

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit
Speed	100MHz
Connectivity	EBI/EMI, Ethernet, I ² C, IrDA, SDHC, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LCD, LVD, POR, PWM, Touch-Sense, WDT
Number of I/O	94
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk53dx256zclq10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Communication interfaces
 - Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability
 - USB full-/low-speed On-the-Go controller with on-chip transceiver
 - Three SPI modules
 - Two I2C modules
 - Six UART modules
 - Secure Digital host controller (SDHC)
 - I2S module

	6.9	.9 Human-machine interfaces (HMI)70			
		6.9.1	TSI electrical specifications7	70	
		6.9.2	LCD electrical characteristics7	71	
7 Dimensions				72	
	7.1 Obtaining package dimensions		72		

8	Pinc	put	.72
	8.1	K53 Signal Multiplexing and Pin Assignments	.72
	8.2	K53 Pinouts	.78
9	Rev	ision History	.80

Terminology and guidelines

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VBAT}	Average current when CPU is not accessing RTC registers					10
	• @ 1.8V					
	• @ -40 to 25°C	_	0.71	0.81	μA	
	• @ 70°C	_	1.01	1.3	μA	
	• @ 105°C	_	2.82	4.3	μA	
	• @ 3.0V					
	• @ -40 to 25°C	_	0.84	0.94	μA	
	• @ 70°C	_	1.17	1.5	μA	
	• @ 105°C	—	3.16	4.6	μA	

Table 6. Power consumption operating behaviors (continued)

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral clocks disabled.
- 3. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled.
- 4. Max values are measured with CPU executing DSP instructions.
- 5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode.
- 6. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 7. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
- 8. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 9. Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 µA.
- 10. Includes 32kHz oscillator current and RTC operation.

5.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies.
- USB regulator disabled
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFL

- 2. $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, f_{OSC} = 12 \text{ MHz} \text{ (crystal)}, f_{SYS} = 96 \text{ MHz}, f_{BUS} = 48 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mode	9	-	-	-
f _{SYS}	System and core clock	—	100	MHz	
f _{SYS_USB}	f _{SYS_USB} System and core clock when Full Speed USB in operation		—	MHz	
f _{ENET}	System and core clock when ethernet in operation			MHz	
	• 10 Mbps	5	—		
	• 100 Mbps	50	—		
f _{BUS}	Bus clock	—	50	MHz	
FB_CLK	FB_CLK FlexBus clock		50	MHz	
f _{FLASH}	Flash clock	—	25	MHz	
f _{LPTMR}	LPTMR clock		25	MHz	

Peripheral operating requirements and behaviors

- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 Debug trace timing specifications

Table 12. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
T _{cyc}	Clock period	Frequency	dependent	MHz
T _{wi}	Low pulse width	2	—	ns
T _{wh}	High pulse width	2		ns
T _r	Clock and data rise time		3	ns
T _f	Clock and data fall time	—	3	ns
Ts	Data setup	3	—	ns
T _h	Data hold	2	—	ns

Figure 3. TRACE_CLKOUT specifications

Figure 7. Test Access Port timing

6.3.3.2 32 kHz oscillator frequency specifications Table 19. 32 kHz oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	—	32.768	—	kHz	
t _{start}	Crystal start-up time	_	1000	_	ms	1
f _{ec_extal32}	Externally provided input clock frequency	_	32.768	_	kHz	2
v _{ec_extal32}	Externally provided input clock amplitude	700		V _{BAT}	mV	2, 3

1. Proper PC board layout procedures must be followed to achieve specifications.

2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.

The parameter specified is a peak-to-peak value and V_{IH} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to V_{BAT}.

6.4 Memories and memory interfaces

6.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	
t _{hversscr}	Sector Erase high-voltage time	—	13	113	ms	1
t _{hversblk256k}	Erase Block high-voltage time for 256 KB	—	416	3616	ms	1

 Table 20.
 NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

6.4.1.2 Flash timing specifications — commands Table 21. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					
t _{rd1blk256k}	256 KB program/data flash	_		1.7	ms	
t _{rd1sec2k}	Read 1s Section execution time (flash sector)			60	μs	1

Table continues on the next page...

