

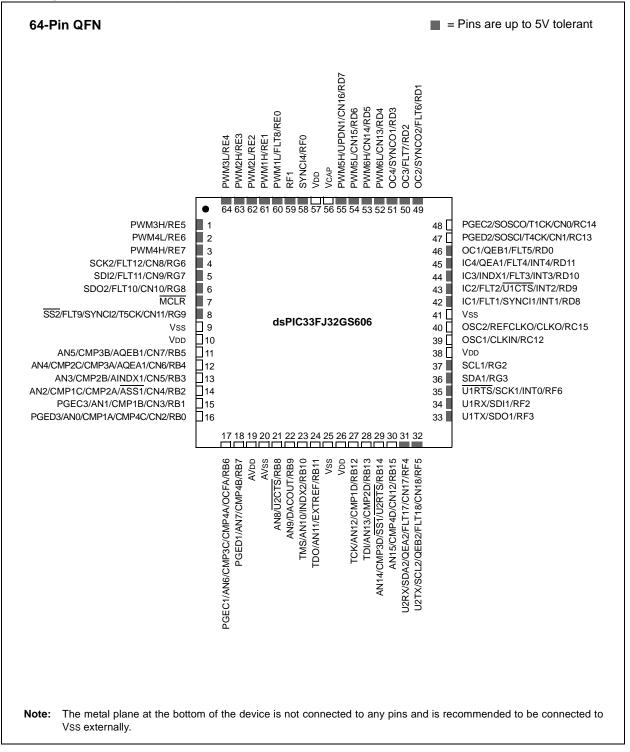
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFl

2 0 0 0 0 0	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, QEI, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	9K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gs610-e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	<pre>111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)</pre>
	000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	 1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of a magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

- Note 1: This bit can be read or cleared (not set).
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
 - 4: Clearing this bit will clear SA and SB.

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit	2 Bit 1	1 Bit 0	All Reset
WREG0	0000		Working Register 0										0000					
WREG1	0002						V	/orking Regis	ter 1									0000
WREG2	0004						V	/orking Regis	ter 2									0000
WREG3	0006						V	/orking Regis	ter 3									0000
WREG4	8000						V	/orking Regis	ter 4									0000
WREG5	000A						V	/orking Regis	ter 5									0000
WREG6	000C						V	/orking Regis	ter 6									0000
WREG7	000E						V	/orking Regis	ter 7									0000
WREG8	0010						V	/orking Regis	ter 8									0000
WREG9	0012						V	/orking Regis	ter 9									0000
WREG10	0014						W	orking Regist	er 10									0000
WREG11	0016						W	orking Regist	er 11									0000
WREG12	0018						W	orking Regist	er 12									0000
WREG13	001A						W	orking Regist	er 13									0000
WREG14	001C		Working Register 14					0000										
WREG15	001E						W	orking Regist	er 15									0800
SPLIM	0020						Stack	Pointer Limit	Register									xxxx
ACCAL	0022							ACCAL										xxxx
ACCAH	0024							ACCAH										xxxx
ACCAU	0026	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>	ACCA<39>				ACCA	U				xxxx
ACCBL	0028							ACCBL										xxxx
ACCBH	002A							ACCBH										xxxx
ACCBU	002C	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>	ACCB<39>				ACCB	U				xxxx
PCL	002E						Program (Counter Low I	Byte Register									0000
PCH	0030		—	—		—	—		—			Program	Counter Hig	gh Byte I	Regist	er		0000
TBLPAG	0032		—	—		—	—		—			Table Pa	ge Address	Pointer I	Regist	.er		0000
PSVPAG	0034	—	—	—		—	—		_	F	Program	Memory V	isibility Pag	e Addres	s Poi	nter Regi	ster	0000
RCOUNT	0036						REPEAT	Loop Counter	er Register									xxxx
DCOUNT	0038							DCOUNT<15	:0>									xxxx
DOSTARTL	003A						DOS	TARTL<15:1>									0	xxxx
DOSTARTH	003C	_	_	—	_	—	—	—	—	-	—		DC	STARTH	1<5:0:	>		00xx
DOENDL	003E						DOE	NDL<15:1>									0	xxxx
DOENDH	0040	_	—	—	—	—	_	—	_	—	—			DOEN	ЭН			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	/ Z	С	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 27-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the Table Write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 27-12).

