

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, QEI, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	9K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gs610-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	Description
U1CTS	1	ST	UART1 Clear-to-Send.
U1RTS	0	_	UART1 Request-to-Send.
U1RX	I I	ST	UART1 receive.
U1TX	Ó	_	UART1 transmit.
U2CTS	I	ST	UART2 Clear-to-Send
U2RTS	Ô		UART2 Request-to-Send.
U2RX	I	ST	UART2 receive.
U2TX	Ō	_	UART2 transmit.
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.
SDI1	1	ST	SPI1 data in.
SDO1	0	_	SPI1 data out
SS1 ASS1	1/0	ST	SPI1 slave synchronization or frame pulse I/O
SCK2	1/O	ST	Synchronous serial clock input/output for SPI2
SDI2	1/ 0	ST	ISPI2 data in
SD02	$\dot{\circ}$		SPI2 data nit
SS2	1/0	ST	SPI2 slave synchronization or frame pulse I/O.
SCI 1	1/0	ST	Synchronous serial clock input/output for I2C1
SDA1	1/0	ST	Synchronous serial data input/output for I2C1
SCI 2	1/0	ST	Synchronous serial clock input/output for I201
SDA2	1/0	ST	Synchronous serial data input/output for I2C2.
	1/0		ITAC Test made select his
	1		JTAG test flode select plif.
	1		JTAG test clock input pin.
		116	JTAG test data input pin.
	0		
CMP1A		Analog	Comparator 1 Channel A.
CMP1B		Analog	Comparator 1 Channel B.
CMP1C		Analog	Comparator 1 Channel C.
CMP1D		Analog	Comparator 1 Channel D.
CMP2A	I	Analog	Comparator 2 Channel A
CMP2B	I	Analog	Comparator 2 Channel B.
CMP2C	I	Analog	Comparator 2 Channel C.
CMP2D	I	Analog	Comparator 2 Channel D.
СМРЗА	I	Analog	Comparator 3 Channel A.
СМРЗВ	I	Analog	Comparator 3 Channel B.
CMP3C	I	Analog	Comparator 3 Channel C.
CMP3D	I	Analog	Comparator 3 Channel D.
CMP4A	I	Analog	Comparator 4 Channel A.
CMP4B	I	Analog	Comparator 4 Channel B.
CMP4C	I	Analog	Comparator 4 Channel C.
CMP4D	I	Analog	Comparator 4 Channel D.
DACOUT	0		DAC output voltage.
EXTREF	Ι	Analog	External voltage reference input for the reference DACs.
REFCLK	0		REFCLK output signal is a postscaled derivative of the system clock.
Legend: CMOS = CMO	OS compa	atible input	or output Analog = Analog input I = Input

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend:CMOS = CMOS compatible input or output
ST = Schmitt Trigger input with CMOS levels
TTL = Transistor-Transistor LogicAnalog = Analog input
P = PowerI = Input
O = Output

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

TABLE 4-1: CPU CORE REGISTER MAP (CONTINUED)

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CORCON	0044	-	_	_	US	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0000
MODCON	0046	XMODEN	YMODEN	_	—	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000
XMODSRT	0048	XS<15:1>								0	xxxx							
XMODEND	004A	XE<15:1>							1	xxxx								
YMODSRT	004C		YS<15:1>							0	xxxx							
YMODEND	004E	YE<15:1>							1	xxxx								
XBREV	0050	BREN	XB14	XB13	XB12	XB11	XB10	XB9	XB8	XB7	XB6	XB5	XB4	XB3	XB2	XB1	XB0	xxxx
DISICNT	0052	Disable Interrupts Counter Register								xxxx								

