

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f65j15t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number	Pin	Buffer	Description	
	TQFP	Туре	Туре	Description	
RE0/AD8/RD/P2D RE0 AD8 RD	4	I/O I/O I	ST TTL TTL	PORTE is a bidirectional I/O port. Digital I/O. External memory address/data 8. Read control for Parallel Slave Port.	
P2D RE1/AD9/WR/P2C RE1 AD9 WR P2C	3	0 /0 /0 0	ST TTL TTL	Digital I/O. External memory address/data 9. Write control for Parallel Slave Port. ECCP2 PWM output C.	
RE2/AD10/CS/P2B RE2 AD10 CS P2B	78	I/O I/O I O	ST TTL TTL	Digital I/O. External memory address/data 10. Chip select control for Parallel Slave Port. ECCP2 PWM output B.	
RE3/AD11/P3C RE3 AD11 P3C ⁽³⁾	77	I/O I/O O	ST TTL	Digital I/O. External memory address/data 11. ECCP3 PWM output C.	
RE4/AD12/P3B RE4 AD12 P3B ⁽³⁾	76	I/O I/O O	ST TTL	Digital I/O. External memory address/data 12. ECCP3 PWM output B.	
RE5/AD13/P1C RE5 AD13 P1C ⁽³⁾	75	I/O I/O O	ST TTL	Digital I/O. External memory address/data 13. ECCP1 PWM output C.	
RE6/AD14/P1B RE6 AD14 P1B ⁽³⁾	74	I/O I/O O	ST TTL	Digital I/O. External memory address/data 14. ECCP1 PWM output B.	
RE7/AD15/ECCP2/P2A RE7 AD15 ECCP2 ⁽⁴⁾ P2A ⁽⁴⁾	73	I/O I/O I/O O	ST TTL ST	Digital I/O. External memory address/data 15. Capture 2 input/Compare 2 output/PWM 2 output. ECCP2 PWM output A.	
$ST = Sc$ $I = Inj$ $P = Pc$ $I^2C/SMB = I^2C$	ower C™/SMBus inpu	ut with Cl		CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD) uration bit, CCP2MX, is cleared (Extended Microcontroller mo	

TABLE 1-4: PIC18F8XJ10/8XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)

2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).

3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).

4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).

5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).

Pin Name	Pin Number	Pin Buffer	Description		
Pin Name	TQFP	Туре Туре			
				PORTH is a bidirectional I/O port.	
RH0/A16	79				
RH0 A16		1/0 1/0	ST TTL	Digital I/O. External memory address/data 16.	
RH1/A17	80				
RH1 A17		I/O I/O	ST TTL	Digital I/O. External memory address/data 17.	
RH2/A18	1				
RH2		I/O	ST	Digital I/O.	
A18		I/O	TTL	External memory address/data 18.	
RH3/A19	2	10	OT		
RH3 A19		1/O 1/O	ST TTL	Digital I/O. External memory address/data 19.	
RH4/AN12/P3C	22				
RH4		I/O	ST	Digital I/O.	
AN12 P3C ⁽⁵⁾		 0	Analog —	Analog input 12. ECCP3 PWM output C.	
RH5/AN13/P3B	21				
RH5		I/O	ST	Digital I/O.	
AN13 _{P3B} (5)			Analog	Analog input 13. ECCP3 PWM output B.	
RH6/AN14/P1C	20	0	_		
RH6	20	I/O	ST	Digital I/O.	
AN14		I	Analog	Analog input 14.	
P1C ⁽⁵⁾		0	—	ECCP1 PWM output C.	
RH7/AN15/P1B	19		07		
RH7 AN15		I/O I	ST Analog	Digital I/O. Analog input 15.	
P1B ⁽⁵⁾		0		ECCP1 PWM output B.	
-	L compatible inp		1	CMOS = CMOS compatible input or output	
	hmitt Trigger inpu	ut with C	MOS levels		
I = Ing P = Po				O = Output OD = Open-Drain (no P diode to VDD)	

TABLE 1-4: PIC18F8XJ10/8XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)

P = Power I²C/SMB = I²C™/SMBus input buffer

Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).

2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).

3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).

4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).

5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).

6.4 Data Addressing Modes

Note:	The execution of some instructions in the
	core PIC18 instruction set are changed
	when the PIC18 extended instruction set is
	enabled. See Section 6.6 "Data Memory
	and the Extended Instruction Set" for
	more information.

While the program memory can be addressed in only one way – through the program counter – information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in **Section 6.6.1 "Indexed Addressing with Literal Offset**".

6.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device, or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way, but require an additional explicit argument in the opcode. This is known as Literal Addressing mode, because they require some literal value as an argument. Examples include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

6.4.2 DIRECT ADDRESSING

Direct Addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit Literal Address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (Section 6.3.3 "General **Purpose Register File**"), or a location in the Access Bank (Section 6.3.2 "Access Bank") as the data source for the instruction.