EQUATION 5-1: PROGRAMMING TIME

 $\frac{T}{7.37 \text{ MHz} \times (FRC \text{ Accuracy})\% \times (FRC \text{ Tuning})\%}$

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 2\%$. If the TUN<5:0> bits (see Register 9-4) are set to `b000000, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

$T_{RW} = \cdot$	11064 Cycles	= 1.473 ms
IKW = 2	$7.37 MHz \times (1 + 0.02) \times (1 - 0.000938)$	-1.4/3 ms

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

$T_{RW} =$	<u>— 11064 Cycles</u> = 1.533 ms
INW -	$7.37 \text{ MHz} \times (1 - 0.02) \times (1 - 0.000938) = 1.555 \text{ ms}$

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0			
WR	WREN	WRERR	—	_	—	—	—			
bit 15		1		I.			bit 8			
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾			
_	ERASE		—	NVMOP3 ⁽²⁾	NVMOP2 ⁽²⁾	NVMOP1 ⁽²⁾	NVMOP0 ⁽²⁾			
bit 7						•	bit 0			
Legend:		SO = Settal	ole Only bit							
R = Readable	bit	W = Writabl	e bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is s	et	'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	WR: Write Con	trol bit ⁽¹⁾								
	1 = Initiates a				on; the operation	on is self-timed	and the bit is			
	cleared by 0 = Program of	hardware one			2					
bit 14	-	-			5					
DIL 14		VREN: Write Enable bit ⁽¹⁾ . = Enables Flash program/erase operations								
	0 = Inhibits Fla									
bit 13	WRERR: Write									
	1 = An improper program or erase sequence attempt or termination has occurred (bit is set									
	automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally									
				pleted normally	/					
bit 12-7	Unimplemente									
bit 6	ERASE: Erase	•								
	1 = Performs tl 0 = Performs tl									
bit 5-4	Unimplemente					on the next w	i communa			
bit 3-0	NVMOP<3:0>:			s(1,2)						
	If ERASE = 1:			,						
	1111 = Memor	y bulk erase o	operation							
	1101 = Erases		ment (GS)							
	0011 = No ope 0010 = Memory		oporation							
	0001 = No ope		operation							
	0000 = Erases		figuration regi	ister byte						
	If ERASE = 0:	If ERASE = 0:								
	1111 = No ope									
	1101 = No ope 0011 = Memory		m operation							
	0010 = No ope									
	0001 = Memor	y row progran								
	0000 = Program	ms a single C	onfiguration r	egister byte						
Note 1: The	ese bits can only	be reset on a	Power-on Re	eset.						
	-									

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

2: All other combinations of NVMOP<3:0> are unimplemented.

NOTES:

HS/HC-0	HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
FLTSTAT(¹⁾ CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽³⁾	MDCS ⁽³⁾			
bit 15							bit 8			
DAMO	DAM 0	D/M/ O		R/W-0	DAMA	DAMO	DAMO			
R/W-0	R/W-0	R/W-0 DTCP ⁽⁴⁾	U-0		R/W-0 CAM ^(2,3,5)	R/W-0 XPRES ⁽⁶⁾	R/W-0			
DTC1 bit 7	DTC0	DICPO	—	MTBS	CAM	APRES(*)	IUE bit			
Legend:		HC = Hardware	Clearable bit	HS = Hardw	are Settable bit					
R = Reada	ble bit	W = Writable b	it	U = Unimple	mented bit, rea	d as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	nown			
bit 15	FLTSTAT: Fa	ult Interrupt Stat	us bit ⁽¹⁾							
		rrupt is pending								
		nterrupt is pend								
		ared by setting F								
bit 14		rent-Limit Interru	•							
		mit interrupt is pe nt-limit interrupt is								
		ared by setting C								
bit 13	TRGSTAT: Tr	igger Interrupt S	tatus bit							
		terrupt is pendin	•							
		r interrupt is pen ared by setting T								
bit 12										
		Fault Interrupt Enable bit t interrupt is enabled								
		rrupt is disabled	and FLTSTAT b	oit is cleared						
bit 11	CLIEN: Curre	Current-Limit Interrupt Enable bit								
		mit interrupt is e mit interrupt is di		STAT bit is cle	ared					
bit 10	TRGIEN: Trig	ger Interrupt En	able bit							
		event generates /ent interrupts a			is cleared					
bit 9		dent Time Base								
	1 = PHASEx/	SPHASEx regist	ters provide tim	•	•	enerator				
bit 8		er Duty Cycle Re	-							
	1 = MDC regi	ster provides du d SDCx registers	ty cycle informa	ation for this P		generator				
Note 1:	Software must cle	ear the interrupt	status here and	l in the corresp	oonding IFSx bit	in the interrup	t controller.			
	The Independent CAM bit is ignore		e (ITB = 1) mus	st be enabled t	o use Center-A	igned mode. If	TTB = 0, the			
3:	These bits should	I not be changed	after the PWM	l is enabled by	setting PTEN (PTCON<15>)	= 1.			
	For DTCP to be e									
	Center-Aligned m registers. The hig the fastest clock.									
6:	Configure CLMO Reset mode.	D (FCLCONX<8	3>) = 0 and ITB	(PWMCONx	<9>) = 1 to ope	rate in Externa	al Period			