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0	
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown	
bit 15	Unimplemen	ted: Read as '	0'					
bit 14-12	T1IP<2:0>: ⊺	imer1 Interrupt	Priority bits					
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)				
	•							
	•							
	001 = Interru 000 = Interru	ot is Priority 1 ot source is dis	abled					
bit 11	Unimplemented: Read as '0'							
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits							
	111 = Interru	ot is Priority 7 (highest priorit	y interrupt)	2			
	•							
	•							
	001 = Interru	ot is Priority 1						
	000 = Interru	pt source is dis	abled					
bit 7	Unimplemen	ted: Read as '	0'					
bit 6-4	IC1IP<2:0>:	nput Capture (Channel 1 Inte	errupt Priority b	oits			
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)				
	•							
	•							
	001 = Interru	ot is Priority 1						
	000 = Interru	pt source is dis	abled					
bit 3	Unimplemen	ted: Read as '	0'					
bit 2-0	INT0IP<2:0>:	External Inter	rupt 0 Priority	bits				
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)				
	•							
	•							
	001 = Interru	pt is Priority 1						
	000 = Interru	pt source is dis	abled					

REGISTER 7-21: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

	00	0-0	U-0				
	—		—				
bit 15			bit 8				
U-0 U-0 R/W-0 R/W-0 R/W-0	R/W-0	R/W-0	R/W-0				
— — TUN<5:0:	TUN<5:0> ⁽¹⁾						
bit 7			bit 0				
Legend:							
R = Readable bit W = Writable bit U = Unimplement	ed bit, read	d as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared	ł	x = Bit is unkr	nown				
bit 15-6 Unimplemented: Read as '0'							
bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits ⁽¹⁾							
011111 = Center Frequency + 2.91% (7.584 MHz)							
011110 = Center Frequency + 2.81% (7.577 MHz)							
•							
•							
000001 = Center Frequency + 0.0938% (7.377 MHz)							
000000 = Center Frequency (7.37 MHz nominal)							
111111 = Center Frequency – 0.0938% (7.363 MHz)							
•							
•							
100001 = Center Frequency – 2.91% (7.156 MHz)							

REGISTER 9-4: OSCTUN: OSCILLATOR TUNING REGISTER

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step-size is an approximation and is neither characterized nor tested.

9.5 Clock Switching Operation

Applications are free to switch among any of the four clock sources (primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices have a safeguard lock built into the switch process.

Note: Primary oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from primary oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

9.5.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the FOSC Configuration register must be programmed to '0'. (Refer to **Section 24.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled; this is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC<2:0> Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

9.5.2 OSCILLATOR SWITCHING SEQUENCE

To perform a clock switch, the following basic sequence is required:

- 1. If desired, read the COSCx bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSCx control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

 The clock switching hardware compares the COSCx status bits with the new value of the NOSCx control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bit values are transferred to the COSCx status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to "Oscillator (Part IV)" (DS70307) in the "dsPIC33/PIC24 Family Reference Manual" for details.

9.6 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then, the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a Warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. Devices can manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

The devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

The devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate. This includes the items such as the Input Change Notification on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device will wake-up from Sleep mode on any of these events:

- · Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode

					, -,			
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
TON	_	TSIDL	—	—	—	_	—	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	
	TGATE	TCKPS1	TCKPS0	T32	—	TCS		
bit 7							bit 0	
								
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'		
-n = Value at F	t POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	
bit 15	TON: Timerx	On bit						
	<u>When T32 = 1</u> 1 = Starts 32	1 (in 32-Bit Tim	<u>er mode):</u> v timer pair					
	0 = Stops 32-	bit TMRx:TMR	y timer pair					
	When T32 = 0	o (in 16-Bit Tim	er mode):					
	1 = Starts 16-bit timer							
h : t . d . d	0 = Stops 16-bit timer							
Dit 14		Unimplemented: Read as '0'						
bit 13	1 SIDL: Timer	x Stop in Idle N	lode bit	vice entere Idl	o modo			
	1 = Discontinues 0 = Continues	s timer operatio	in in Idle mode		emode			
bit 12-7	Unimplemen	ted: Read as '	כי					
bit 6	TGATE: Time	erx Gated Time	Accumulation	Enable bit				
	When TCS =	<u>1:</u>						
	This bit is igno	ored.						
	<u>When TCS =</u> 1 = Gated time	<u>0:</u> e accumulation	is enabled					
	1 = Gated tim 0 = Gated tim	le accumulation	n is disabled					
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Prescal	e Select bits				
	11 = 1:256 pr	escale value						
	10 = 1:64 prescale value							
	01 = 1:8 prescale value							
hit 3	$\mathbf{T32}$. 32-Rit Timery Mode Select bit							
	1 = TMRx and $0 = TMRx$ and	1 = TMRx and TMRy form a 32-bit timer						
hit 2		ted: Read as '	ooparato ro . n'					
bit 1	TCS: Timerx (Clock Source S	- Select bit					
	1 = External c	clock from TxCl	K pin					
	0 = Internal cl	lock (Fosc/2)						
bit 0	Unimplemen	ted: Read as '	כ'					