The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 6.3.1 "Bank Select Register") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit, 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

6.4.3 INDIRECT ADDRESSING

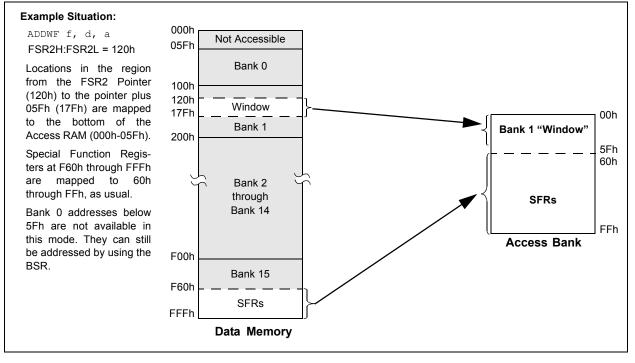
Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as Special Function Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code using loops, such as the example of clearing an entire RAM bank in Example 6-5. It also enables users to perform Indexed Addressing and other Stack Pointer operations for program memory in data memory.

EXAMPLE 6-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0, 100h	;
NEXT	CLRF	POSTINC0	; Clear INDF
			; register then
			; inc pointer
	BTFSS	FSROH, 1	; All done with
			; Bank1?
	BRA	NEXT	; NO, clear next
CONTINU	JE		; YES, continue

6.6.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE


The use of Indexed Literal Offset Addressing mode effectively changes how the lower part of Access RAM (00h to 5Fh) is mapped. Rather than containing just the contents of the bottom part of Bank 0, this mode maps the contents from Bank 0 and a user-defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see Section 6.3.2 "Access Bank"). An example of Access Bank remapping in this addressing mode is shown in Figure 6-12.

Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use Direct Addressing as before. Any Indirect or Indexed Addressing operation that explicitly uses any of the indirect file operands (including FSR2) will continue to operate as standard Indirect Addressing. Any instruction that uses the Access Bank, but includes a register address of greater than 05Fh, will use Direct Addressing and the normal Access Bank map.

6.6.4 BSR IN INDEXED LITERAL OFFSET MODE

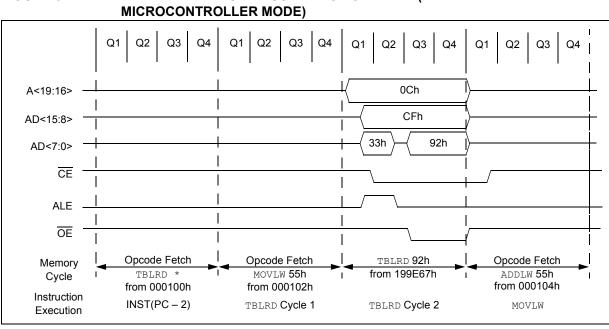

Although the Access Bank is remapped when the extended instruction set is enabled, the operation of the BSR remains unchanged. Direct Addressing, using the BSR to select the data memory bank, operates in the same manner as previously described.

FIGURE 6-12: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING


8.7.1 **8-BIT MODE TIMING**

The presentation of control signals on the external memory bus is different for the various operating modes. Typical signal timing diagrams are shown in Figure 8-7 and Figure 8-8.

FIGURE 8-7: EXTERNAL MEMORY BUS TIMING FOR TBLRD (EXTENDED

EXTERNAL MEMORY BUS TIMING FOR SLEEP (EXTENDED FIGURE 8-8: MICROCONTROLLER MODE)

9.0 8 x 8 HARDWARE MULTIPLIER

9.1 Introduction

All PIC18 devices include an 8 x 8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 9-1.

9.2 Operation

Example 9-1 shows the instruction sequence for an 8×8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 9-2 shows the sequence to do an 8 x 8 signed multiplication. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 9-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1,	W	;	
MULWF	ARG2		;	ARG1 * ARG2 ->
			;	PRODH: PRODL

EXAMPLE 9-2: 8 x 8 SIGNED MULTIPLY ROUTINE

MOVF	ARG1, W		
MULWF	ARG2	;	ARG1 * ARG2 ->
		;	PRODH:PRODL
BTFSC	ARG2, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG1
MOVF	ARG2, W		
BTFSC	ARG1, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG2

		Program	Cycles	Time			
Routine	Multiply Method	Memory (Words)	(Max)	@ 40 MHz	@ 10 MHz	@ 4 MHz	
	Without Hardware Multiply	13	69	6.9 μs	27.6 μs	69 μs	
8 x 8 unsigned	Hardware Multiply	1	1	100 ns	400 ns	1 μs	
8 x 8 signed	Without Hardware Multiply	33	91	9.1 μs	36.4 μs	91 μs	
	Hardware Multiply	6	6	600 ns	2.4 μs	6 μs	
16 x 16 uppigned	Without Hardware Multiply	21	242	24.2 μs	96.8 μs	242 μs	
16 x 16 unsigned	Hardware Multiply	28	28	2.8 μs	11.2 μs	28 μs	
16 x 16 signed	Without Hardware Multiply	52	254	25.4 μs	102.6 μs	254 μs	
	Hardware Multiply	35	40	4.0 μs	16.0 μs	40 μs	

TABLE 9-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

11.3 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin). All pins on PORTB are digital only and tolerate voltages up to 5.5V.

The Output Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register read and write the latched output value for PORTB.