REGISTER 16-11: PWMCONX: PWM CONTROL x REGISTER

REGISTER 16-11: PWMCONx: PWM CONTROL x REGISTER (CONTINUED)

bit 7-	6	DTC<1:0>: Dead-Time Control bits 11 = Dead-Time Compensation mode 10 = Dead-time function is disabled
		 01 = Negative dead time is actively applied for Complementary Output mode 00 = Positive dead time is actively applied for all output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽⁴⁾
		 1 = If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened; If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened
		 If DTCMPx = 0, PWMxH is shortened and PWMLx is lengthened; If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		 1 = PWM generator uses the secondary master time base for synchronization and the clock source for the PWM generation logic (if secondary time base is available)
		 PWM generator uses the primary master time base for synchronization and the clock source for the PWM generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,3,5)
		1 = Center-Aligned mode is enabled0 = Edge-Aligned mode is enabled
bit 1		XPRES: External PWM Reset Control bit ⁽⁶⁾
		 1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode
		0 = External pins do not affect PWM time base
bit 0		IUE: Immediate Update Enable bit
		 1 = Updates to the active MDC/PDCx/SDCx registers are immediate 0 = Updates to the active PDCx registers are synchronized to the PWM time base
Note	1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
	2:	The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

- **3:** These bits should not be changed after the PWM is enabled by setting PTEN (PTCON<15>) = 1.
- 4: For DTCP to be effective, DTC<1:0> must be set to '11'; otherwise, DTCP is ignored.
- 5: Center-Aligned mode ignores the Least Significant 3 bits of the Duty Cycle, Phase and Dead-Time registers. The highest Center-Aligned mode resolution available is 8.32 ns with the clock prescaler set to the fastest clock.
- 6: Configure CLMOD (FCLCONX<8>) = 0 and ITB (PWMCONx<9>) = 1 to operate in External Period Reset mode.

REGISTER 16-26: PWMCAPx: PRIMARY PWM TIME BASE CAPTURE x REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PWMCAP	<12:5> ^(1,2,3,4)			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	U-0	U-0	U-0
	PW	/MCAP<4:0> ^{(1,2}	,3,4)		—	—	—
bit 7							bit 0
Legend:							
R = Readable bit	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				

bit 15-3 **PWMCAP<12:0>:** Captured PWM Time Base Value bits^(1,2,3,4) The value in this register represents the captured PWM time base value when a leading edge is detected on the current-limit input.

bit 2-0 Unimplemented: Read as '0'

Note 1: The capture feature is only available on the primary output (PWMxH).

2: This feature is active only after LEB processing on the current-limit input signal is complete.

3: The minimum capture resolution is 8.32 ns.