REGISTER 13-1: TxCON: TIMERx CONTROL REGISTER (x = 2, 4)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL		
bit 15					I		bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
OVRDAT1	OVRDAT0	FLTDAT1 ⁽²⁾	FLTDAT0 ⁽²⁾	CLDAT1 ⁽²⁾	CLDAT0 ⁽²⁾	SWAP	OSYNC		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
			·						
bit 15	PENH: PWM	xH Output Pin	Ownership bit						
	1 = PWM mo	dule controls P	WMxH pin						
hit 11									
Dit 14	1 = PWM mo	dule controls P	WMxL nin						
	0 = GPIO mo	dule controls F	WMxL pin						
bit 13	POLH: PWM	POLH: PWMxH Output Pin Polarity bit							
	1 = PWMxH p	1 = PWMxH pin is active-low							
	0 = PWMxH p	oin is active-hig	gh						
bit 12		xL Output Pin F	Polarity bit						
	1 = PWWXL p 0 = PWMxL p	oin is active-low	/ h						
bit 11-10	PMOD<1:0>:	PWM # I/O Pi	n Mode bits ⁽¹⁾						
	11 = PWM I/0	O pin pair is in	the True Indep	endent Output	t mode				
	10 = PWM I/0	D pin pair is in [·]	the Push-Pull	Output mode					
	01 = PWWI/(0) $00 = PWM I/(0)$	D pin pair is in D pin pair is in ⁻	the Compleme	entary Output r	node				
bit 9	OVRENH: O	verride Enable	for PWMxH P	in bit					
	1 = OVRDAT	<1> provides d	ata for output	on PWMxH pi	n				
	0 = PWM ger	nerator provide	s data for outp	out on PWMxH	pin				
bit 8	OVRENL: OV	verride Enable	for PWMxL Pi	n bit					
	1 = OVRDAT 0 = PWM der	<0> provides d perator provide	ata for output s data for outr	on PWMxL pir	ו nin				
bit 7-6	OVRDAT<1:	>: Data for PV	VMxH PWMxI	Pins if Overri	de is Enabled b	oits			
	If $OVERENH = 1$, $OVRDAT<1>$ provides data for PWMxH								
	If OVERENL	= 1, OVRDAT<	<0> provides d	ata for PWMxI	-				
bit 5-4	FLTDAT<1:0	State for PW	/MxH and PW	MxL Pins if FL	TMOD is Enable	ed bits ⁽²⁾			
	IFLTMOD (FC	CLCONx<15>)	= 0: Normal F	ault mode:					
	If Fault is acti	ve, then FLID	AI <1> provide AT<0> provide	es the state for	PWMxH. PWMyI				
	IFLTMOD (FC	CLCONx<15>)	= 1: Independ	ent Fault mode					
	If current-limit	t is active, then	FLTDAT<1>	provides the st	<u></u> ate for PWMxH				
	If Fault is acti	ve, then FLTD	AT<0> provide	s the state for	PWMxL.				
Note 1. The	an hite chould	not ha abanaa	d offer the DW	M modulo io o	nobled (DTEN	1)			