EXAMPLE 11-2: INITIALIZING PORTB

CLRF	PORTB	; Initialize PORTB by ; clearing output : data latches
CLRF	LATB	; data fattines : Alternate method
OLIG	DITE	; to clear output
		; data latches
MOVLW	OCFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn <u>on all</u> the pull-ups. This is performed by clearing bit, RBPU (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins (RB<7:4>) have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB<7:4>) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB<7:4> are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from power-managed modes. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

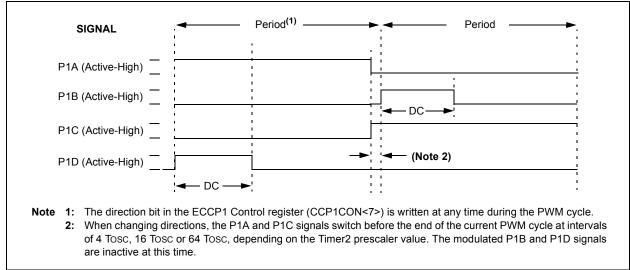
- a) Any read or write of PORTB (except with the MOVFF (ANY), PORTB instruction). This will end the mismatch condition.
- b) Clear flag bit, RBIF.

A mismatch condition will continue to set flag bit, RBIF. Reading PORTB will end the mismatch condition and allow flag bit, RBIF, to be cleared.

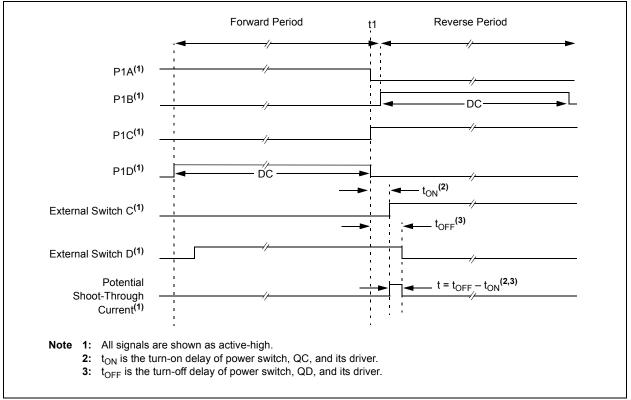
The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

For 80-pin devices, RB3 can be configured as the alternate peripheral pin for the ECCP2 module and Enhanced PWM Output 2A by clearing the CCP2MX Configuration bit. This applies only to 80-pin devices operating in Extended Microcontroller mode. If the device is in Microcontroller mode, the alternate assignment for ECCP2 is RE7. As with other ECCP2 configurations, the user must ensure that the TRISB<3> bit is set appropriately for the intended operation.

Pin Name	Function	TRIS Setting	I/O	I/О Туре	Description
RD0/AD0/PSP0	RD0	0	0	DIG	LATD<0> data output.
		1	I	ST	PORTD<0> data input.
	AD0 ⁽²⁾	x	0	DIG	External memory interface, address/data bit 0 output. ⁽¹⁾
		x	I	TTL	External memory interface, data bit 0 input. ⁽¹⁾
	PSP0		0	DIG	PSP read output data (LATD<0>); takes priority over port data.
			Ι	TTL	PSP write data input.
RD1/AD1/PSP1	RD1	0	0	DIG	LATD<1> data output.
		1	Ι	ST	PORTD<1> data input.
	AD1 ⁽²⁾	x	0	DIG	External memory interface, address/data bit 1 output. ⁽¹⁾
		x	I	TTL	External memory interface, data bit 1 input. ⁽¹⁾
	PSP1	x	0	DIG	PSP read output data (LATD<1>); takes priority over port data.
		x	I	TTL	PSP write data input.
RD2/AD2/PSP2	RD2	0	0	DIG	LATD<2> data output.
		1	Ι	ST	PORTD<2> data input.
	AD2 ⁽²⁾	х	0	DIG	External memory interface, address/data bit 2 output. ⁽¹⁾
		х	I	TTL	External memory interface, data bit 2 input. ⁽¹⁾
	PSP2	x	0	DIG	PSP read output data (LATD<2>); takes priority over port data.
		х	I	TTL	PSP write data input.
RD3/AD3/PSP3	RD3	0	0	DIG	LATD<3> data output.
		1	I	ST	PORTD<3> data input.
	AD3 ⁽²⁾	x	0	DIG	External memory interface, address/data bit 3 output. ⁽¹⁾
		х	I	TTL	External memory interface, data bit 3 input. ⁽¹⁾
	PSP3	x	0	DIG	PSP read output data (LATD<3>); takes priority over port data.
		х	I	TTL	PSP write data input.
RD4/AD4/	RD4	0	0	DIG	LATD<4> data output.
PSP4/SDO2		1	I	ST	PORTD<4> data input.
	AD4 ⁽²⁾	х	0	DIG	External memory interface, address/data bit 4 output. ⁽¹⁾
		х	I	TTL	External memory interface, data bit 4 input. ⁽¹⁾
	PSP4	х	0	DIG	PSP read output data (LATD<4>); takes priority over port data.
		х	I	TTL	PSP write data input.
	SDO2	0	0	DIG	SPI data output (MSSP2 module); takes priority over port data.
RD5/AD5/	RD5	0	0	DIG	LATD<5> data output.
PSP5/SDI2/		1	I	ST	PORTD<5> data input.
SDA2	AD5 ⁽²⁾	х	0	DIG	External memory interface, address/data bit 5 output. ⁽¹⁾
		х	I	TTL	External memory interface, data bit 5 input. ⁽¹⁾
	PSP5	х	0	DIG	PSP read output data (LATD<5>); takes priority over port data.
		х	Ι	TTL	PSP write data input.
	SDI2	1	Ι	ST	SPI data input (MSSP2 module).
	SDA2	1	0	DIG	I ² C [™] data output (MSSP2 module); takes priority over port data.
		1	I	I ² C/SMB	I ² C data input (MSSP2 module); input type depends on module setting.