Peripheral operating requirements and behaviors

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	—	years	
n _{nvmcycd}	Cycling endurance	10 K	50 K	—	cycles	2
	FlexRAM as	s EEPROM				
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50	_	years	
t _{nvmretee10}	Data retention up to 10% of write endurance		100	—	years	
	Write endurance					3
n _{nvmwree16}	 EEPROM backup to FlexRAM ratio = 16 	35 K	175 K	—	writes	
n _{nvmwree128}	 EEPROM backup to FlexRAM ratio = 128 	315 K	1.6 M	_	writes	
n _{nvmwree512}	EEPROM backup to FlexRAM ratio = 512	1.27 M	6.4 M	_	writes	
n _{nvmwree4k}	• EEPROM backup to FlexRAM ratio = 4096	10 M	50 M	_	writes	
n _{nvmwree32k}	 EEPROM backup to FlexRAM ratio = 32,768 	80 M	400 M		writes	

Table 23. NVM reliability specifications (continued)

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_j \leq 125°C.

 Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.

6.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the flash memory module to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

Writes_subsystem =
$$\frac{\text{EEPROM} - 2 \times \text{EEESPLIT} \times \text{EEESIZE}}{\text{EEESPLIT} \times \text{EEESIZE}} \times \text{Write_efficiency} \times n_{\text{nvmcycd}}$$

where

• Writes_subsystem — minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance)

Peripheral operating requirements and behaviors

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 15. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

6.6.1.3	16-bit ADC with	n PGA operating conditions
	Table 29.	16-bit ADC with PGA operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	
V _{REFPGA}	PGA ref voltage		VREF_OU T	VREF_OU T	VREF_OU T	V	2, 3
V _{ADIN}	Input voltage		V _{SSA}	—	V _{DDA}	V	
V _{CM}	Input Common Mode range		V _{SSA}	—	V _{DDA}	V	
R _{PGAD}	Differential input	Gain = 1, 2, 4, 8	—	128	—	kΩ	IN+ to IN- ⁴
	impedance	Gain = 16, 32	_	64	—		
		Gain = 64	_	32	—		
R _{AS}	Analog source resistance		_	100	_	Ω	5
T _S	ADC sampling time		1.25	_		μs	6

Table continues on the next page...

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	C _{rate} ADC conversion rate	≤ 13 bit modes	18.484	_	450	Ksps	7
		No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					
		16 bit modes	37.037		250	Ksps	8
		No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					

Table 29. 16-bit ADC with PGA operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. ADC must be configured to use the internal voltage reference (VREF_OUT)
- 3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled.
- 4. For single ended configurations the input impedance of the driven input is R_{PGAD}/2
- 5. The analog source resistance (R_{AS}), external to MCU, should be kept as minimum as possible. Increased R_{AS} causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
- The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for F_{in}=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock.
- 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
- 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1

6.6.1.4 16-bit ADC with PGA characteristics Table 30. 16-bit ADC with PGA characteristics

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
I _{DDA_PGA}	Supply current	Low power (ADC_PGA[PGALPb]=0)	_	420	644	μA	2
I _{DC_PGA}	Input DC current		$\frac{2}{R_{\rm PGAD}} \left(\frac{(V_{\rm REFPGA} \times 0.583) - V_{\rm CM}}{({\rm Gain}+1)} \right)$			A	3
		Gain =1, V_{REFPGA} =1.2V, V_{CM} =0.5V	_	1.54	_	μA	
		Gain =64, V_{REFPGA} =1.2V, V_{CM} =0.1V		0.57	_	μA	

Table continues on the next page ...