REGISTER 16-19: IOCONX: PWM I/O CONTROL X REGISTER

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

R/W-0	U-0	R/W-0	R/W-1. HC	R/W-0	R/W-0	R/W-0	R/W-0	
I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	
bit 15	l				1		bit 8	
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
bit 7							bit 0	
							1	
Legend:		HC = Hardwa	are Clearable	bit				
R = Readable	eadable bit $W = Writable bit U = Unimplemented bit, read as '0'$							
-n = Value at P	OR	1' = Bit is se	t	0' = Bit is clear	ared	x = Bit is unkno	own	
bit 15		y Enchla hit						
DIT 15	1 – Enable	x Enable bit	dule and con	figures the SD	Av and SCI v ning	as serial port p	ins	
	0 = Disable	es the I2Cx mo	bdule; all I^2C	pins are contro	lled by port functi	ons	113	
bit 14	Unimplem	ented: Read a	as '0'	-				
bit 13	I2CSIDL: 12	2Cx Stop in Id	le Mode bit					
	1 = Discon	tinues module	operation wh	nen device ente	ers Idle mode			
	0 = Continues module operation in Idle mode							
DIT 12	SULKEL: SULX Release Control bit (when operating as I ² C slave)							
	0 = Holds S	SCLx clock lov	v (clock streto	ch)				
	If STREN =	= 1:						
	Bit is R/W (i.e., software o	an write '0' to	o initiate stretch	and write '1' to re	lease clock). Ha	rdware is clear	
	If STREN =	9 01 Slave Ital = 0.	ISIIIISSIUII. Ha	iluwale is clear	at end of slave h	eception.		
	Bit is R/S (i.e., software	can only write	e '1' to release	clock). Hardware	e is clear at beg	inning of slave	
	transmissio	on.						
bit 11	IPMIEN: In	telligent Perip	heral Manage	ement Interface	e (IPMI) Enable bi	t		
	1 = IPMI m	ode is enable	d; all address d	es are Acknow	ledged			
bit 10	A10M: 10-	Bit Slave Addr	ess bit					
2.1.10	1 = I2CxAE	DD is a 10-bit	slave address	5				
	0 = I2CxAE	DD is a 7-bit sl	ave address					
bit 9	DISSLW: [isable Slew F	ate Control b	bit				
	1 = Slew rate	ate control is d	isabled					
hit 8								
Sit 0	1 = Enable	s I/O pin thres	holds complia	ant with SMBus	s specification			
	0 = Disable	es SMBus inpu	ut thresholds		•			
bit 7	GCEN: Ge	neral Call Ena	ble bit (when	operating as I	² C™ slave)			
	1 = Enable	es interrupt wh	en a general	call address is	received in the I2	CxRSR (module	e is enabled for	
	0 = Genera	ion) al call address	s is disabled					
bit 6	STREN: S	CLx Clock Stre	etch Enable b	it (when operat	ting as I ² C slave)			
	Used in co	njunction with	the SCLREL	bit.	2			
	1 = Enable	s software or	receives cloc	k stretching				
	v = Disable	es sonware or	receives cloc	K Stretching				

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC				
ACKSTAT	TRSTAT	_	—	—	BCL	GCSTAT	ADD10				
bit 15							bit 8				
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC				
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF				
bit 7					•	•	bit 0				
Legend:		C = Clearable	e bit	HS = Hardware Settable bit							
R = Readable	e bit	W = Writable	bit	HSC = Hardwa	are Settable/Cle	earable bit					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	red	x = Bit is unkno	own				
U = Unimpler	mented bit, rea	ad as '0'									
bit 15	ACKSTAT: A	cknowledge St	atus bit (when c	operating as I ² C ⁻	™ master, appli	cable to master tr	ransmit operation)				
	1 = NACK re	ceived from sl	ave								
	0 = ACK rece) = ACK received from slave									
hit 1 1		Taluwale is set of clear at the end of slave Acknowledge.									
DIL 14	1 – Master tr	INSTAL: Transmit Status bit (when operating as ITC master, applicable to master transmit operation)									
	0 = Master tr	ansmit is not i	n progress	+ AON							
	Hardware is s	set at the begin	ning of master	transmission. H	ardware is clear	at the end of sla	ve Acknowledge.				
bit 13-11	Unimplemer	nted: Read as	'0'								
bit 10	BCL: Master	Bus Collision	Detect bit								
	1 = A bus co	llision has bee	n detected du	ring a master op	peration						
	0 = No collisi	ion									
h :+ 0	Hardware se										
DIT 9	GCSTAT: Ge	eneral Call Stat	tus bit								
	1 = General 0 = General	call address w	as not received	d							
	Hardware is	set when the a	ddress matche	es the general c	all address. Ha	rdware is clear a	at Stop detection.				
bit 8	ADD10: 10-E	Bit Address Sta	atus bit								
	1 = 10-bit ad	dress was ma	tched								
	0 = 10-bit ad	dress was not	matched				at Otan data atian				
L:1 7		Set at the match	n or the ∠ha byt	e or matched TC	D-bit address. H	ardware is clear	at Stop detection.				
DIT /		e Collision De		aistor failed be	$a_{1}a_{2}a_{3}a_{3}a_{3}a_{3}a_{3}a_{3}a_{3}a_{3$	nodulo io huov					
	1 = An attern 0 = No collisi	ipt to write to t		egister talled be	cause the FC F	noulle is busy					
	Hardware is	Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software).									
bit 6	I2COV: Rece	eive Overflow I	-lag bit								
	1 = A byte wa	as received wl	nile the I2CxR0	CV register is st	till holding the p	previous byte					
	0 = No overfl	low				h., a aft					
5.4 F		set at an atten	ipt to transfer		JXRUV (cleared	a by soπware).					
DIT 5	U_A: Data/A	adress bit (wh	en operating a	s IfC slave)							

