

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Obsolete                                                                         |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 40 MIPs                                                                          |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                          |
| Peripherals                | Brown-out Detect/Reset, DMA, QEI, POR, PWM, WDT                                  |
| Number of I/O              | 85                                                                               |
| Program Memory Size        | 64KB (64K x 8)                                                                   |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 9K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 24x10b; D/A 1x10b                                                            |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 100-TQFP                                                                         |
| Supplier Device Package    | 100-TQFP (12x12)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64gs610t-i-pt |
|                            |                                                                                  |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### Pin Diagrams (Continued)



## TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

#### **Most Current Data Sheet**

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

#### http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

#### Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

#### **Customer Notification System**

Register on our web site at www.microchip.com to receive the most current information on all of our products.





|              |             |        |           | 1 0011    |           |        |          |          |          | 000.00 | 400010    |           | .0 (0011  |         |           |           |           |               |
|--------------|-------------|--------|-----------|-----------|-----------|--------|----------|----------|----------|--------|-----------|-----------|-----------|---------|-----------|-----------|-----------|---------------|
| File<br>Name | SFR<br>Addr | Bit 15 | Bit 14    | Bit 13    | Bit 12    | Bit 11 | Bit 10   | Bit 9    | Bit 8    | Bit 7  | Bit 6     | Bit 5     | Bit 4     | Bit 3   | Bit 2     | Bit 1     | Bit 0     | All<br>Resets |
| IPC14        | 00C0        | _      | -         | —         | —         | —      | QEI1IP2  | QEI1IP1  | QEI1IP0  | -      | PSEMIP2   | PSEMIP1   | PSEMIP0   | —       | —         | —         | —         | 0440          |
| IPC16        | 00C4        |        | _         | _         | _         |        | U2EIP2   | U2EIP1   | U2EIP0   | —      | U1EIP2    | U1EIP1    | U1EIP0    | —       | _         | _         | —         | 0440          |
| IPC17        | 00C6        |        | _         |           | _         |        | C1TXIP2  | C1TXIP1  | C1TXIP0  | —      | _         | _         | _         | _       | _         | _         | _         | 0400          |
| IPC18        | 00C8        |        | QEI2IP2   | QEI2IP1   | QEI2IP0   |        | _        | _        | —        | —      | PSESMIP2  | PSESMIP1  | PSESMIP0  | —       | _         | _         | —         | 4040          |
| IPC20        | 00CC        | _      | ADCP10IP2 | ADCP10IP1 | ADCP10IP0 | _      | ADCP9IP2 | ADCP9IP1 | ADCP9IP0 | _      | ADCP8IP2  | ADCP8IP1  | ADCP8IP0  | _       | _         | _         | _         | 4440          |
| IPC21        | 00CE        | _      | _         | _         | _         | _      | _        | _        | —        | _      | ADCP12IP2 | ADCP12IP1 | ADCP12IP0 | _       | ADCP11IP2 | ADCP11IP1 | ADCP11IP0 | 0044          |
| IPC23        | 00D2        | _      | PWM2IP2   | PWM2IP1   | PWM2IP0   | _      | PWM1IP2  | PWM1IP1  | PWM1IP0  | _      | _         | _         | _         | _       | _         | _         | _         | 4400          |
| IPC24        | 00D4        | _      | PWM6IP2   | PWM6IP1   | PWM6IP0   | _      | PWM5IP2  | PWM5IP1  | PWM5IP0  | _      | PWM4IP2   | PWM4IP1   | PWM4IP0   | _       | PWM3IP2   | PWM3IP1   | PWM3IP0   | 4444          |
| IPC25        | 00D6        | _      | AC2IP2    | AC2IP1    | AC2IP0    | _      | PWM9IP2  | PWM9IP1  | PWM9IP0  | _      | PWM8IP2   | PWM8IP1   | PWM8IP0   | _       | PWM7IP2   | PWM7IP1   | PWM7IP0   | 4444          |
| IPC26        | 00D8        | _      | _         | _         | _         | _      | _        | _        | —        | _      | AC4IP2    | AC4IP1    | AC4IP0    | _       | AC3IP2    | AC3IP1    | AC3IP0    | 0044          |
| IPC27        | 00DA        | _      | ADCP1IP2  | ADCP1IP1  | ADCP1IP0  | _      | ADCP0IP2 | ADCP0IP1 | ADCP0IP0 | _      | _         | _         | -         | _       | -         | -         | _         | 4400          |
| IPC28        | 00DC        | _      | ADCP5IP2  | ADCP5IP1  | ADCP5IP0  | _      | ADCP4IP2 | ADCP4IP1 | ADCP4IP0 | _      | ADCP3IP2  | ADCP3IP1  | ADCP3IP0  | _       | ADCP2IP2  | ADCP2IP1  | ADCP2IP0  | 4444          |
| IPC29        | 00DE        | —      | —         | _         | —         | —      | —        | —        | —        | _      | ADCP7IP2  | ADCP7IP1  | ADCP7IP0  | —       | ADCP6IP2  | ADCP6IP1  | ADCP6IP0  | 0044          |
| INTTREG      | 00E0        | _      | _         | _         | _         | ILR3   | ILR2     | ILR1     | ILR0     | _      | VECNUM6   | VECNUM5   | VECNUM4   | VECNUM3 | VECNUM2   | VECNUM1   | VECNUM0   | 0000          |

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS610 DEVICES (CONTINUED)