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
ENOB	Effective number	Gain=1, Average=4	11.6	13.4	_	bits	16-bit
	of bits	Gain=64, Average=4	7.2	9.6	—	bits	differential
		 Gain=1, Average=32 	12.8	14.5	—	bits	
		 Gain=2, Average=32 	11.0	14.3	—	bits	
		Gain=4, Average=32	7.9	13.8	—	bits	
		Gain=8, Average=32	7.3	13.1	—	bits	
		Gain=16, Average=32	6.8	12.5	—	bits	
		• Gain=32, Average=32	6.8	11.5	—	bits	
		• Gain=64, Average=32	7.5	10.6	—	bits	
SINAD	Signal-to-noise plus distortion ratio	See ENOB	6.02	× ENOB +	1.76	dB	

Table 30. 16-bit ADC with PGA characteristics (continued)

1. Typical values assume V_{DDA} =3.0V, Temp=25°C, f_{ADCK}=6MHz unless otherwise stated.

- 2. This current is a PGA module adder, in addition to ADC conversion currents.
- Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (V_{CM}) and the PGA gain.
- 4. Gain = 2^{PGAG}
- 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
- 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting.

6.6.2 CMP and 6-bit DAC electrical specifications

Table 31. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	—	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	_	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage		_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	—	mV
	 CR0[HYSTCTR] = 01 	_	10	—	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	 CR0[HYSTCTR] = 11 	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	_	—	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns

Table continues on the next page...

6.6.3.2 12-bit DAC operating behaviors Table 33. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL}	Supply current — low-power mode	_	_	150	μΑ	
I _{DDA_DACH}	Supply current — high-speed mode	_	—	700	μΑ	
tDACLP	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	—	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high-speed mode, no load, DAC set to 0x000	—	—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	—	—	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	—	—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	—	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 \text{ V}$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	_	3.7	_	μV/C	6
T _{GE}	Temperature coefficient gain error	_	0.000421	_	%FSR/C	
Rop	Output resistance load = $3 \text{ k}\Omega$	_	—	250	Ω	
SR	Slew rate -80h \rightarrow F7Fh \rightarrow 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	—		
	Low power (SP _{LP})	0.05	0.12	—		
СТ	Channel to channel cross talk	_	—	-80	dB	
BW	3dB bandwidth				kHz	
	 High power (SP_{HP}) 	550	_	—		
	Low power (SP _{LP})	40	_	—		

1. Settling within ±1 LSB

- 2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V
- 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV
- V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{OS}	Input offset voltage	—	±3	±5	mV	
α _{VOS}	Input offset voltage temperature coefficient	—	4.8	—	µV/C	
I _{OS}	Input offset current	—	±300	±600	pА	
I _{BIAS}	Input bias current	—	±300	±600	pА	
R _{OUT}	Output AC impedance	—	_	1500	Ω	@ 100kHz, High speed mode
X _{IN}	AC input impedance (f _{IN} =100kHz)	—	159	—	kΩ	
CMRR	Input common mode rejection ratio	—	70	—	dB	
PSRR	Power supply rejection ratio	—	70	—	dB	
SR	Slew rate (ΔV_{IN} =500mV) — Low-power mode	0.1	—	—	V/µs	
SR	Slew rate (ΔV_{IN} =500mV) — High speed mode	1.5	3.5	—	V/µs	
GBW	Unity gain bandwidth — Low-power mode 50pF	0.15	—	—	MHz	
GBW	Unity gain bandwidth — High speed mode 50pF	1	—	—	MHz	
A _V	DC open-loop voltage gain	80	—	—	dB	
GM	Gain margin	_	20	_	dB	
PM	Phase margin	60	69	—	deg	

Table 38. TRIAMP limited range operating behaviors

6.6.7 Voltage reference electrical specifications

Table 39.	VREF full-range	operating	requirements
		operating	requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	Operating t range of t	emperature he device	°C	
CL	Output load capacitance	1()0 nF		1, 2

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Table 40. VREF full-range operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1915	1.195	1.1977	V	
V _{out}	Voltage reference output — factory trim	1.1584	_	1.2376	V	
V _{step}	Voltage reference trim step	—	0.5	_	mV	

Table continues on the next page...

Peripheral operating requirements and behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_	_	80	mV	
I _{bg}	Bandgap only current	—	—	80	μA	1
I _{lp}	Low-power buffer current	_	_	360	uA	1
I _{hp}	High-power buffer current	—	—	1	mA	1
ΔV_{LOAD}	Load regulation				mV	1, 2
	• current = + 1.0 mA	_	2	—		
	• current = - 1.0 mA	_	5	—		
T _{stup}	Buffer startup time	_	_	100	μs	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	—	2	—	mV	1

Table 40. VREF full-range operating behaviors (continued)

- 1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.
- 2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 41. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 42. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes	
V _{out}	Voltage reference output with factory trim	1.173	1.225	V		

6.7 Timers

See General switching specifications.