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

 1 = Indicates that the last byte received was data
 0 = Indicates that the last byte received was a device address Hardware is clear at a device address match. Hardware is set by reception of a slave byte.
 bit 4 P: Stop bit
 1 = Indicates that a Stop bit has been detected last
 0 = Stop bit was not detected last
 Hardware is set or clear when Start, Repeated Start or Stop is detected.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK1	F13MSK0	F12MSK1	F12MSK0	
bit 15	·					·	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0	
bit 7	•	·					bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	x = Bit is unki	nown			
bit 15-14	F15MSK<1:0	>: Mask Sourc	e for Filter 15	bits				
	11 = Reserve	ed						
	10 = Accepta	ince Mask 2 reg	gisters contain	mask				
01 = Acceptance Mask 1 registers contain mask								

REGISTER 21-19: CxFMSKSEL2: ECANx FILTER 15-8 MASK SELECTION REGISTER 2

bit 13-12	F14MSK<1:0>: Mask Source for Filter 14 bits (same values as bits<15:14>)

00 = Acceptance Mask 0 registers contain mask

bit 11-10 F13MSK<1:0>: Mask Source for Filter 13 bits (same values as bits<15:14>)

bit 9-8 F12MSK<1:0>: Mask Source for Filter 12 bits (same values as bits<15:14>)

bit 7-6 **F11MSK<1:0>:** Mask Source for Filter 11 bits (same values as bits<15:14>)

bit 5-4 **F10MSK<1:0>:** Mask Source for Filter 10 bits (same values as bits<15:14>)

bit 3-2 **F9MSK<1:0>:** Mask Source for Filter 9 bits (same values as bits<15:14>)

bit 1-0 F8MSK<1:0>: Mask Source for Filter 8 bits (same values as bits<15:14>)

22.0 HIGH-SPEED, 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed 10-Bit ADC" (DS70000321) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices provide high-speed successive approximation Analog-to-Digital conversions to support applications, such as AC/DC and DC/DC power converters.

22.1 Features Overview

The ADC module incorporates the following features:

- 10-Bit Resolution
- Unipolar Inputs
- Up to Two Successive Approximation Registers (SARs)
- Up to 24 External Input Channels
- Two Internal Analog Inputs
- Dedicated Result Register for each Analog Input
- ±1 LSB Accuracy at 3.3V
- Single Supply Operation
- 4 Msps Conversion Rate at 3.3V (devices with two SARs)
- 2 Msps Conversion Rate at 3.3V (devices with one SAR)
- Low-Power CMOS Technology

22.2 Module Description

This ADC module is designed for applications that require low latency between the request for conversion and the resultant output data. Typical applications include:

- AC/DC Power Supplies
- DC/DC Converters
- Power Factor Correction (PFC)

This ADC works with the High-Speed PWM module in power control applications that require high-frequency control loops. This module can Sample-and-Convert two analog inputs in a 0.5 microsecond when two SARs are used. This small conversion delay reduces the "phase lag" between measurement and control system response.

Up to five inputs may be sampled at a time (four inputs from the dedicated Sample-and-Hold circuits and one from the shared Sample-and-Hold circuit). If multiple inputs request conversion, the ADC will convert them in a sequential manner, starting with the lowest order input.