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## TABLE 4-18: HIGH-SPEED PWM GENERATOR 2 REGISTER MAP

| File<br>Name | SFR<br>Addr | Bit 15  | Bit 14   | Bit 13  | Bit 12  | Bit 11    | Bit 10    | Bit 9     | Bit 8     | Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | All<br>Resets |
|--------------|-------------|---------|----------|---------|---------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------|
| PWMCON2      | 0440        | FLTSTAT | CLSTAT   | TRGSTAT | FLTIEN  | CLIEN     | TRGIEN    | ITB       | MDCS      | DTC1     | DTC0     | DTCP     | —        | MTBS     | CAM      | XPRES    | IUE      | 0000          |
| IOCON2       | 0442        | PENH    | PENL     | POLH    | POLL    | PMOD1     | PMOD0     | OVRENH    | OVRENL    | OVRDAT1  | OVRDAT0  | FLTDAT1  | FLTDAT0  | CLDAT1   | CLDAT0   | SWAP     | OSYNC    | 0000          |
| FCLCON2      | 0444        | IFLTMOD | CLSRC4   | CLSRC3  | CLSRC2  | CLSRC1    | CLSRC0    | CLPOL     | CLMOD     | FLTSRC4  | FLTSRC3  | FLTSRC2  | FLTSRC1  | FLTSRC0  | FLTPOL   | FLTMOD1  | FLTMOD0  | 0000          |
| PDC2         | 0446        |         |          |         |         |           |           |           | PDC       | 2<15:0>  |          |          |          |          |          |          |          | 0000          |
| PHASE2       | 0448        |         |          |         |         |           |           |           | PHASE     | E2<15:0> |          |          |          |          |          |          |          | 0000          |
| DTR2         | 044A        | —       | _        |         |         |           |           |           |           | DTR2     | <13:0>   |          |          |          |          |          |          | 0000          |
| ALTDTR2      | 044C        | —       | _        |         |         |           |           |           |           | ALTDT    | R2<13:0> |          |          |          |          |          |          | 0000          |
| SDC2         | 044E        |         |          |         |         |           |           |           | SDC       | 2<15:0>  |          |          |          |          |          |          |          | 0000          |
| SPHASE2      | 0450        |         |          |         |         |           |           |           | SPHAS     | E2<15:0> |          |          |          |          |          |          |          | 0000          |
| TRIG2        | 0452        |         |          |         |         |           |           | TRGCMP<12 | 2:0>      |          |          |          |          |          | _        | _        | _        | 0000          |
| TRGCON2      | 0454        | TRGDIV3 | TRGDIV2  | TRGDIV1 | TRGDIV0 | _         | _         | _         | _         | DTM      | —        | TRGSTRT5 | TRGSTRT4 | TRGSTRT3 | TRGSTRT2 | TRGSTRT1 | TRGSTRT0 | 0000          |
| STRIG2       | 0456        |         |          |         |         |           |           | STRGCMP<1 | 2:0>      |          |          |          |          |          | _        | _        | _        | 0000          |
| PWMCAP2      | 0458        |         |          |         |         |           |           | PWMCAP<12 | 2:0>      |          |          |          |          |          | _        | _        | _        | 0000          |
| LEBCON2      | 045A        | PHR     | PHF      | PLR     | PLF     | FLTLEBEN  | CLLEBEN   | _         | _         | _        | _        | BCH      | BCL      | BPHH     | BPHL     | BPLH     | BPLL     | 0000          |
| LEBDLY2      | 045C        | _       | LEB<8:0> |         |         |           |           |           |           | _        | _        | 0000     |          |          |          |          |          |               |
| AUXCON2      | 045E        | HRPDIS  | HRDDIS   |         | _       | BLANKSEL3 | BLANKSEL2 | BLANKSEL1 | BLANKSEL0 | —        | —        | CHOPSEL3 | CHOPSEL2 | CHOPSEL1 | CHOPSEL0 | CHOPHEN  | CHOPLEN  | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

| R/W-0           | R/W-0                             | R/W-0                                 | R/W-0                           | R/W-0                       | R/W-0                     | R/W-0   | R/W-0 |
|-----------------|-----------------------------------|---------------------------------------|---------------------------------|-----------------------------|---------------------------|---------|-------|
| NSTDIS          | OVAERR                            | OVBERR                                | COVAERR                         | COVBERR                     | OVATE                     | OVBTE   | COVTE |
| bit 15          |                                   |                                       |                                 |                             |                           |         | bit 8 |
|                 |                                   |                                       |                                 |                             |                           |         |       |
| R/W-0           | R/W-0                             | R/W-0                                 | R/W-0                           | R/W-0                       | R/W-0                     | R/W-0   | U-0   |
| SFTACERR        | DIV0ERR                           | DMACERR                               | MATHERR                         | ADDRERR                     | STKERR                    | OSCFAIL | —     |
| bit 7           |                                   |                                       |                                 |                             |                           |         | bit 0 |
|                 |                                   |                                       |                                 |                             |                           |         |       |
| Legend:         | L:4                               |                                       | L:4                             |                             | a a vata al la itu ya a a |         |       |
| R = Readable    |                                   | vv = vvritable                        | DIT                             | 0 = 0                       | nented bit, read          | as U    | 0000  |
| -n = value at P | OR                                | I = DILIS SEL                         |                                 | 0 = Dit is cies             | areu                      |         | IOWI  |
| bit 15          | NSTDIS: Inte                      | rrunt Nestina F                       | )isahle hit                     |                             |                           |         |       |
| Sit 10          | 1 = Interrupt r                   | nesting is disab                      | oled                            |                             |                           |         |       |
|                 | 0 = Interrupt r                   | nesting is enab                       | led                             |                             |                           |         |       |
| bit 14          | OVAERR: Ac                        | cumulator A O                         | verflow Trap F                  | lag bit                     |                           |         |       |
|                 | 1 = Trap was                      | caused by an                          | overflow of Ac                  | cumulator A                 |                           |         |       |
|                 | 0 = Irap was                      | not caused by                         | an overflow o                   | f Accumulator               | A                         |         |       |
| bit 13          | OVBERR: Ac                        | cumulator B O                         | verflow I rap H                 | -lag bit                    |                           |         |       |
|                 | 1 = Trap was<br>0 = Trap was      | not caused by and                     | an overflow of AC               | f Accumulator               | В                         |         |       |
| bit 12          | COVAERR: A                        | Accumulator A                         | Catastrophic (                  | Overflow Trap F             | -lag bit                  |         |       |
|                 | 1 = Trap was                      | caused by a ca                        | atastrophic ov                  | erflow of Accur             | mulator A                 |         |       |
|                 | 0 = Trap was                      | not caused by                         | a catastrophic                  | c overflow of A             | ccumulator A              |         |       |
| bit 11          | COVBERR: A                        | Accumulator B                         | Catastrophic (                  | Overflow Trap F             | -lag bit                  |         |       |
|                 | 1 = Trap was                      | caused by a ca                        | atastrophic ov                  | erflow of Accur             | nulator B                 |         |       |
| bit 10          | 0 = Trap was                      | not caused by                         | rflow Trop En                   | covernow of A               | Comulator B               |         |       |
| bit TO          | 1 = Trap over                     | flow of Accum                         | illator A                       |                             |                           |         |       |
|                 | 0 = Trap is dis                   | sabled                                |                                 |                             |                           |         |       |
| bit 9           | OVBTE: Accu                       | umulator B Ove                        | erflow Trap En                  | able bit                    |                           |         |       |
|                 | 1 = Trap over                     | flow of Accumu                        | ulator B                        |                             |                           |         |       |
|                 | 0 = Trap is dis                   | sabled                                |                                 |                             |                           |         |       |
| bit 8           | COVTE: Cata                       | astrophic Overf                       | low Trap Enat                   | ble bit                     | <b>D</b> · · · · ·        |         |       |
|                 | 1 = Irap on a<br>0 = Trap is dist | catastrophic o<br>sabled              | verflow of Acc                  | cumulator A or              | B is enabled              |         |       |
| bit 7           | SFTACERR:                         | Shift Accumula                        | tor Error Statu                 | us bit                      |                           |         |       |
| 2               | 1 = Math erro                     | or trap was caus                      | sed by an inva                  | alid accumulato             | or shift                  |         |       |
|                 | 0 = Math erro                     | or trap was not                       | caused by an                    | invalid accumu              | lator shift               |         |       |
| bit 6           | DIV0ERR: Ar                       | ithmetic Error S                      | Status bit                      |                             |                           |         |       |
|                 | 1 = Math erro                     | or trap was caus                      | sed by a divid<br>caused by a d | e-by-zero<br>livide-by-zero |                           |         |       |
| bit 5           | DMACERR:                          | DMA Controller                        | Error Status                    | bit                         |                           |         |       |
|                 | 1 = DMA Con                       | troller error tra                     | p has occurre                   | d                           |                           |         |       |
|                 | 0 = DMA Con                       | troller error tra                     | p has not occu                  | urred                       |                           |         |       |
| bit 4           | MATHERR: A                        | Arithmetic Error                      | Status bit                      |                             |                           |         |       |
|                 | 1 = Math erro<br>0 = Math erro    | or trap has occu<br>or trap has not c | irred<br>occurred               |                             |                           |         |       |

#### REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

# dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

| D MAL O         | DAM 0                            | DAMA                            |                                   | DAA/ 0                  | D/M/ O                            |                  | 11.0         |
|-----------------|----------------------------------|---------------------------------|-----------------------------------|-------------------------|-----------------------------------|------------------|--------------|
| K/W-0           |                                  | K/W-U                           | K/VV-0                            |                         |                                   | 0-0              | 0-0          |
| PHR             |                                  | PLK                             | PLF                               | FLILEBEN                | CLLEBEN                           | _                | —            |
| DIT 15          |                                  |                                 |                                   |                         |                                   |                  | Dit 8        |
|                 | 11-0                             | P/M_0                           | P///_0                            | P///_0                  | P/M/_0                            |                  |              |
| 0-0             | 0-0                              |                                 |                                   |                         |                                   |                  | RDU          |
| bit 7           |                                  | BOIL                            | DOL                               | DITIL                   | DITIL                             | DI LIT           | bit 0        |
| bit 7           |                                  |                                 |                                   |                         |                                   |                  |              |
| Legend:         |                                  |                                 |                                   |                         |                                   |                  |              |
| R = Readable    | bit                              | W = Writable                    | bit                               | U = Unimpler            | mented bit, read                  | as '0'           |              |
| -n = Value at F | POR                              | '1' = Bit is set                |                                   | '0' = Bit is cle        | ared                              | x = Bit is unkn  | iown         |
|                 |                                  |                                 |                                   |                         |                                   |                  |              |
| bit 15          | PHR: PWMxH                       | Rising Edge                     | Trigger Enable                    | e bit                   |                                   |                  |              |
|                 | 1 = Rising edg                   | ge of PWMxH v                   | will trigger Lea                  | ading-Edge Bla          | anking counter                    |                  |              |
|                 | 0 = Leading-E                    | Edge Blanking i                 | gnores rising                     | edge of PWM             | κH                                |                  |              |
| bit 14          | PHF: PWMxH                       | I Falling Edge                  | Trigger Enable                    | e bit                   |                                   |                  |              |
|                 | 1 = Falling ed                   | lge of PWMxH                    | will trigger Le                   | ading-Edge Bla          | anking counter                    |                  |              |
| hit 12          |                                  | Dising Edge T                   | rigger Epoble                     |                         | ХП                                |                  |              |
| DIL 13          | 1 - Rising edu                   | ne of PWMxL v                   | vill trigger L es                 | ; bit<br>adina-Edae Bla | nking counter                     |                  |              |
|                 | 0 = Leading-E                    | Edge Blanking i                 | gnores rising                     | edge of PWM             | <l< td=""><td></td><td></td></l<> |                  |              |
| bit 12          | PLF: PWMxL                       | Falling Edge T                  | rigger Enable                     | e bit                   |                                   |                  |              |
|                 | 1 = Falling ed                   | ge of PWMxL                     | will trigger Lea                  | ading-Edge Bla          | anking counter                    |                  |              |
|                 | 0 = Leading-E                    | Edge Blanking i                 | gnores falling                    | edge of PWM             | xL                                |                  |              |
| bit 11          | FLTLEBEN: F                      | ault Input Lea                  | ding-Edge Bla                     | anking Enable           | bit                               |                  |              |
|                 | 1 = Leading-E                    | Edge Blanking i                 | s applied to s                    | elected Fault in        | nput                              |                  |              |
| hit 10          |                                  |                                 | s not applied<br>oding Edgo B     | lo selected Fa          |                                   |                  |              |
|                 | 1 – Leading-F                    | -dae Blanking i                 | s applied to s                    |                         | t-limit input                     |                  |              |
|                 | 0 = Leading-E                    | Edge Blanking i                 | s not applied                     | to selected cul         | rrent-limit input                 |                  |              |
| bit 9-6         | Unimplemen                       | ted: Read as '                  | יי                                |                         | -                                 |                  |              |
| bit 5           | BCH: Blankin                     | g in Selected E                 | Blanking Signa                    | al High Enable          | bit <sup>(1)</sup>                |                  |              |
|                 | 1 = State blan                   | nking (of curren                | t-limit and/or                    | Fault input sigr        | nals) when seled                  | ted blanking si  | gnal is high |
|                 | 0 = No blankii                   | ng when select                  | ed blanking s                     | ignal is high           | (4)                               |                  |              |
| bit 4           | BCL: Blanking                    | g in Selected B                 | lanking Signa                     | al Low Enable I         | Dit <sup>(1)</sup>                |                  |              |
|                 | 1 = State blan                   | iking (of curren                | t-limit and/or                    | Fault input sigr        | hals) when seled                  | cted blanking si | gnal is low  |
| hit 3           | BPHH Blanki                      | ing in PWMxH                    | High Enable I                     | nghai is iow            |                                   |                  |              |
| Sito            | 1 = State blan                   | nking (of curren                | t-limit and/or                    | Fault input sigr        | nals) when PWM                    | 1xH output is hi | ah           |
|                 | 0 = No blankii                   | ng when PWM                     | xH output is h                    | ligh                    |                                   |                  | 3.           |
| bit 2           | BPHL: Blanki                     | ng in PWMxH                     | Low Enable b                      | it                      |                                   |                  |              |
|                 | 1 = State blan<br>0 = No blankii | nking (of curren<br>ng when PWM | t-limit and/or<br>xH output is lo | Fault input sigr        | nals) when PWM                    | 1xH output is lo | W            |
| Note 1: The     | e blanking signa                 | al is selected via              | a the BLANKS                      | SELx bits in the        | AUXCONx reg                       | ister.           |              |