TABLE 11-9: PORTD FUNCTIONS

Legend: PWR = Power Supply, O = Output, I = Input, I²C[™]/SMB = I²C/SMBus input buffer, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).


Note 1: External memory interface I/O takes priority over all other digital and PSP I/O.

2: Available on 80-pin devices only.

19.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCKx is the clock output)
- Slave mode (SCKx is the clock input)
- Clock Polarity (Idle state of SCKx)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCKx)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

Each MSSP module consists of a transmit/receive shift register (SSPxSR) and a buffer register (SSPxBUF). The SSPxSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPxSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full detect bit, BF (SSPxSTAT<0>), and the interrupt flag bit, SSPxIF, are set. This double-buffering of the received data (SSPxBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPxBUF register during transmission/reception of data will be ignored and the Write Collision Detect bit, WCOL (SSPxCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPxBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF (SSPxSTAT<0>), indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 19-1 shows the loading of the SSPxBUF (SSPxSR) for data transmission.

The SSPxSR is not directly readable or writable and can only be accessed by addressing the SSPxBUF register. Additionally, the SSPxSTAT register indicates the various status conditions.

LOOP	BRA	LOOP	;Has data been received (transmit complete)? ;No ;WREG reg = contents of SSP1BUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF MOVWF	TXDATA, W SSP1BUF	;W reg = contents of TXDATA ;New data to xmit

19.4 I²C Mode

The MSSP module in I²C mode fully implements all master and slave functions (including general call support) and provides interrupts on Start and Stop bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer:

- Serial clock (SCLx) RC3/SCK1/SCL1 or RD6/SCK2/SCL2
- Serial data (SDAx) RC4/SDI1/SDA1 or RD5/SDI2/SDA2

The user must configure these pins as inputs by setting the associated TRIS bits.

FIGURE 19-7: MSSP BLOCK DIAGRAM (I²C[™] MODE) Internal Data Bus Read Write SSPxBUF reg SCLx \mathbb{X} Shift Clock imesSSPxSR reg SDAx LSb MSb Match Detect Addr Match Address Mask SSPxADD reg Set. Reset Start and S. P bits Stop bit Detect (SSPxSTAT reg) Note: Only port I/O names are used in this diagram for the sake of brevity. Refer to the text for a full list of multiplexed functions.

19.4.1 REGISTERS

The MSSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. These are:

- MSSP Control Register 1 (SSPxCON1)
- MSSP Control Register 2 (SSPxCON2)
- MSSP Status Register (SSPxSTAT)
- Serial Receive/Transmit Buffer Register (SSPxBUF)
- MSSP Shift Register (SSPxSR) Not directly accessible
- MSSP Address Register (SSPxADD)

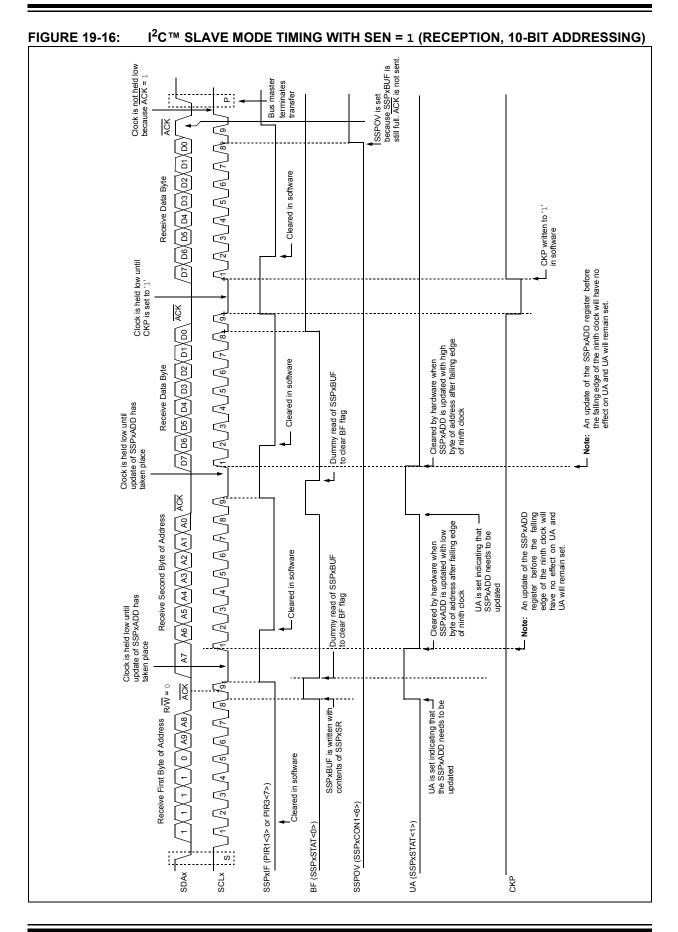
SSPxCON1, SSPxCON2 and SSPxSTAT are the control and status registers in I²C mode operation. The SSPxCON1 and SSPxCON2 registers are readable and writable. The lower 6 bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

SSPxSR is the shift register used for shifting data in or out. SSPxBUF is the buffer register to which data bytes are written to or read from.