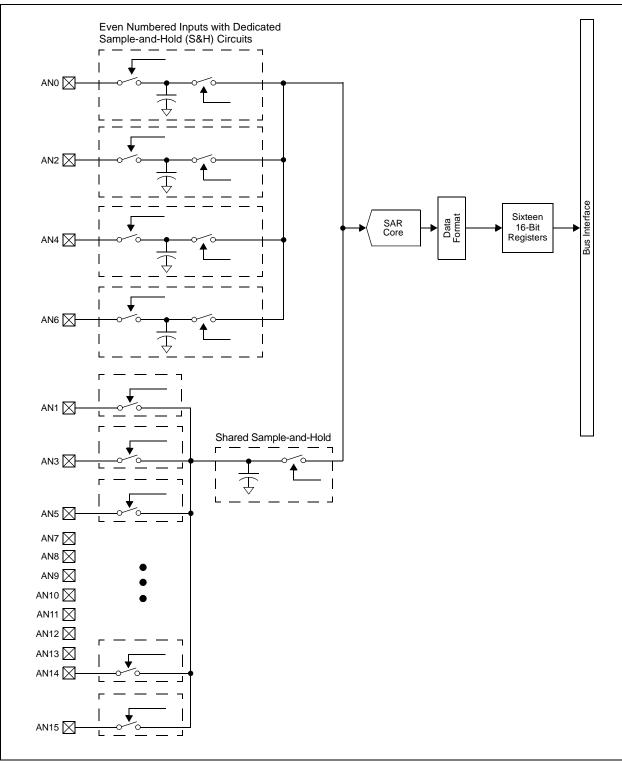
4: This feature can be used when the XPRES bit (PWMCONx<1>) is set to '0'.

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0
	_	CSIDL	ABAT	r	REQOP2	REQOP1	REQOP0
bit 15			,,				bit 8
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
OPMODE2	OPMODE1	OPMODE0		CANCAP		—	WIN
bit 7							bit 0
Legend:		r = Reserved	bit				
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14 bit 13 bit 12	CSIDL: ECAN 1 = Discontinue 0 = Continues ABAT: Abort A 1 = Signals al	ted: Read as ' Nx Stop in Idle l ues module op s module opera All Pending Tra Il transmit buffe ill clear this bit	Mode bit eration when tion in Idle me ansmissions b ers to abort tra	ode it Insmission			
bit 11	Reserved: Do				aboned		
bit 10-8		 Request Ope 	vation Mode I	hits			
	<pre>111 = Sets Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Sets Configuration mode 011 = Sets Listen Only Mode 010 = Sets Loopback mode 001 = Sets Disable mode</pre>						
bit 7-5	 000 = Sets Normal Operation mode OPMODE<2:0>: Operation Mode bits 111 = Module is in Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Module is in Configuration mode 011 = Module is in Listen Only mode 010 = Module is in Loopback mode 001 = Module is in Disable mode 000 = Module is in Normal Operation mode 						
bit 4		ted: Read as '	•				
bit 3	CANCAP: EC 1 = Enables in	CAN Message I nput capture ba ECAN capture	Receive Time	-			
bit 2-1	Unimplemen	ted: Read as '	0'				
bit 0	WIN: SFR Ma	ap Window Sele	ect bit				
	1 = Uses filter 0 = Uses buff						

REGISTER 21-1: CxCTRL1: ECANx CONTROL REGISTER 1

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15			•		•		bit 8
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	_	_	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown	
bit 15-10	EID<5:0>: E	xtended Identifie	er bits				
bit 9	RTR: Remote Transmission Request bit						
1 = Message will request remote transmission0 = Normal message							

BUFFER 21-3: ECANx MESSAGE BUFFER WORD 2


	0 = Normal message
bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per ECAN™ protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per ECAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

BUFFER 21-4: ECANx MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			В	yte 1			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			В	yte 0			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 7-0 Byte 0<7:0>: ECANx Message Byte 0

FIGURE 22-1: ADC BLOCK DIAGRAM FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES WITH ONE SAR

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IRQEN7	PEND7	SWTRG7	TRGSRC74	TRGSRC73	TRGSRC72	TRGSRC71	TRGSRC70	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IRQEN6	PEND6	SWTRG6	TRGSRC64	TRGSRC63	TRGSRC62	TRGSRC61	TRGSRC60	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15	IRQEN7: Inte	errupt Request	Enable 7 bit					
	1 = Enables I 0 = IRQ is no	•	when request	ed conversion	of Channels Al	N15 and AN14	is completed	
bit 14	PEND7: Pen	PEND7: Pending Conversion Status 7 bit						
		on of Channels on is complete	AN15 and AN	I14 is pending;	set when seled	cted trigger is a	sserted	
bit 13	SWTRG7: So	oftware Trigger	7 bit					
	1 = Starts co This bit i	nversion of AN	15 and AN14 cleared by ha	•	the TRGSRCx< he PEND7 bit is	,		