6.8 Communication interfaces

6.8.1 Ethernet switching specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

Peripheral operating requirements and behaviors

Figure 29. I²S timing — slave modes

Table 55.	I ² S master	mode timing	(full vo	Itage range)
-----------	-------------------------	-------------	----------	--------------

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	2 x t _{SYS}		ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_BCLK cycle time	5 x t _{SYS}	—	ns
S4	I2S_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_BCLK to I2S_FS output valid		15	ns
S6	I2S_BCLK to I2S_FS output invalid	-4.3	—	ns
S7	I2S_BCLK to I2S_TXD valid		15	ns
S8	I2S_BCLK to I2S_TXD invalid	-4.6		ns
S9	I2S_RXD/I2S_FS input setup before I2S_BCLK	23.9	_	ns
S10	I2S_RXD/I2S_FS input hold after I2S_BCLK	0		ns

 Table 56.
 I²S slave mode timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_BCLK cycle time (input)	8 x t _{SYS}		ns
S12	I2S_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_FS input setup before I2S_BCLK	10		ns
S14	I2S_FS input hold after I2S_BCLK	3.5		ns
S15	I2S_BCLK to I2S_TXD/I2S_FS output valid		28.6	ns
S16	I2S_BCLK to I2S_TXD/I2S_FS output invalid	0		ns
S17	I2S_RXD setup before I2S_BCLK	10	_	ns
S18	I2S_RXD hold after I2S_BCLK	2		ns

Pinout

144	144	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
LQFP	MAP BGA											
80	H11	PTA29	DISABLED		PTA29			MII0_COL	FB_AD19			
81	H10	PTB0/ LLWU_P5	LCD_P0/ ADC0_SE8/ ADC1_SE8/ TSI0_CH0	LCD_P0/ ADC0_SE8/ ADC1_SE8/ TSI0_CH0	PTB0/ LLWU_P5	12C0_SCL	FTM1_CH0	rmiio_mdio/ Miio_mdio		FTM1_QD_ PHA	LCD_P0	
82	H9	PTB1	LCD_P1/ ADC0_SE9/ ADC1_SE9/ TSI0_CH6	LCD_P1/ ADC0_SE9/ ADC1_SE9/ TSI0_CH6	PTB1	I2CO_SDA	FTM1_CH1	RMII0_MDC/ MII0_MDC		FTM1_QD_ PHB	LCD_P1	
83	G12	PTB2	LCD_P2/ ADC0_SE12/ TSI0_CH7	LCD_P2/ ADC0_SE12/ TSI0_CH7	PTB2	I2C0_SCL	UARTO_RTS_ b	ENET0_1588_ TMR0		FTM0_FLT3	LCD_P2	
84	G11	PTB3	LCD_P3/ ADC0_SE13/ TSI0_CH8	LCD_P3/ ADC0_SE13/ TSI0_CH8	PTB3	I2C0_SDA	UARTO_CTS_ b	ENET0_1588_ TMR1		FTM0_FLT0	LCD_P3	
85	G10	PTB4	LCD_P4/ ADC1_SE10	LCD_P4/ ADC1_SE10	PTB4			ENET0_1588_ TMR2		FTM1_FLT0	LCD_P4	
86	G9	PTB5	LCD_P5/ ADC1_SE11	LCD_P5/ ADC1_SE11	PTB5			ENET0_1588_ TMR3		FTM2_FLT0	LCD_P5	
87	F12	PTB6	LCD_P6/ ADC1_SE12	LCD_P6/ ADC1_SE12	PTB6						LCD_P6	
88	F11	PTB7	LCD_P7/ ADC1_SE13	LCD_P7/ ADC1_SE13	PTB7						LCD_P7	
89	F10	PTB8	LCD_P8	LCD_P8	PTB8		UART3_RTS_ b				LCD_P8	
90	F9	PTB9	LCD_P9	LCD_P9	PTB9	SPI1_PCS1	UART3_CTS_ b				LCD_P9	
91	E12	PTB10	LCD_P10/ ADC1_SE14	LCD_P10/ ADC1_SE14	PTB10	SPI1_PCS0	UART3_RX			FTM0_FLT1	LCD_P10	
92	E11	PTB11	LCD_P11/ ADC1_SE15	LCD_P11/ ADC1_SE15	PTB11	SPI1_SCK	UART3_TX			FTM0_FLT2	LCD_P11	
93	H7	VSS	VSS	VSS								
94	F5	VDD	VDD	VDD								
95	E10	PTB16	LCD_P12/ TSI0_CH9	LCD_P12/ TSI0_CH9	PTB16	SPI1_SOUT	UARTO_RX			EWM_IN	LCD_P12	
96	E9	PTB17	LCD_P13/ TSI0_CH10	LCD_P13/ TSI0_CH10	PTB17	SPI1_SIN	UART0_TX			EWM_OUT_b	LCD_P13	
97	D12	PTB18	LCD_P14/ TSI0_CH11	LCD_P14/ TSI0_CH11	PTB18		FTM2_CH0	I2S0_TX_ BCLK		FTM2_QD_ PHA	LCD_P14	
98	D11	PTB19	LCD_P15/ TSI0_CH12	LCD_P15/ TSI0_CH12	PTB19		FTM2_CH1	I2S0_TX_FS		FTM2_QD_ PHB	LCD_P15	
99	D10	PTB20	LCD_P16	LCD_P16	PTB20	SPI2_PCS0				CMP0_OUT	LCD_P16	
100	D9	PTB21	LCD_P17	LCD_P17	PTB21	SPI2_SCK				CMP1_OUT	LCD_P17	
101	C12	PTB22	LCD_P18	LCD_P18	PTB22	SPI2_SOUT				CMP2_OUT	LCD_P18	
102	C11	PTB23	LCD_P19	LCD_P19	PTB23	SPI2_SIN	SPI0_PCS5				LCD_P19	