SSPxADD register holds the slave device address when the MSSP is configured in I²C Slave mode. When the MSSP is configured in Master mode, the lower seven bits of SSPxADD act as the Baud Rate Generator reload value.

In receive operations, SSPxSR and SSPxBUF together create a double-buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

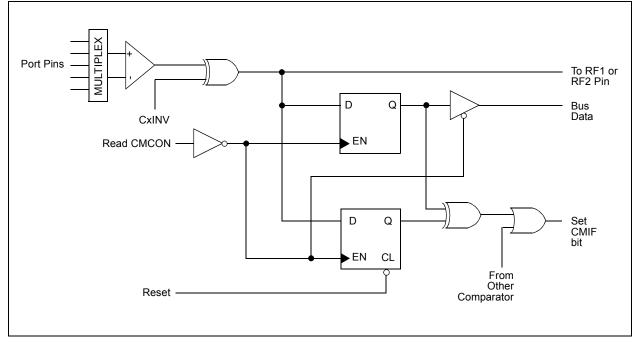
During transmission, the SSPxBUF is not double-buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.


REGISTER 19-4: SSPxCON1: MSSPx CONTROL REGISTER 1 (I²C[™] MODE)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	WCOL: Write Collision Detect bit
	In Master Transmit mode: 1 = A write to the SSPxBUF register was attempted while the I ² C conditions were not valid for a transmission to be started (must be cleared in software)
	0 = No collision
	 In Slave Transmit mode: 1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in software)
	0 = No collision
	In Receive mode (Master or Slave modes): This is a "don't care" bit.
bit 6	SSPOV: Receive Overflow Indicator bit
	 In Receive mode: 1 = A byte is received while the SSPxBUF register is still holding the previous byte (must be cleared in software) 0 = No overflow
	<u>In Transmit mode:</u> This is a "don't care" bit in Transmit mode.
bit 5	SSPEN: Master Synchronous Serial Port Enable bit
	 1 = Enables the serial port and configures the SDAx and SCLx pins as the serial port pins⁽¹⁾ 0 = Disables serial port and configures these pins as I/O port pins⁽¹⁾
bit 4	CKP: SCKx Release Control bit
	In Slave mode:
	 1 = Release clock 0 = Holds clock low (clock stretch); used to ensure data setup time
	In Master mode:
	Unused in this mode.
bit 3-0	SSPM<3:0>: Master Synchronous Serial Port Mode Select bits
	1111 = I ² C Slave mode, 10-bit address with Start and Stop bit interrupts enabled ⁽²⁾ 1110 = I ² C Slave mode, 7-bit address with Start and Stop bit interrupts enabled ⁽²⁾ 1011 = I ² C Firmware Controlled Master mode (slave Idle) ⁽²⁾ 1000 = I ² C Master mode, clock = Fosc/(4 * (SSPADD + 1)) ⁽²⁾ 0111 = I ² C Slave mode, 10-bit address ⁽²⁾ 0110 = I ² C Slave mode, 7-bit address ⁽²⁾
Note 1:	When enabled, the SDAx and SCLx pins must be properly configured as input or output.
•	


2: Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.

REGISTER 20-2: RCSTAX: RECEIVE STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x		
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D		
bit 7							bit (
Legend:									
R = Readabl	e bit		W = Writable bit		mented bit, rea				
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unki	nown		
bit 7	SPEN: Seria	SPEN: Serial Port Enable bit							
		ort enabled (con ort disabled (hel		Tx and TXx/C	Kx pins as seria	al port pins)			
bit 6	RX9: 9-Bit F	Receive Enable I	oit						
		9-bit reception 8-bit reception							
bit 5	SREN: Sing	le Receive Enal	ole bit						
	<u>Asynchrono</u> Don't care.	us mode:							
	1 = Enable 0 = Disable	<u>is mode – Maste</u> s single receive s single receive		- 4-					
		eared after rece is mode – Slave		ete.					
bit 4	CREN: Con	CREN: Continuous Receive Enable bit							
	Asynchrono 1 = Enables 0 = Disables	receiver							
		<u>is mode:</u> continuous rece s continuous rec		ole bit, CREN, i	s cleared (CRE	EN overrides SF	REN)		
bit 3	ADDEN: Ad	Idress Detect Er	able bit						
	1 = Enable	us mode 9-bit (F s address detect s address detect	tion, enables i						
	<u>Asynchrono</u> Don't care.	us mode 8-bit (F	<u>RX9 = 0):</u>						
bit 2	FERR: Fran	ning Error bit							
	1 = Framing 0 = No fram	ı error (can be uı ing error	odated by read	ding the RCRE	Gx register and	I receiving the r	next valid byte		
bit 1	OERR: Ove	errun Error bit							
	1 = Overrun 0 = No over	n error (can be cl rrun error	eared by clea	ring bit, CREN)				
bit 0	RX9D: 9th b	bit of Received D	Data						
	This can be	address/data bi	t or a parity bi	t and must be	calculated by u	ser firmware.			