REGISTER 22-9: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

REGISTER 22-9: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3 (CONTINUED)

bit 4-0	TRGSRC6<4:0>: Trigger 6 Source Selection bits						
	Selects trigger source for conversion of Analog Channels AN13 and AN12.						
	11111 = Timer2 period match						
	11110 = PWM Generator 8 current-limit ADC trigger						
	11101 = PWM Generator 7 current-limit ADC trigger						
	11100 = PWM Generator 6 current-limit ADC trigger						
	11011 = PWM Generator 5 current-limit ADC trigger						
	11010 = PWM Generator 4 current-limit ADC trigger						
	11001 = PWM Generator 3 current-limit ADC trigger						
	11000 = PWM Generator 2 current-limit ADC trigger						
	10111 = PWM Generator 1 current-limit ADC trigger						
	10110 = PWM Generator 9 secondary trigger selected						
	10101 = PWM Generator 8 secondary trigger selected						
	10100 = PWM Generator 7 secondary trigger selected						
	10011 = PWM Generator 6 secondary trigger selected						
	10010 = PWM Generator 5 secondary trigger selected						
	10001 = PWM Generator 4 secondary trigger selected						
	10000 = PWM Generator 3 secondary trigger selected						
	01111 = PWM Generator 2 secondary trigger selected 01110 = PWM Generator 1 secondary trigger selected						
	01101 = PWM secondary Special Event Trigger selected						
	01100 = Timer1 period match						
	01011 = PWM Generator 8 primary trigger selected						
	01010 = PWM Generator 7 primary trigger selected						
	01001 = PWM Generator 6 primary trigger selected						
	01000 = PWM Generator 5 primary trigger selected						
	00111 = PWM Generator 4 primary trigger selected						
	00110 = PWM Generator 3 primary trigger selected						
	00101 = PWM Generator 2 primary trigger selected						
	00100 = PWM Generator 1 primary trigger selected						
	00011 = PWM Special Event Trigger selected						
	00010 = Global software trigger selected						
	00001 = Individual software trigger selected						
	00000 = No conversion is enabled						

Note 1: The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

INDL	E 25-2:	NISIR	UCTION SET OVER	VIL 4V	1		r
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-Bit Signed Add to Accumulator	1	1	OA,OB,SA,SE
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
0	TIND	AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z	
				Wd = Wb .AND. lit5	1	1	N,Z
4	1.00	AND	Wb,#lit5,Wd		+	1	C,N,OV,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1		, , ,
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z	
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5 BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None	
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE,Expr	Branch if Greater Than or Equal	1	1 (2)	None
		BRA	GEU,Expr	Branch if Unsigned Greater Than or Equal	1	1 (2)	None
		BRA	GT,Expr	Branch if Greater Than	1	1 (2)	None
		BRA	GTU,Expr	Branch if Unsigned Greater Than	1	1 (2)	None
		BRA	LE,Expr	Branch if Less Than or Equal	1	1 (2)	None
		BRA	LEU,Expr	Branch if Unsigned Less Than or Equal	1	1 (2)	None
		BRA	LT,Expr	Branch if Less Than	1	1 (2)	None
		BRA	LTU,Expr	Branch if Unsigned Less Than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV,Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA,Expr	Branch if Accumulator A Overflow	1	1 (2)	None
		BRA	OB,Expr	Branch if Accumulator B Overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA, Expr	Branch if Accumulator A Saturated	1	1 (2)	None
		BRA	SB, Expr	Branch if Accumulator B Saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA		Branch if Zero	1	1 (2)	None
			Z,Expr	Computed Branch	1	2	
7	DODE	BRA	Wn				None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None