144	144	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
LOFP	MAP BGA											
127	C5	PTC18	LCD_P38	LCD_P38	PTC18		UART3_RTS_ b	ENET0_1588_ TMR2			LCD_P38	
128	B5	PTC19	LCD_P39	LCD_P39	PTC19		UART3_CTS_ b	ENET0_1588_ TMR3			LCD_P39	
129	A5	PTD0/ LLWU_P12	LCD_P40	LCD_P40	PTD0/ LLWU_P12	SPI0_PCS0	UART2_RTS_ b				LCD_P40	
130	D4	PTD1	LCD_P41/ ADC0_SE5b	LCD_P41/ ADC0_SE5b	PTD1	SPI0_SCK	UART2_CTS_ b				LCD_P41	
131	C4	PTD2/ LLWU_P13	LCD_P42	LCD_P42	PTD2/ LLWU_P13	SPI0_SOUT	UART2_RX				LCD_P42	
132	B4	PTD3	LCD_P43	LCD_P43	PTD3	SPI0_SIN	UART2_TX				LCD_P43	
133	A4	PTD4/ LLWU_P14	LCD_P44	LCD_P44	PTD4/ LLWU_P14	SPI0_PCS1	UARTO_RTS_ b	FTM0_CH4		EWM_IN	LCD_P44	
134	A3	PTD5	LCD_P45/ ADC0_SE6b	LCD_P45/ ADC0_SE6b	PTD5	SPI0_PCS2	UARTO_CTS_ b	FTM0_CH5		EWM_OUT_b	LCD_P45	
135	A2	PTD6/ LLWU_P15	LCD_P46/ ADC0_SE7b	LCD_P46/ ADC0_SE7b	PTD6/ LLWU_P15	SPI0_PCS3	UARTO_RX	FTM0_CH6		FTM0_FLT0	LCD_P46	
136	M10	VSS	VSS	VSS								
137	F8	VDD	VDD	VDD								
138	A1	PTD7	LCD_P47	LCD_P47	PTD7	CMT_IRO	UART0_TX	FTM0_CH7		FTM0_FLT1	LCD_P47	
139	B3	PTD10	DISABLED		PTD10		UART5_RTS_ b		FB_AD9			
140	B2	PTD11	DISABLED		PTD11	SPI2_PCS0	UART5_CTS_ b	SDHC0_ CLKIN	FB_AD8			
141	B1	PTD12	DISABLED		PTD12	SPI2_SCK		SDHC0_D4	FB_AD7			
142	C3	PTD13	DISABLED		PTD13	SPI2_SOUT		SDHC0_D5	FB_AD6			
143	C2	PTD14	DISABLED		PTD14	SPI2_SIN		SDHC0_D6	FB_AD5			
144	C1	PTD15	DISABLED		PTD15	SPI2_PCS1		SDHC0_D7	FB_RW_b			