This ADC design provides each pair of analog inputs (AN1, AN0), (AN3, AN2),..., the ability to specify its own trigger source out of a maximum of sixteen different trigger sources. This capability allows this ADC to Sample-and-Convert analog inputs that are associated with PWM generators operating on independent time bases.

The user application typically requires synchronization between analog data sampling and PWM output to the application circuit. The very high-speed operation of this ADC module allows "data on demand".

In addition, several hardware features have been added to the peripheral interface to improve real-time performance in a typical DSP-based application.

- Result Alignment Options
- Automated Sampling
- External Conversion Start Control
- Two Internal Inputs to Monitor the INTREF and EXTREF Input Signals

Block diagrams of the ADC module for the family devices are shown in Figure 22-1 through Figure 22-4.

REGISTER 22-1:	ADCON: ADC CONTROL REGISTER
----------------	-----------------------------

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
ADON	—	ADSIDL	SLOWCLK ⁽¹⁾	—	GSWTRG	—	FORM ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1
EIE ⁽¹⁾	ORDER ^(1,2)	SEQSAMP ^(1,2)	ASYNCSAMP ⁽¹⁾	—	ADCS2 ⁽¹⁾	ADCS1 ⁽¹⁾	ADCS0 ⁽¹⁾
bit 7							bit 0

Legend:											
R = Reada	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'							
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown							
bit 15	ADON: A	DC Module Operating Mode	bit								
	1 = ADC	module is operating									
1	0 = ADC	0 = ADC module is off									
bit 14	Unimplei	Unimplemented: Read as '0'									
bit 13	ADSIDL:	ADC Stop in Idle Mode bit									
	1 = Disco0 = Conti	ntinues module operation wh nues module operation in Idle	en device enters Idle mode e mode								
bit 12	SLOWCL	K: Enable the Slow Clock Div	vider bit ⁽¹⁾								
	1 = ADC	is clocked by the auxiliary PL	LL (ACLK)								
L:1.44	0 = ADC	is clock by the primary PLL (FVCO)								
DIT 11	Unimplei	mented: Read as '0'									
DIT 10	GSWIRC	Si Global Software Trigger bit									
	ADCPCx	registers. This bit must be cle	rigger conversions if selected by the user prior to initiating	another global trigger (i.e. this							
	bit is not	auto-clearing).		anothor global anggor (noi, ano							
bit 9	Unimple	mented: Read as '0'									
bit 8	FORM: D	ata Output Format bit ⁽¹⁾									
	1 = Fract	ional (Dout = dddd dddd d	1000 0000)								
	0 = Intege	er (DOUT = 0000 00dd dddd)	d ddd)								
bit 7	EIE: Early	y Interrupt Enable bit ⁽¹⁾									
	1 = Interr	upt is generated after first cor	nversion is completed								
hit 6		Conversion Order hit(1,2)									
	1 = 0 dd r	numbered analog input is con	verted first followed by conversion	n of even numbered input							
	0 = Even	numbered analog input is col	nverted first, followed by conversi	on of odd numbered input							
bit 5	SEQSAN	IP: Sequential S&H Sampling) Enable bit ^(1,2)								
	1 = Shar	ed Sample-and-Hold (S&H)	circuit is sampled at the start	of the second conversion if							
	ORD	EK = 0. If OKDER = 1, then the same set of	the snared S&H is sampled at the	e start of the first conversion.							
	rently	/ busy with an existing convers	sion process. If the shared S&H is	busy at the time the dedicated							
	S&H	is sampled, then the shared S	&H will sample at the start of the n	ew conversion cycle.							
Note 1:	This control b	it can only be changed while	the ADC is disabled (ADON = 0).								
2:	This control b	it is only active on devices that	at have one SAR.								

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note:	For more details on the instruction set,
	refer to the "16-bit MCU and DSC
	Programmer's Reference Manual"
	(DS70157).