## REGISTER 16-23: LEBCONX: LEADING-EDGE BLANKING CONTROL x REGISTER

#### REGISTER 16-26: PWMCAPx: PRIMARY PWM TIME BASE CAPTURE x REGISTER

| R-0             | R-0                                                                  | R-0                       | R-0     | R-0                         | R-0  | R-0            | R-0   |  |  |  |  |
|-----------------|----------------------------------------------------------------------|---------------------------|---------|-----------------------------|------|----------------|-------|--|--|--|--|
|                 |                                                                      |                           | PWMCAP< | <12:5> <sup>(1,2,3,4)</sup> |      |                |       |  |  |  |  |
| bit 15          |                                                                      |                           |         |                             |      |                | bit 8 |  |  |  |  |
|                 |                                                                      |                           |         |                             |      |                |       |  |  |  |  |
| R-0             | R-0                                                                  | R-0                       | R-0     | R-0                         | U-0  | U-0            | U-0   |  |  |  |  |
|                 | PWI                                                                  | MCAP<4:0> <sup>(1,2</sup> | 2,3,4)  |                             | —    | —              | —     |  |  |  |  |
| bit 7           |                                                                      |                           |         |                             |      |                | bit 0 |  |  |  |  |
|                 |                                                                      |                           |         |                             |      |                |       |  |  |  |  |
| Legend:         |                                                                      |                           |         |                             |      |                |       |  |  |  |  |
| R = Readable b  | R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |                           |         |                             |      |                |       |  |  |  |  |
| -n = Value at P | OR                                                                   | '1' = Bit is set          |         | '0' = Bit is clea           | ared | x = Bit is unk | nown  |  |  |  |  |

bit 15-3 **PWMCAP<12:0>:** Captured PWM Time Base Value bits<sup>(1,2,3,4)</sup> The value in this register represents the captured PWM time base value when a leading edge is detected on the current-limit input.

#### bit 2-0 Unimplemented: Read as '0'

Note 1: The capture feature is only available on the primary output (PWMxH).

2: This feature is active only after LEB processing on the current-limit input signal is complete.

**3:** The minimum capture resolution is 8.32 ns.

4: This feature can be used when the XPRES bit (PWMCONx<1>) is set to '0'.

## 21.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "ECAN™" (DS70185) in the *dsPIC33/PIC24 Family Reference Manual*, which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

#### 21.1 Overview

The Enhanced Controller Area Network (ECAN<sup>™</sup>) module is a serial interface, useful for communicating with other ECAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJ64GS606/ 608/610 devices contain one ECAN module.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN Protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and Extended Data Frames
- 0-8 Bytes Data Length
- Programmable Bit Rate, up to 1 Mbit/sec
- Automatic Response to Remote Transmission Requests
- Up to 8 Transmit Buffers with Application-Specified Prioritization and Abort Capability (each buffer can contain up to 8 bytes of data)
- Up to 32 Receive Buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 Full (Standard/Extended Identifier) Acceptance Filters
- Three Full Acceptance Filter Masks
- DeviceNet<sup>™</sup> Addressing Support

- Programmable Wake-up Functionality with Integrated Low-Pass Filter
- Programmable Loopback mode Supports Self-Test Operation
- Signaling via Interrupt Capabilities for all CAN Receiver and Transmitter Error States
- Programmable Clock Source
- Programmable Link to Input Capture module (IC2 for CAN1) for Time-Stamping and Network Synchronization
- Low-Power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

## 21.2 Frame Types

The CAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:

- Standard Data Frame: A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).
- Extended Data Frame: An extended data frame is similar to a standard data frame, but includes an Extended Identifier as well.
- Remote Frame: It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node sends a data frame as a response to this remote request.
- Error Frame: An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.
- Overload Frame: An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node can generate a maximum of 2 sequential overload frames to delay the start of the next message.
- Interframe Space: Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

#### FIGURE 21-1: ECANx MODULE BLOCK DIAGRAM



| R/W-0           | R/W-0                                                     | R/W-0            | R/W-0            | R/W-0            | R/W-0            | R/W-0           | R/W-0  |
|-----------------|-----------------------------------------------------------|------------------|------------------|------------------|------------------|-----------------|--------|
| F11BP3          | F11BP2                                                    | F11BP1           | F11BP0           | F10BP3           | F10BP2           | F10BP1          | F10BP0 |
| bit 15          |                                                           |                  |                  |                  |                  |                 | bit 8  |
|                 |                                                           |                  |                  |                  |                  |                 |        |
| R/W-0           | R/W-0                                                     | R/W-0            | R/W-0            | R/W-0            | R/W-0            | R/W-0           | R/W-0  |
| F9BP3           | F9BP2                                                     | F9BP1            | F9BP0            | F8BP3            | F8BP2            | F8BP1           | F8BP0  |
| bit 7           |                                                           |                  |                  |                  |                  |                 | bit 0  |
|                 |                                                           |                  |                  |                  |                  |                 |        |
| Legend:         |                                                           |                  |                  |                  |                  |                 |        |
| R = Readable    | bit                                                       | W = Writable     | bit              | U = Unimpler     | mented bit, read | l as '0'        |        |
| -n = Value at F | POR                                                       | '1' = Bit is set |                  | '0' = Bit is cle | ared             | x = Bit is unkr | nown   |
|                 |                                                           |                  |                  |                  |                  |                 |        |
| bit 15-12       | F11BP<3:0>:                                               | RX Buffer Mas    | sk for Filter 11 | bits             |                  |                 |        |
|                 | 1111 = Filter                                             | hits received in | RX FIFO but      | fer              |                  |                 |        |
|                 | 1110 = Filter                                             | hits received ir | RX Buffer 14     | Ļ                |                  |                 |        |
|                 |                                                           |                  |                  |                  |                  |                 |        |
|                 | •                                                         |                  |                  |                  |                  |                 |        |
|                 | 0001 = Filter                                             | hits received ir | RX Buffer 1      |                  |                  |                 |        |
|                 | 0000 = Filter                                             | hits received in | RX Buffer 0      |                  |                  |                 |        |
| bit 11-8        | F10BP<3:0>:                                               | RX Buffer Mas    | sk for Filter 10 | ) bits (same va  | lues as bits<15: | :12>)           |        |
| hit 7 1         | bit 7-4 <b>F9BP&lt;3:0&gt;:</b> RX Buffer Mask for Filter |                  |                  |                  | o oc hito <15.12 | 5               |        |

#### REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3

bit 3-0 **F8BP<3:0>:** RX Buffer Mask for Filter 8 bits (same values as bits<15:12>)

| R/W-0           | R/W-0                                              | R/W-0                                                 | R/W-0                                               | R/W-0                              | R/W-0            | R/W-0           | R/W-0  |  |  |  |  |
|-----------------|----------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|------------------------------------|------------------|-----------------|--------|--|--|--|--|
| F15BP3          | F15BP2                                             | F15BP1                                                | F15BP0                                              | F14BP3                             | F14BP2           | F14BP1          | F14BP0 |  |  |  |  |
| bit 15          |                                                    |                                                       |                                                     |                                    |                  |                 | bit 8  |  |  |  |  |
|                 |                                                    |                                                       |                                                     |                                    |                  |                 |        |  |  |  |  |
| R/W-0           | R/W-0                                              | R/W-0                                                 | R/W-0                                               | R/W-0                              | R/W-0            | R/W-0           | R/W-0  |  |  |  |  |
| F13BP3          | F13BP2                                             | F13BP1                                                | F13BP0                                              | F12BP3                             | F12BP2           | F12BP1          | F12BP0 |  |  |  |  |
| bit 7           |                                                    |                                                       |                                                     |                                    |                  |                 | bit 0  |  |  |  |  |
|                 |                                                    |                                                       |                                                     |                                    |                  |                 |        |  |  |  |  |
| Legend:         |                                                    |                                                       |                                                     |                                    |                  |                 |        |  |  |  |  |
| R = Readable    | bit                                                | W = Writable                                          | bit                                                 | U = Unimplemented bit, read as '0' |                  |                 |        |  |  |  |  |
| -n = Value at F | POR                                                | '1' = Bit is set                                      |                                                     | '0' = Bit is cle                   | eared            | x = Bit is unkr | nown   |  |  |  |  |
| bit 15-12       | F15BP<3:0>:<br>1111 = Filter<br>1110 = Filter<br>• | RX Buffer Mat<br>hits received ir<br>hits received ir | sk for Filter 15<br>n RX FIFO but<br>n RX Buffer 14 | 5 bits<br>ffer<br>I                |                  |                 |        |  |  |  |  |
|                 | 0001 = Filter<br>0000 = Filter                     | hits received in<br>hits received in                  | RX Buffer 1                                         |                                    |                  |                 |        |  |  |  |  |
| bit 11-8        | F14BP<3:0>:                                        | RX Buffer Ma                                          | sk for Filter 14                                    | l bits (same va                    | lues as bits<15: | 12>)            |        |  |  |  |  |
| bit 7-4         | F13BP<3:0>:                                        | RX Buffer Ma                                          | sk for Filter 13                                    | 3 bits (same va                    | lues as bits<15: | 12>)            |        |  |  |  |  |
| bit 3-0         | F12BP<3:0>:                                        | RX Buffer Ma                                          | sk for Filter 12                                    | 2 bits (same va                    | lues as bits<15: | 12>)            |        |  |  |  |  |

#### REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4

#### 21.4 ECANx Message Buffers

ECANx message buffers are part of DMA RAM memory. They are not ECAN Special Function Registers. The user application must directly write into the DMA RAM area that is configured for ECANx message buffers. The location and size of the buffer area is defined by the user application.

#### BUFFER 21-1: ECANx MESSAGE BUFFER WORD 0

| U-0    | U-0   | U-0   | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |
|--------|-------|-------|-------|-------|-------|-------|-------|
| —      | —     | —     | SID10 | SID9  | SID8  | SID7  | SID6  |
| bit 15 |       |       |       |       | •     |       | bit 8 |
|        |       |       |       |       |       |       |       |
| R/W-x  | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |
| SID5   | SID4  | SID3  | SID2  | SID1  | SID0  | SRR   | IDE   |
| bit 7  |       |       |       |       |       |       | bit 0 |
|        |       |       |       |       |       |       |       |
|        |       |       |       |       |       |       |       |

| Legena:           |                  |                       |                    |  |
|-------------------|------------------|-----------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |  |
|                   |                  |                       |                    |  |

| bit 15-13 | Unimplemented: Read as '0'                                                                                                       |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|
| bit 12-2  | SID<10:0>: Standard Identifier bits                                                                                              |
| bit 1     | SRR: Substitute Remote Request bit                                                                                               |
|           | <ul><li>1 = Message will request remote transmission</li><li>0 = Normal message</li></ul>                                        |
| bit 0     | IDE: Extended Identifier bit                                                                                                     |
|           | <ul> <li>1 = Message will transmit the Extended Identifier</li> <li>0 = Message will transmit the Standard Identifier</li> </ul> |

## BUFFER 21-2: ECANx MESSAGE BUFFER WORD 1

|                  | LOAN  |                  |       |                  |                 |                 |       |
|------------------|-------|------------------|-------|------------------|-----------------|-----------------|-------|
| U-0              | U-0   | U-0              | U-0   | R/W-x            | R/W-x           | R/W-x           | R/W-x |
| _                | _     | —                | —     |                  | EID<            | 17:14>          |       |
| bit 15           |       |                  |       |                  |                 |                 | bit 8 |
| R/W-x            | R/W-x | R/W-x            | R/W-x | R/W-x            | R/W-x           | R/W-x           | R/W-x |
|                  |       |                  | EID   | <13:6>           |                 |                 |       |
| bit 7            |       |                  |       |                  |                 |                 | bit 0 |
|                  |       |                  |       |                  |                 |                 |       |
| Legend:          |       |                  |       |                  |                 |                 |       |
| R = Readable bit | t     | W = Writable     | bit   | U = Unimpler     | mented bit, rea | d as '0'        |       |
| -n = Value at PO | R     | '1' = Bit is set |       | '0' = Bit is cle | ared            | x = Bit is unki | nown  |