FIGURE 22-3: COMPARATOR OUTPUT BLOCK DIAGRAM

22.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR2<6>) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

Both the CMIE bit (PIE2<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	If a change in the CMCON register
	(C1OUT or C2OUT) should occur when a
	read operation is being executed (start of
	the Q2 cycle), then the CMIF (PIR2
	register) interrupt flag may not get set.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit, CMIF.

A mismatch condition will continue to set flag bit, CMIF. Reading CMCON will end the mismatch condition and allow flag bit, CMIF, to be cleared.

22.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional, if enabled. This interrupt will wake-up the device from Sleep mode, when enabled. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM<2:0> = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

22.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator modules to be turned off (CM<2:0> = 111). However, the input pins (RF3 through RF6) are configured as analog inputs by default on device Reset. The I/O configuration for these pins is determined by the setting of the PCFG<3:0> bits (ADCON1<3:0>). Therefore, device current is minimized when analog inputs are present at Reset time.

XORWF	KORWF Exclusive OR W with f					
Syntax:	XORWF	f {,d {,a}}				
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]					
Operation:	(W) .XOR.	(f) \rightarrow dest				
Status Affected:	N, Z					
Encoding:	0001	10da ffi	ff ffff			
Description:	register 'f'. I in W. If 'd' is	Exclusive OR the contents of W with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in the register 'f'.				
		he Access Bar he BSR is use				
	If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write to destination			
Example:	XORWF 1	REG, 1, 0				
Before Instruc						
REG W	= AFh = B5h					
After Instructic REG W	on = 1Ah = B5h					

25.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, the PIC18F87J10 family of devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment Indirect and Indexed Addressing operations and the implementation of Indexed Literal Offset Addressing for many of the standard PIC18 instructions.

The additional features of the extended instruction set are disabled by default on unprogrammed devices. Users must properly set or clear the XINST Configuration bit during programming to enable or disable these features.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers, or use them for Indexed Addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

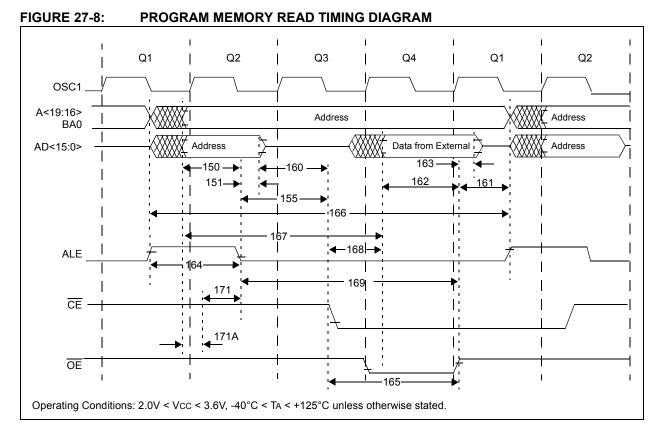
The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- function pointer invocation
- software Stack Pointer manipulation
- manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 25-3. Detailed descriptions are provided in **Section 25.2.2 "Extended Instruction Set"**. The opcode field descriptions in Table 25-1 (page 294) apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

25.2.1 EXTENDED INSTRUCTION SYNTAX


Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of Indexed Addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. The MPASM[™] Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byte-oriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 25.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

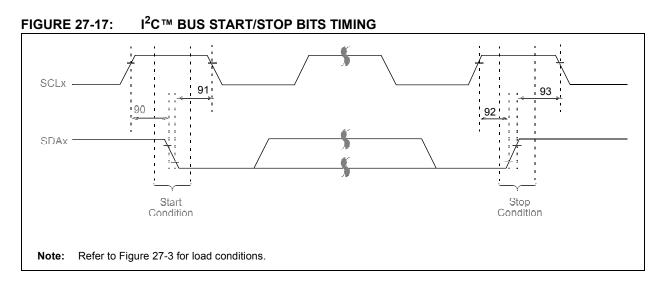

Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word				Status
		Description	Cycles	MSb			LSb	Affected
ADDFSR	f, k	Add Literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add Literal to FSR2 and Return	2	1110	1000	11kk	kkkk	None
CALLW		Call Subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0 z z z	ZZZZ	None
		f _d (destination) 2nd word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	1zzz	ZZZZ	None
		z _d (destination) 2nd word		1111	XXXX	XZZZ	ZZZZ	
PUSHL	k	Store Literal at FSR2,	1	1110	1010	kkkk	kkkk	None
		Decrement FSR2						
SUBFSR	f, k	Subtract Literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract Literal from FSR2 and	2	1110	1001	11kk	kkkk	None
		Return						