Field	Description
#text	Means "literal defined by text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register \in {W0W15}
Wd	Destination W register \in { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (Direct Addressing)

TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

DC CHA	RACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
	VIL	Input Low Voltage						
DI10		I/O Pins	Vss	—	0.2 Vdd	V		
DI15		MCLR	Vss	_	0.2 Vdd	V		
DI16		I/O Pins with OSC1 or SOSCI	Vss	—	0.2 Vdd	V		
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 Vdd	V	SMBus disabled	
DI19		I/O Pins with SDAx, SCLx	Vss	_	0.8	V	SMBus enabled	
	Vih	Input High Voltage						
DI20		I/O Pins Non 5V Tolerant ⁽⁴⁾	0.7 Vdd	—	Vdd	V		
DI21		I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd	—	5.5	V		
DI28		SDAx, SCLx	0.7 VDD	—	5.5	V	SMBus disabled	
DI29		SDAX, SCLX	2.1		5.5	V	SMBUS enabled	
0120	ICNPU	CNX Pull-up Current		250				
D130	lu .	Input Leakage Current ^(2,3,4)		250		μΑ	VDD = 3.3V, VPIN = V33	
D150	n.	I/O Pins with: 4x Driver Pins: RA0-RA7, RA14, RA15, RB0-RB15 ⁽¹⁰⁾ , RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15	_	_	±2	μΑ	Vss \leq VPIN \leq VDD, Pin at high-impedance	
		8x Driver Pins: RC15	_	_	±4	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &{\sf Pin} \text{ at high-impedance} \end{split}$	
		16x Driver Pins: RA9, RA10, RD3-RD7, RD13, RE0-RE7, RG12, RG13	_	—	±8	μΑ	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD}, \\ &\text{Pin at high-impedance} \end{split}$	
DI55		MCLR	—	—	±2	μΑ	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	—	_	±2	μΑ	VSS \leq VPIN \leq VDD, XT and HS modes	

TABLE 27-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the list of 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- 7: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.
- **10:** RB11 has also been tested up to $\pm 8 \mu A$ test limits.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DO10		Output Low Voltage I/O Pins: 4x Sink Driver Pins – RA0-RA7, RA14, RA15, RB0-RB15, RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15	_		0.4	V	IOL ≤ 6 mA, VDD = 3.3V (See Note 1)	
		Output Low Voltage I/O Pins: 8x Sink Driver Pin – RC15	_		0.4	V	Io∟ ≤ 10 mA, VDD = 3.3V (See Note 1)	
		Output Low Voltage I/O Pins: 16x Sink Driver Pins – RA9, RA10, RD3-RD7, RD13, RE0-RE7, RG12, RG13			0.4	V	IOL ≤ 18 mA, VDD = 3.3V (See Note 1)	
DO20	Voн	Output High Voltage I/O Pins: 4x Sink Driver Pins – RA0-RA7, RA14, RA15, RB0-RB15, RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15	2.4			V	ІОН ≥ -6 mA, VDD = 3.3V (See Note 1)	
		Output High Voltage I/O Pins: 8x Sink Driver Pin – RC15	2.4		_	V	Іон ≥ -10 mA, VDD = 3.3V (See Note 1)	
		Output High Voltage I/O Pins: 16x Sink Driver Pins – RA9, RA10, RD3-RD7, RD13, RE0-RE7, RG12, RG13	2.4			V	Іон ≥ -18 mA, Voo = 3.3V (See Note 1)	

TABLE 27-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

TABLE 20-3. De CHANACTENISTICS. IDEL CONNENT (IDEL)									
DC CHARACT	ERISTICS		Standard O (unless oth Operating te	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No.	Typical	Мах	Units	Units Conditions					
Idle Current (II	DLE): Core Of	ff Clock On B	ase Current ⁽	1)					
MDC45d	40	50	mA	-40°C					
MDC45a	40	50	mA	+25°C	-25°C 3.3V 50 MIPS				
MDC45b	40	50	mA	+85°C					

TABLE 28-3: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base Idle current (IIDLE) is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are '0's)
- JTAG is disabled

U Universal Asynchronous Receiver

	Transr	nitter	(UAF	RT)	 	 	279
v							
	-		10	<u> </u>			

W

Watchdog Timer (WDT)	349, 353
Programming Considerations	
Watchdog Timer Time-out Reset (WDTO)	121
WWW Address	455
WWW, On-Line Support	14