TABLE 25-2:	INSTRUCTION SET	OVERVIEW

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No.	Typical ⁽¹⁾	Max	Units	Units Conditions				
Idle Current (li	DLE): Core Of	f, Clock On	Base Current	(2)				
DC40d	8	15	mA	-40°C				
DC40a	9	15	mA	+25°C	3.3V	10 MIPS		
DC40b	9	15	mA	+85°C	- 3.3V	10 10195		
DC40c	10	15	mA	+125°C				
DC41d	11	20	mA	-40°C	- 3.3V			
DC41a	11	20	mA	+25°C		16 MIPS ⁽³⁾		
DC41b	11	20	mA	+85°C		10 MIPS(*)		
DC41c	12	20	mA	+125°C				
DC42d	14	25	mA	-40°C				
DC42a	14	25	mA	+25°C	3.3V	20 MIPS ⁽³⁾		
DC42b	14	25	mA	+85°C	3.3V	20 10119509		
DC42c	15	25	mA	+125°C				
DC43d	20	30	mA	-40°C				
DC43a	20	30	mA	+25°C	- 3.3V	30 MIPS ⁽³⁾		
DC43b	21	30	mA	+85°C	3.3V	30 WIF 3(*)		
DC43c	22	30	mA	+125°C				
DC44d	29	40	mA	-40°C				
DC44a	29	40	mA	+25°C	2.21/			
DC44b	30	40	mA	+85°C	- 3.3V	40 MIPS		
DC44c	31	40	mA	+125°C				

TABLE 27-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: Base Idle current (IIDLE) is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are all '0's)
- JTAG is disabled
- **3:** These parameters are characterized but not tested in manufacturing.

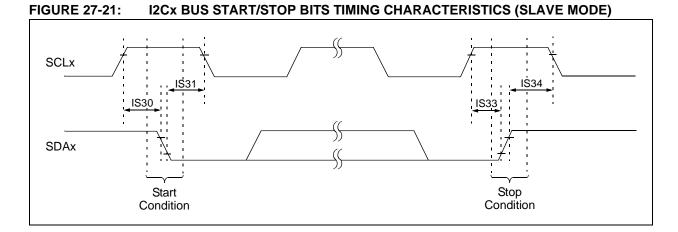
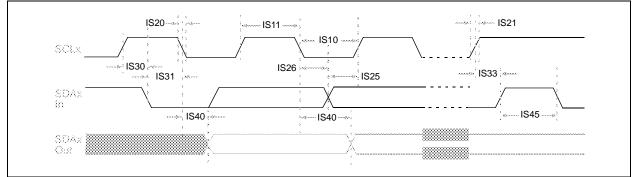

DC CHARACTERI	Standard ((unless otl Operating t	herwise s	tated) re -40°C	≤ TA ≤ +8	5 3.6V 5°C for Industrial 25°C for Extended		
Parameter No.	Typical ⁽¹⁾	Max	Doze Ratio	Units	Conditions		
Doze Current (IDO	ze) ⁽²⁾						
DC73a	45	60	1:2	mA			
DC73f	40	60	1:64	mA	-40°C	3.3V	40 MIPS
DC73g	40	60	1:128	mA			
DC70a	43	60	1:2	mA			
DC70f	38	60	1:64	mA	+25°C	3.3V	40 MIPS
DC70g	38	60	1:128	mA			
DC71a	42	60	1:2	mA			
DC71f	37	60	1:64	mA	+85°C	3.3V	40 MIPS
DC71g	37	60	1:128	mA			
DC72a	41	60	1:2	mA			
DC72f	36	60	1:64	mA	+125°C	3.3V	40 MIPS
DC72g	36	60	1:128	mA			

TABLE 27-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)


Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

2: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

- Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are all '0's)
- CPU executing while(1) statement
- JTAG disabled

Section Name	Update Description
Section 27.0 "Electrical Characteristics" (Continued)	Updated the Timer1, Timer2, and Timer3 External Clock Timing Requirements (see Table 27-23, Table 27-24, and Table 27-25).
	Updated the Simple OC/PWM Mode Timing Requirements (see Table 27-28).
	Updated all SPI Timing specifications (see Figure 27-11-Figure 27-18 and Table 27-30-Table 27-37).
	Added Note 2 to the 10-bit High-Speed ADC Module Specifications (see Table 27-40).
	Added Note 2 to the 10-bit High-Speed ADC Module Timing Requirements (see Table 27-41).
	Added parameter DA08 to the DAC Module Specifications (see Table 27-43).
	Updated parameter DA16 in the DAC Output Buffer Specifications (see Table 27-44).
	Added DMA Read/Write Timing Requirements (see Table 27-49).
Section 28.0 "50 MIPS Electrical Characteristics"	Added new chapter with electrical specifications for 50 MIPS devices.
Section 29.0 "DC and AC Device Characteristics Graphs"	Added new chapter.