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

#### REGISTER 22-8: ADCPC2: ADC CONVERT PAIR CONTROL REGISTER 2 (CONTINUED)

| bit 12-8 | TRGSRC5<4:0>: Trigger 5 Source Selection bits                                              |
|----------|--------------------------------------------------------------------------------------------|
|          | Selects trigger source for conversion of Analog Channels AN11 and AN10.                    |
|          | 11111 = Timer2 period match                                                                |
|          | 11110 = PWW Generator 7 current limit ADC trigger                                          |
|          | 11100 - PWM Generator 6 current-limit ADC trigger                                          |
|          | 11001 = PWM Generator 5 current-limit ADC trigger                                          |
|          | 11010 = PWM Generator 4 current-limit ADC trigger                                          |
|          | 11001 = PWM Generator 3 current-limit ADC trigger                                          |
|          | 11000 = PWM Generator 2 current-limit ADC trigger                                          |
|          | 10111 = PWM Generator 1 current-limit ADC trigger                                          |
|          | 10110 = PWM Generator 9 secondary trigger selected                                         |
|          | 10101 = PWM Generator 8 secondary trigger selected                                         |
|          | 10100 = PWM Generator 7 secondary trigger selected                                         |
|          | 10011 = PWM Generator 6 secondary trigger selected                                         |
|          | 10010 = PWM Generator 5 secondary trigger selected                                         |
|          | 10001 = PWM Generator 4 secondary trigger selected                                         |
|          | 10000 = PWM Generator 3 secondary trigger selected                                         |
|          | 01111 = PWM Generator 2 secondary trigger selected                                         |
|          | 01110 = PWM Generator 1 secondary trigger selected                                         |
|          | 01101 = PWM secondary Special Event Trigger selected                                       |
|          | 01100 = limer1 period match                                                                |
|          | 01011 = PWM Generator 8 primary trigger selected                                           |
|          | 01010 = PWM Generator / primary trigger selected                                           |
|          | 01000 = PWW Generator 5 primary trigger selected                                           |
|          | 01000 = PWM Generator 4 primary trigger selected                                           |
|          | 00110 - PWM Generator 3 primary trigger selected                                           |
|          | 00101 – PWM Generator 2 primary trigger selected                                           |
|          | 00100 = PWM Generator 1 primary trigger selected                                           |
|          | 00011 = PWM Special Event Trigger selected                                                 |
|          | 00010 = Global software trigger selected                                                   |
|          | 00001 = Individual software trigger selected                                               |
|          | 00000 = No conversion is enabled                                                           |
| bit 7    | IRQEN4: Interrupt Request Enable 4 bit                                                     |
|          | 1 = Enables IRQ generation when requested conversion of Channels AN9 and AN8 is completed  |
|          | 0 = IRQ is not generated                                                                   |
| bit 6    | PEND4: Pending Conversion Status 4 bit                                                     |
|          | 1 = Conversion of Channels AN9 and AN8 is pending; set when selected trigger is asserted   |
|          | 0 = Conversion is complete                                                                 |
| bit 5    | SWTRG4: Software Trigger 4 bit                                                             |
|          | 1 = Starts conversion of AN9 and AN8 (if selected by the TRGSRCx<4:0> bits) <sup>(1)</sup> |
|          | This bit is automatically cleared by hardware when the PEND4 bit is set.                   |
|          | 0 = Conversion has not started                                                             |
|          |                                                                                            |

**Note 1:** The trigger source must be set as an individual software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion is performed when the conversion resources are available.

#### 23.3 Module Applications

This module provides a means for the SMPS dsPIC<sup>®</sup> DSC devices to monitor voltage and currents in a power conversion application. The ability to detect transient conditions and stimulate the dsPIC DSC processor and/or peripherals, without requiring the processor and ADC to constantly monitor voltages or currents, frees the dsPIC DSC to perform other tasks.

The comparator module has a high-speed comparator and an associated 10-bit DAC that provides a programmable reference voltage to the inverting input of the comparator. The polarity of the comparator output is user-programmable. The output of the module can be used in the following modes:

- Generate an Interrupt
- Trigger an ADC Sample-and-Convert Process
- Truncate the PWM Signal (current limit)
- Truncate the PWM Period (current minimum)
- Disable the PWM Outputs (Fault latch)

The output of the comparator module may be used in multiple modes at the same time, such as: 1) generate an interrupt, 2) have the ADC take a sample and convert it, and 3) truncate the PWM output in response to a voltage being detected beyond its expected value.

The comparator module can also be used to wake-up the system from Sleep or Idle mode when the analog input voltage exceeds the programmed threshold voltage.

## 23.4 DAC

The range of the DAC is controlled via an analog multiplexer that selects either AVDD/2, an internal reference source, INTREF, or an external reference source, EXTREF. The full range of the DAC (AVDD/2) will typically be used when the chosen input source pin is shared with the ADC. The reduced range option (INTREF) will likely be used when monitoring current levels using a current sense resistor. Usually, the measured voltages in such applications are small (<1.25V); therefore the option of using a reduced reference range for the comparator extends the available DAC resolution in these applications. The use of an external reference enables the user to connect to a reference that better suits their application.

DACOUT, shown in Figure 23-1, can only be associated with a single comparator at a given time.

Note: It should be ensured in software that multiple DACOE bits are not set. The output on the DACOUT pin will be indeterminate if multiple comparators enable the DAC output.

#### 23.5 Interaction with I/O Buffers

If the comparator module is enabled and a pin has been selected as the source for the comparator, then the chosen I/O pad must disable the digital input buffer associated with the pad to prevent excessive currents in the digital buffer due to analog input voltages.

#### 23.6 Digital Logic

The CMPCONx register (see Register 23-1) provides the control logic that configures the comparator module. The digital logic provides a glitch filter for the comparator output to mask transient signals in less than two instruction cycles. In Sleep or Idle mode, the glitch filter is bypassed to enable an asynchronous path from the comparator to the interrupt controller. This asynchronous path can be used to wake-up the processor from Sleep or Idle mode.