TABLE 25-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

Param. No	Symbol	Characteristics	Min	Тур	Мах	Units
150	TadV2alL	Address Out Valid to ALE ↓ (address setup time)	0.25 Tcy – 10	_	_	ns
151	TalL2adl	ALE \downarrow to Address Out Invalid (address hold time)	5	_	—	ns
155	TalL2oeL	ALE \downarrow to $\overline{OE} \downarrow$	10	0.125 TCY	_	ns
160	TadZ2oeL	AD High-Z to $\overline{OE} \downarrow$ (bus release to \overline{OE})	0	_	—	ns
161	ToeH2adD	OE ↑ to AD Driven	0.125 Tcy – 5	_	—	ns
162	TadV2oeH	LS Data Valid before \overline{OE} \uparrow (data setup time)	20	_	—	ns
163	ToeH2adl	OE ↑ to Data In Invalid (data hold time)	0	_	_	ns
164	TalH2alL	ALE Pulse Width	—	0.25 TCY	—	ns
165	ToeL2oeH	OE Pulse Width	0.5 Tcy – 5	0.5 TCY	_	ns
166	TalH2alH	ALE \uparrow to ALE \uparrow (cycle time)	—	Тсү	—	ns
167	Тасс	Address Valid to Data Valid	0.75 Tcy – 25		—	ns
168	Тое	$\overline{OE}\downarrow$ to Data Valid		_	0.5 Tcy – 25	ns
169	TalL2oeH	ALE ↓ to OE ↑	0.625 Tcy – 10		0.625 Tcy + 10	ns
171	TalH2csL	Chip Enable Active to ALE \downarrow	0.25 TCY – 20		—	ns
171A	TubL2oeH	AD Valid to Chip Enable Active		_	10	ns

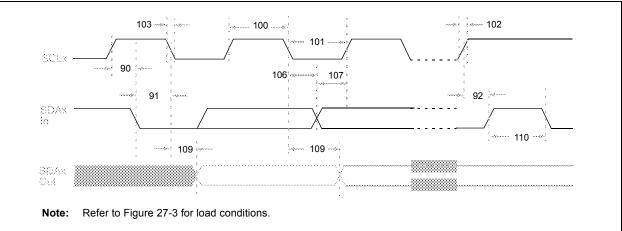

TABLE 27-10: CLKO AND I/O TIMING REQUIREMENTS

TABLE 27-20: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	4700	_	ns	Only relevant for Repeated
		Setup Time	400 kHz mode	600	—		Start condition
91	THD:STA	Start Condition	100 kHz mode	4000	_	ns	After this period, the first
		Hold Time	400 kHz mode	600	_		clock pulse is generated
92	Tsu:sto	Stop Condition	100 kHz mode	4700	_	ns	
		Setup Time	400 kHz mode	600	_		
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	
		Hold Time	400 kHz mode	600			