TABLE B-3: MAJOR SECTION UPDATES (CONTINUED)

Revision E (October 2012)

This revision removes the Preliminary watermark and includes minor typographical and formatting changes throughout the data sheet.

Revision F (July 2014)

Changes CHOP bit to CHOPCLK in the High Speed PWM Register Map and CHOPCLK PWMCHOP Clock Generator Register (see Register 4-16 and Register 16-9).

Changes values in the Minimum Row Write Time and Maximum Row Write time equation examples (see Equation 5-2 and Equation 5-3).

Adds the Oscillator Delay table (see Table 6-2).

Updates TUN bit ranges in the OSCTUN: Oscillator Tuning Register (see Register 9-4).

Updates the Type C Timer Block Diagram (see Figure 13-2).

Adds Note 1 to the CxFCTRL: ECANx FIFO Control Register (see Register 21-4).

Adds Note 10 to the DC Characteristics: I/O Pin Input Specifications (see Table 27-9).

Updates values in the DC Characteristics: Program Memory Table (see Table 27-12).

Adds Register 29-7 through Register 29-12 to Section 29.0 "DC and AC Device Characteristics Graphs"

Also includes minor typographical and formatting changes throughout the data sheet.

Idle Current (IIDLE)	
Internal Voltage Regulator Specifications	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	
DC Characteristics (50 MIPS)	
Doze Current (IDOZE)	
Idle Current (IIDLE)	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Demo/Development Boards, Evaluation and	
Starter Kits	
Development Support	
Third-Party Tools	
DMA Controller	
Channel to Peripheral Associations	179
Control Registers	
Doze Mode	
DSP Engine	
Multiplier	41

Е

ECAN Module	
Frame Types	
Modes of Operation	
Overview	
ECANx Message Buffers	
ECANx Word 0	
ECANx Word 1	
ECANx Word 2	
ECANx Word 3	
ECANx Word 4	
ECANx Word 5	
ECANx Word 6	
ECANx Word 7	
Electrical Characteristics	
Absolute Maximum Ratings	
AC Characteristics and Timing Parameters	
Electrical Characteristics (50 MIPS)	417
AC Characteristics and Timing Parameters	421
Enhanced CAN (ECAN) Module	
Equations	
Device Operating Frequency	
Fosc Calculation	192
Maximum Row Write Time	110
Minimum Row Write Time	110
Programming Time	110
XT with PLL Mode Example	
Errata	14
External Reset (EXTR)	121

F

201
109
110
110
113
110

G

Getting Started with 16-Bit DSCs 23	
Application Connection Examples	
Capacitor on Internal Voltage Regulator (VCAP) 24	
Configuring Analog and Digital Pins During	
ICSP Operations26	
Connection Requirements	
Decoupling Capacitors23	
External Oscillator Pins25	
ICSP Pins	
Master Clear (MCLR) Pin 24	
Oscillator Value Conditions on Start-up	
Unused I/Os 26	
н	
High-Speed Analog Comparator	
Applications	
Comparator Input Range	
Control Registers	
DAC	
Output Range	
Digital Logic	
Interaction with I/O Buffers	
Module Description	
High-Speed PWM	
Control Registers	
High-Speed, 10-Bit ADC	
Control Registers	
Description	
Module Functionality	
1	
I/O Ports	
Parallel I/O (PIO)	
Write/Read Timing	
I ² C	
Control Registers 271	
Operating Modes 271	
Illegal Opcode Reset (IOPUWR) 121	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP) 349, 355	
Input Capture	
Control Registers 226	
Input Change Notification	
Instruction Addressing Modes	
File Register Instructions	
Fundamental Modes Supported 100	
MAC Instructions 100	
MCU Instructions	
Move and Accumulator Instructions 100	
Other Instructions 100	
Instruction Set	
Overview	
Summary	
Symbols Used in Opcode Descriptions	
Instruction-Based Power-Saving Modes	
Instruction-Based Power-Saving Modes	
Idle	
ldle	
Idle	