The comparator can be disabled while in Idle mode if the CMPSIDL bit is set. If a device has multiple comparators, if any CMPSIDL bit is set, then the entire group of comparators will be disabled while in Idle mode. This behavior reduces complexity in the design of the clock control logic for this module.

The digital logic also provides a one TCY width pulse generator for triggering the ADC and generating interrupt requests.

The CMPDACx (see Register 23-2) register provides the digital input value to the reference DAC.

If the module is disabled, the DAC and comparator are disabled to reduce power consumption.

#### 23.7 Comparator Input Range

The comparator has a limitation for the input Common-Mode Range (CMR) of (AVDD - 1.5V), typical. This means that both inputs should not exceed this range. As long as one of the inputs is within the Common-Mode Range, the comparator output will be correct. However, any input exceeding the CMR limitation will cause the comparator input to be saturated.

If both inputs exceed the CMR, the comparator output will be indeterminate.

#### 23.8 DAC Output Range

The DAC has a limitation for the maximum reference voltage input of (AVDD - 1.6) volts. An external reference voltage input should not exceed this value or the reference DAC output will become indeterminate.

## 23.9 Comparator Registers

The comparator module is controlled by the following registers:

- CMPCONx: Comparator Control x Register
- CMPDACx: Comparator DAC Control x Register

| Field | Description                                                                                                                                                                                                                                                          |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Wm*Wm | Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}                                                                                                                                                        |  |  |  |
| Wm*Wn | Multiplicand and Multiplier Working register pair for DSP instructions $\in$ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}                                                                                                                                       |  |  |  |
| Wn    | One of 16 Working registers ∈ {W0W15}                                                                                                                                                                                                                                |  |  |  |
| Wnd   | One of 16 Destination Working registers ∈ {W0W15}                                                                                                                                                                                                                    |  |  |  |
| Wns   | One of 16 Source Working registers ∈ {W0W15}                                                                                                                                                                                                                         |  |  |  |
| WREG  | W0 (Working register used in file register instructions)                                                                                                                                                                                                             |  |  |  |
| Ws    | Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }                                                                                                                                                                                                         |  |  |  |
| Wso   | Source W register ∈<br>{ Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }                                                                                                                                                                                      |  |  |  |
| Wx    | X Data Space Prefetch Address register for DSP instructions<br>∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2,<br>[W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2,<br>[W9 + W12], none}                |  |  |  |
| Wxd   | X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}                                                                                                                                                                                             |  |  |  |
| Wy    | Y Data Space Prefetch Address register for DSP instructions<br>∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2,<br>[W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2,<br>[W11 + W12], none} |  |  |  |
| Wyd   | Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}                                                                                                                                                                                             |  |  |  |

#### TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

# TABLE 27-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING<br/>REQUIREMENTS

| AC CHARACTERISTICS |                       |                                                              | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |                    |     |       |                                      |
|--------------------|-----------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-------|--------------------------------------|
|                    |                       |                                                              | $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended                                                                                              |                    |     |       |                                      |
| Param<br>No.       | Symbol                | Characteristic <sup>(1)</sup>                                | Min                                                                                                                                               | Тур <sup>(2)</sup> | Max | Units | Conditions                           |
| SP70               | TscP                  | Maximum SCKx Input Frequency                                 | —                                                                                                                                                 |                    | 15  | MHz   | See Note 3                           |
| SP72               | TscF                  | SCKx Input Fall Time                                         | —                                                                                                                                                 |                    |     | ns    | See Parameter DO32 and <b>Note 4</b> |
| SP73               | TscR                  | SCKx Input Rise Time                                         | —                                                                                                                                                 |                    |     | ns    | See Parameter DO31 and <b>Note 4</b> |
| SP30               | TdoF                  | SDOx Data Output Fall Time                                   | —                                                                                                                                                 |                    |     | ns    | See Parameter DO32 and <b>Note 4</b> |
| SP31               | TdoR                  | SDOx Data Output Rise Time                                   | —                                                                                                                                                 |                    |     | ns    | See Parameter DO31 and <b>Note 4</b> |
| SP35               | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge                    | —                                                                                                                                                 | 6                  | 20  | ns    |                                      |
| SP36               | TdoV2scH,<br>TdoV2scL | SDOx Data Output Setup to<br>First SCKx Edge                 | 30                                                                                                                                                |                    |     | ns    |                                      |
| SP40               | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data Input to SCKx Edge                   | 30                                                                                                                                                |                    |     | ns    |                                      |
| SP41               | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge                    | 30                                                                                                                                                |                    |     | ns    |                                      |
| SP50               | TssL2scH,<br>TssL2scL | $\overline{SSx} \downarrow$ to SCKx $\uparrow$ or SCKx Input | 120                                                                                                                                               | _                  | _   | ns    |                                      |
| SP51               | TssH2doZ              | SSx ↑ to SDOx Output<br>High-Impedance                       | 10                                                                                                                                                |                    | 50  | ns    | See Note 4                           |
| SP52               | TscH2ssH<br>TscL2ssH  | SSx after SCKx Edge                                          | 1.5 TCY + 40                                                                                                                                      | —                  | _   | ns    | See Note 4                           |
| SP60               | TssL2doV              | SDOx Data Output Valid after<br>SSx Edge                     | —                                                                                                                                                 | _                  | 50  | ns    |                                      |