FIGURE 27-18: I²C[™] BUS DATA TIMING

POP	2
PUSH	2
RCALL	
RESET	
RETFIE	
RETLW	
RETORN	
RLNCF	
RRCF	
RRNCF	
SETF	7
SETF (Indexed Literal Offset Mode)34	
SLEEP	
Standard Instructions29	3
SUBFWB	
SUBLW	
SUBWF	
SUBWFB	
SWAPF	
TBLRD	
TBLWT	
XORLW	
XORWF	
INTCON Register	-
RBIF Bit	8
INTCON Registers	
Inter-Integrated Circuit. See I ² C.	
Internal Oscillator Block	4
Internal RC Oscillator	
Use with WDT28	7
Internal Voltage Reference Specifications	1
Internet Address 40	15
Interrupt Sources	81
Interrupt Sources	1 55
Interrupt Sources	1 5 1
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17	5 71 72
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12	1 5 1 2 2 8
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15	1 5 1 2 8 3
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15	1 5 1 2 8 3 5 5
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18	1 5 1 2 8 3 5 1
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR3 Overflow 163, 163	1 5 1 2 8 3 5 1 5 1 5 1 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR3 Overflow 163, 16 TMR4 to PR4 Match 16	1 5 1 2 8 3 5 1 5 8 3 5 1 5 8
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR3 Overflow 163, 16 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16	1 5 1 2 8 3 5 1 5 8 7
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR3 Overflow 163, 16 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10	1 5 1 2 8 3 5 1 5 8 7 9
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 12	1 5 1 2 8 3 5 1 5 8 7 9 4
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR3 Overflow 163, 16 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10	
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 12 INTx Pin 12	
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 12 INTx Pin 12 PORTB, Interrupt-on-Change 12 TMR0 12 Interrupts, Flag Bits 12	1512835158794444
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 12 INTx Pin 12 PORTB, Interrupt-on-Change 12 TMR0 12	1512835158794444
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 12 INTx Pin 12 PORTB, Interrupt-on-Change 12 TMR0 12 Interrupts, Flag Bits 12 Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit) 12 IORLW 31	1512835158794444
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 12 INTx Pin 12 PORTB, Interrupt-on-Change 12 TMR0 12 Interrupts, Flag Bits 12 Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit) 12 IORLW 31 IORWF 31	1512835158794444 866
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 12 INTx Pin 12 PORTB, Interrupt-on-Change 12 TMR0 12 Interrupts, Flag Bits 12 Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit) 12 IORLW 31	1512835158794444 866
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 12 INTx Pin 12 PORTB, Interrupt-on-Change 12 TMR0 12 Interrupts, Flag Bits 12 Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit) 12 IORLW 31 IORWF 31	1512835158794444 866
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR3 Overflow 163, 16 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 12 INTx Pin 12 PORTB, Interrupt-on-Change 12 TMR0 12 Interrupts, Flag Bits 11 Interrupts, Flag Bits 11 INTRW 31 IORLW 31 IORWF 31 IPR Registers 12	1512835158794444 8660
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR3 Overflow 163, 16 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 12 INTx Pin 12 PORTB, Interrupt-on-Change 12 Interrupts, Flag Bits 1 Interrupts, Flag Bits 1 Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit) 12 IORLW 31 IORWF 31 IPR Registers 12	1512835158794444 8660
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR3 Overflow 163, 16 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 12 INTx Pin 12 PORTB, Interrupt-on-Change 12 TMR0 12 Interrupts, Flag Bits 11 Interrupts, Flag Bits 11 INTRW 31 IORLW 31 IORWF 31 IPR Registers 12	1512835158794444 8660
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR3 Overflow 163, 16 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 12 INTx Pin 12 PORTB, Interrupt-on-Change 12 INTR0 12 INTR0 12 INR0 12 INR0 12 INTR0 12 INR0	1512835158794444 8660 7
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 122 TMR0 Overflow 155 TMR1 Overflow 155 TMR2 to PR2 Match (PWM) 18 TMR3 Overflow 163, 163 TMR4 to PR4 Match 166 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 122 INTx Pin 122 PORTB, Interrupt-on-Change 122 INTR0 122 INTR0 122 INTR0 122 INTR0 123 INTR0 124 INTR0 125 INTR0 124 INTR0 124 IORLW 314 IORWF 314 IPR Registers 124 L L LFSR 314 M Master Clear (MCLR)	1512835158794444 8660 7
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR3 Overflow 163, 16 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 12 INTx Pin 12 PORTB, Interrupt-on-Change 12 INTR0 12 INTR0 12 INR0 12 INR0 12 INTR0 12 INR0	1 5 1 2 8 3 5 1 5 8 7 9 4 4 4 8 6 6 0 7 9
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 12 TMR0 Overflow 15 TMR1 Overflow 15 TMR2 to PR2 Match (PWM) 18 TMR3 Overflow 163, 16 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 12 INTx Pin 12 PORTB, Interrupt-on-Change 12 INR0 12 INTRV 12 INTR Pin 12 PORTB, Interrupt-on-Change 12 INTRV 11 IORLW 31 IORWF 31 IPR Registers 12 L L LFSR 31 M Master Clear (MCLR) Master Synchronous Serial Port (MSSP). See MSSP.	115128351587994444 86660 7 99
Interrupt Sources 28 A/D Conversion Complete 26 Capture Complete (CCP) 17 Compare Complete (CCP) 17 Interrupt-on-Change (RB7:RB4) 122 TMR0 Overflow 153 TMR1 Overflow 154 TMR2 to PR2 Match (PWM) 18 TMR3 Overflow 163, 16 TMR4 to PR4 Match 16 TMR4 to PR4 Match (PWM) 16 Interrupts 10 During Context Saving 122 INTx Pin 122 PORTB, Interrupt-on-Change 122 TMR0 122 INTR0 123 Interrupts, Flag Bits 112 Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit) 124 IORLW 311 IORWF 311 IPR Registers 124 L L LFSR 311 M Master Clear (MCLR) 4 Master Synchronous Serial Port (MSSP). See MSSP. 5	11512835151587994444 86660 7 9889

Microchip Internet Web Site	405
MOVF	317
MOVFF	318
MOVLB	318
MOVLW	319
MOVSF	337
MOVSS	338
MOVWF	
MPLAB ASM30 Assembler, Linker, Librarian	344
MPLAB ICD 2 In-Circuit Debugger	345
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator	345
MPLAB Integrated Development	
Environment Software	
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	344
MSSP	
ACK Pulse	,
Control Registers (general)	193
I ² C Mode. See I ² C Mode.	
Module Overview	
SPI Master/Slave Connection	
TMR4 Output for Clock Shift	
MULLW	
MULWF	320
N	
NEGF	201
NEGF	
NOP Notable Differences Between PIC18F8722	
and PIC18F87J10 Families	301
Oscillator Options	
Peripherals	
Power Requirements	
Fower Requirements	
0	
Oscillator Configuration	31
EC	
ECPLL	

Oscillator, Timer3 163 P

Р	
Packaging	385
Details	386
Marking	385
Parallel Slave Port (PSP)	148
Associated Registers	150
PORTD	148
RE0/RD Pin	148
RE1/WR Pin	148
RE2/CS Pin	148
Select (PSPMODE Bit)	148
PICSTART Plus Development Programmer	346
PIE Registers	117

HS31HS Modes31HSPLL31INTRC31Oscillator Selection281Oscillator Start-up Timer (OST)37Oscillator Switching34Oscillator Transitions35Oscillator, Timer1155, 165