8.2 K53 Pinouts

Pinout

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

Revision History

	1	2	3	4	5	6	7	8	9	10	11	12	_
A	PTD7	PTD6	PTD5	PTD4	PTD0	PTC16	PTC12	PTC8	PTC4	VCAP1	PTC3	PTC2	A
в	PTD12	PTD11	PTD10	PTD3	PTC19	PTC15	PTC11	PTC7	VLL1	VCAP2	PTC1	PTC0	в
с	PTD15	PTD14	PTD13	PTD2	PTC18	PTC14	PTC10	PTC6	VLL2	VLL3	PTB23	PTB22	с
D	PTE2	PTE1	PTE0	PTD1	PTC17	PTC13	PTC9	PTC5	PTB21	PTB20	PTB19	PTB18	D
E	PTE6	PTE5	PTE4	PTE3	VDD	VDD	VDD	VDD	PTB17	PTB16	PTB11	PTB10	E
F	PTE10	PTE9	PTE8	PTE7	VDD	VSS	VSS	VDD	PTB9	PTB8	PTB7	PTB6	F
G	VOUT33	VREGIN	PTE12	PTE11	VREFH	VREFL	VSS	VSS	PTB5	PTB4	PTB3	PTB2	G
н	USB0_DP	USB0_DM	VSS	PTE28	VDDA	VSSA	VSS	VSS	PTB1	PTB0	PTA29	PTA28	н
J	ADC0_DP1/ OP0_DP0	ADC0_DM1/ OP0_DM0	ADC0_SE16/ OP0_OUT/ CMP1_IN2/ ADC0_SE21/ OP0_DP1/ OP1_DP1	DAC1_OUT/ CMP2_IN3/ ADC1_SE23/ OP0_DP5/ OP1_DP5	PTA0	PTA1	PTA6	PTA7	PTA13	PTA27	PTA26	PTA25	J
к	ADC1_DP1/ OP1_DP0/ OP1_DM1	ADC1_DM1/ OP1_DM0	ADC1_SE16/ OP1_OUT/ CMP2_IN2/ ADC0_SE22/ OP0_DP2/ OP1_DP2	DAC0_OUT/ CMP1_IN3/ ADC0_SE23/ OP0_DP4/ OP1_DP4	TRI1_OUT/ CMP2_IN5/ ADC1_SE22	PTA2	PTA3	PTA8	PTA12	PTA16	PTA17	PTA24	к
L	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	TRI0_OUT/ OP1_DM2	TRI0_DM	TRI1_DM	VBAT	PTA4	PTA9	PTA11	PTA14	PTA15	RESET_b	L
м	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DM/ ADC1_DM0/ ADC0_DM3	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	TRI0_DP	TRI1_DP	EXTAL32	XTAL32	PTA5	PTA10	VSS	PTA19	PTA18	м
ļ	1	2	3	4	5	6	7	8	9	10	11	12	,

Figure 31. K53 144 MAPBGA Pinout Diagram

9 Revision History

The following table provides a revision history for this document.

 Table 59.
 Revision History

Rev. No.	Date	Substantial Changes
2	3/2011	Initial public revision

Table continues on the next page...

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:FreescaleTM} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$

© 2011–2013 Freescale Semiconductor, Inc.

Document Number: K53P144M100SF2 Rev. 7, 02/2013