11 in the High-Speed PWM Module Timing Requirements (see Table 27-29).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 27-14).
	Added parameter IM51 to the I2Cx Bus Data Timing Requirements (Master Mode) (see Table 27-34).
	Updated the Max value for parameter AD33 in the 10-bit High-Speed ADC Module Specifications (see Table 27-36).
	Updated the titles and added parameter numbers to the Comparator and DAC Module Specifications (see Table 27-38 and Table 27-39) and the DAC Output Buffer Specifications (see Table 27-40).

TABLE B-1: MAJOR SECTION UPDATES (CONTINUED)

Revision D (January 2012)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All occurrences of PGCn and PGDn (where n = 1, 2, or 3) were updated to: PGECn and PGEDn throughout the document.

All other changes are referenced by their respective section in Table B-3.

TABLE B-3:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
"16-Bit Digital Signal Controllers with	Added 50 MIPS to Operating Range.
High-Speed PWM, ADC and Comparators"	Changed the Oscillator frequency range in System Management.
	Added the "Referenced Sources" section.
Section 1.0 "Device Overview"	Updated the block diagram of the core and peripheral modules (see Figure 1-1).
Section 2.0 "Guidelines for Getting Started with 16-Bit Digital Signal Controllers"	Updated the Recommended Minimum Connection diagram (see Figure 2-1).
	Updated the VCAP pin capacitor specification in Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP)".
Section 4.0 "Memory Organization"	Removed IPC20 and updated IFS5, IFS7, IEC5, IEC7, and IPC29 in the Interrupt Controller Register Map for dsPIC33FJ64GS606 devices (see Table 4-6).
	Removed IPC20 and IPC21 and updated IFS5, IFS7, IEC5, IEC7, and IPC29 in the Interrupt Controller Register Map for dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices (see Table 4-7).
	Removed IPC20 and updated IFS5, IFS7, IEC5, IEC7, and IPC29 in the Interrupt Controller Register Map for dsPIC33FJ32GS606 devices (see Table 4-10).
	Added High-Speed 10-bit ADC Register Map for dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices (see Table 4-35).
	Updated ODCG in PORTG Register Map for dsPIC33FJ32GS610 and dsPIC33FJ64GS610 devices (see Table 4-54).
	Updated ODCG in PORTG Register Map for dsPIC33FJ32GS608 and dsPIC33FJ64GS608 devices (see Table 4-55).
	Updated ODCG in PORTG Register Map for dsPIC33FJ32GS406/606 and dsPIC33FJ64GS406/606 devices (see Table 4-56).
Section 9.0 "Oscillator Configuration"	Changed the High-Speed Crystal (HS) frequency range in Section 9.1.1 "System Clock sources" .
	Updated the device operating speed to up to 50 MHz in Section 9.1.2 "System Clock Selection".
	Updated Section 9.1.3 "PLL Configuration" to reflect the new operating range/speed of 50 MIPS/50 MHz.
	Updated Section 9.2 "Auxiliary Clock Generation".

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

		d	<u>sPIC 33 FJ 32 GS4 06 T - 50 I / PT - XXX</u>	Examples:
Microchip Trade Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fl Speed Temperature Ran Package Pattern	mark amily / v Size (ag (if a nge	Kbyt	 res) cable)	 a) dsPIC33FJ32GS406-50-I/PT: SMPS dsPIC33, 32-Kbyte program memory, 64-pin, 50 MIPS, Industrial temp., TQFP package.
Architecture:	33	=	16-Bit Digital Signal Controller	
Flash Memory Family:	FJ	=	Flash program memory, 3.3V	
Product Group:	GS4 GS6	= =	Switch Mode Power Supply (SMPS) family Switch Mode Power Supply (SMPS) family	
Pin Count:	06 08 10	= = =	64-pin 80-pin 100-pin	
Speed:	50	= =	50 MIPS 40 MIPS (marking intentionally absent)	
Temperature Range:	I E	= =	-40°C to +85°C (Industrial) -40°C to +125°C (Extended)	
Package:	PT PT PF MR	= = =	Plastic Thin Quad Flatpack – 10x10x1 mm body (TQFP) Plastic Thin Quad Flatpack – 12x12x1 mm body (TQFP) Plastic Thin Quad Flatpack – 14x14x1 mm body (TQFP) Plastic Quad Flat, No Lead Package – 9x9x0.9 mm body (QFN)	

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

03/25/14