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

**3:** The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock, generated by the master, must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

| AC CHARACTERISTICS |                       |                     |                           | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |      |       |                        |
|--------------------|-----------------------|---------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------------------------|
| Param<br>No.       | Symbol                | Charact             | teristic                  | Min <sup>(1)</sup>                                                                                                                                                                                                                                                                  | Max  | Units | Conditions             |
| IM10               | TLO:SCL               | Clock Low Time      | 100 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     |      | μs    |                        |
|                    |                       |                     | 400 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     |      | μS    |                        |
|                    |                       |                     | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     |      | μs    |                        |
| IM11               | THI:SCL               | Clock High Time     | 100 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     |      | μs    |                        |
|                    |                       |                     | 400 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     |      | μS    |                        |
|                    |                       |                     | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     |      | μs    |                        |
| IM20               | TF:SCL                | SDAx and SCLx       | 100 kHz mode              | —                                                                                                                                                                                                                                                                                   | 300  | ns    | CB is specified to be  |
|                    |                       | Fall Time           | 400 kHz mode              | 20 + 0.1 Св                                                                                                                                                                                                                                                                         | 300  | ns    | from 10 to 400 pF      |
|                    |                       |                     | 1 MHz mode <sup>(2)</sup> | —                                                                                                                                                                                                                                                                                   | 100  | ns    |                        |
| IM21               | TR:SCL                | SDAx and SCLx       | 100 kHz mode              | —                                                                                                                                                                                                                                                                                   | 1000 | ns    | CB is specified to be  |
|                    |                       | Rise Time           | 400 kHz mode              | 20 + 0.1 Св                                                                                                                                                                                                                                                                         | 300  | ns    | from 10 to 400 pF      |
|                    |                       |                     | 1 MHz mode <sup>(2)</sup> | —                                                                                                                                                                                                                                                                                   | 300  | ns    |                        |
| IM25               | TSU:DAT               | Data Input          | 100 kHz mode              | 250                                                                                                                                                                                                                                                                                 |      | ns    |                        |
|                    |                       | Setup Time          | 400 kHz mode              | 100                                                                                                                                                                                                                                                                                 |      | ns    |                        |
|                    |                       |                     | 1 MHz mode <sup>(2)</sup> | 40                                                                                                                                                                                                                                                                                  |      | ns    |                        |
| IM26               | THD:DAT               | Data Input          | 100 kHz mode              | 0                                                                                                                                                                                                                                                                                   |      | μS    |                        |
|                    |                       | Hold Time           | 400 kHz mode              | 0                                                                                                                                                                                                                                                                                   | 0.9  | μS    |                        |
|                    |                       |                     | 1 MHz mode <sup>(2)</sup> | 0.2                                                                                                                                                                                                                                                                                 |      | μS    |                        |
| IM30               | TSU:STA               | Start Condition     | 100 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     |      | μs    | Only relevant for      |
|                    |                       | Setup Time          | 400 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     | —    | μS    | Repeated Start         |
|                    |                       |                     | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     | —    | μs    | condition              |
| IM31               | THD:STA               | Start Condition     | 100 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     | —    | μs    | After this period, the |
|                    |                       | Hold Time           | 400 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     | —    | μS    | first clock pulse is   |
|                    |                       |                     | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     | —    | μs    | generated              |
| IM33 Tsu:sto       | SU:STO Stop Condition | 100 kHz mode        | Tcy/2 (BRG + 1)           | —                                                                                                                                                                                                                                                                                   | μs   |       |                        |
|                    |                       | Setup Time          | 400 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     | —    | μS    |                        |
|                    |                       |                     | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     | —    | μs    |                        |
| IM34               | THD:STO               | Stop Condition      | 100 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     | —    | ns    |                        |
|                    |                       | Hold Time           | 400 kHz mode              | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     | —    | ns    |                        |
|                    |                       |                     | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)                                                                                                                                                                                                                                                                     | —    | ns    |                        |
| IM40 TAA:SCL       | Output Valid          | 100 kHz mode        | —                         | 3500                                                                                                                                                                                                                                                                                | ns   |       |                        |
|                    |                       | from Clock          | 400 kHz mode              | —                                                                                                                                                                                                                                                                                   | 1000 | ns    |                        |
|                    |                       |                     | 1 MHz mode <sup>(2)</sup> | —                                                                                                                                                                                                                                                                                   | 400  | ns    |                        |
| IM45               | TBF:SDA               | Bus Free Time       | 100 kHz mode              | 4.7                                                                                                                                                                                                                                                                                 | —    | μs    | Time the bus must be   |
|                    |                       |                     | 400 kHz mode              | 1.3                                                                                                                                                                                                                                                                                 | —    | μS    | free before a new      |
|                    |                       |                     | 1 MHz mode <sup>(2)</sup> | 0.5                                                                                                                                                                                                                                                                                 | —    | μs    | transmission can start |
| IM50               | Св                    | Bus Capacitive L    | oading                    | —                                                                                                                                                                                                                                                                                   | 400  | pF    |                        |
| IM51               | TPGD                  | Pulse Gobbler Delay |                           | 65                                                                                                                                                                                                                                                                                  | 390  | ns    | See Note 3             |

#### TABLE 27-38: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l<sup>2</sup>C<sup>TM</sup> Baud Rate Generator. Refer to "Inter-Integrated Circuit<sup>TM</sup> (l<sup>2</sup>C<sup>TM</sup>)" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

**3:** Typical value for this parameter is 130 ns.







## Revision C (February 2010)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other changes are referenced by their respective section in Table B-2.

| TABLE B-2: | MAJOR SECTION UPDATES |
|------------|-----------------------|
|------------|-----------------------|

| Section Name                                 | Update Description                                                                                                              |  |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| Section 16.0 "High-Speed PWM"                | Added Note 2 to PTPER (Register 16-3).                                                                                          |  |  |
|                                              | Added Note 1 to SEVTCMP (Register 16-4).                                                                                        |  |  |
|                                              | Updated Note 1 in MDC (Register 16-10).                                                                                         |  |  |
|                                              | Updated Note 5 and added Note 6 to PWMCONx (Register 16-11).                                                                    |  |  |
|                                              | Updated Note 1 in PDCx (Register 16-12).                                                                                        |  |  |
|                                              | Updated Note 1 in SDCx (Register 16-13).                                                                                        |  |  |
|                                              | Updated Note 1 and Note 2 in PHASEx (Register 16-14).                                                                           |  |  |
|                                              | Updated Note 2 in SPHASEx (Register 16-15).                                                                                     |  |  |
|                                              | Updated Note 1 in FCLCONx (Register 16-21).                                                                                     |  |  |
|                                              | Added Note 1 to STRIGx (Register 16-22).                                                                                        |  |  |
|                                              | Updated Leading-Edge Blanking Delay increment value from 8.4 ns to 8.32 ns and added a shaded note in LEBDLYx (Register 16-24). |  |  |
|                                              | Added Note 3 and Note 4 to PWMCAPx (Register 16-26).                                                                            |  |  |
| Section 27.0 "Electrical<br>Characteristics" | Updated the Min and Typ values for the Internal Voltage Regulator specifications in Table 27-13.                                |  |  |
|                                              | Updated the Min and Max values for the Internal RC Accuracy specifications in Table 27-20.                                      |  |  |