

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f66j10-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.1.5 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide and is contained in three separate 8-bit registers. The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits; it is not directly readable or writable. Updates to the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCH register. Updates to the PCU register are performed through the PCLATH register or writable. Updates to the PCU register are performed through the PCU register are performed through the PCU register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred to the program counter by any operation that writes PCL. Similarly, the upper two bytes of the program counter are transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see **Section 6.1.8.1 "Computed GOTO"**).

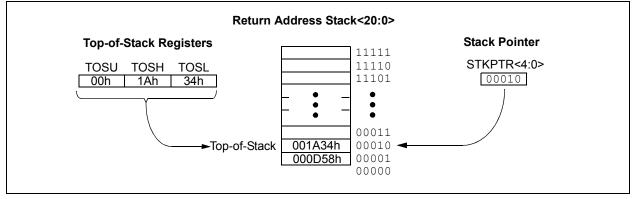
The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

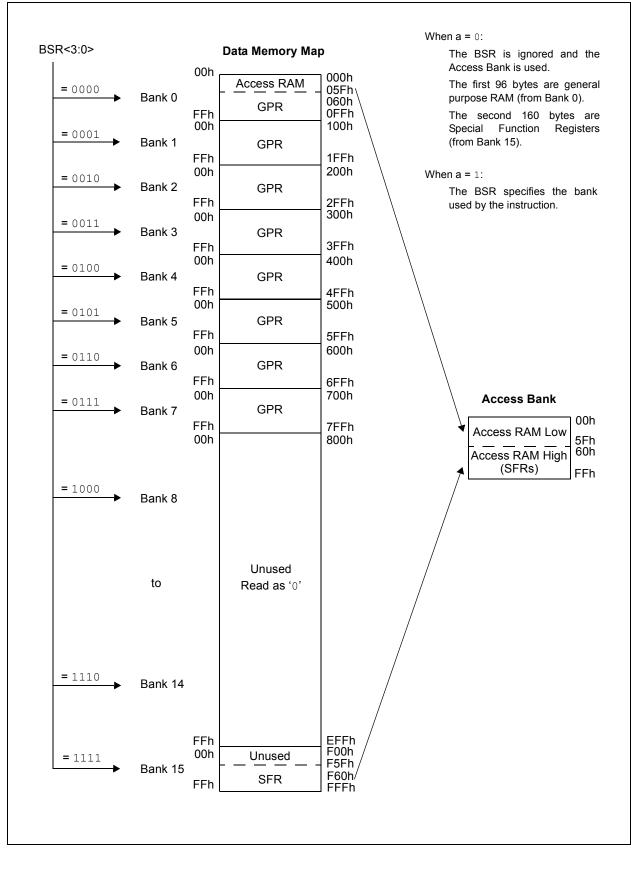
6.1.6 RETURN ADDRESS STACK

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC is pushed onto the stack when a CALL or RCALL instruction is executed, or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction (and on ADDULNK and SUBULNK instructions if the extended instruction set is enabled). PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions. The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer, STKPTR. The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the Top-of-Stack Special Function Registers. Data can also be pushed to, or popped from the stack, using these registers.

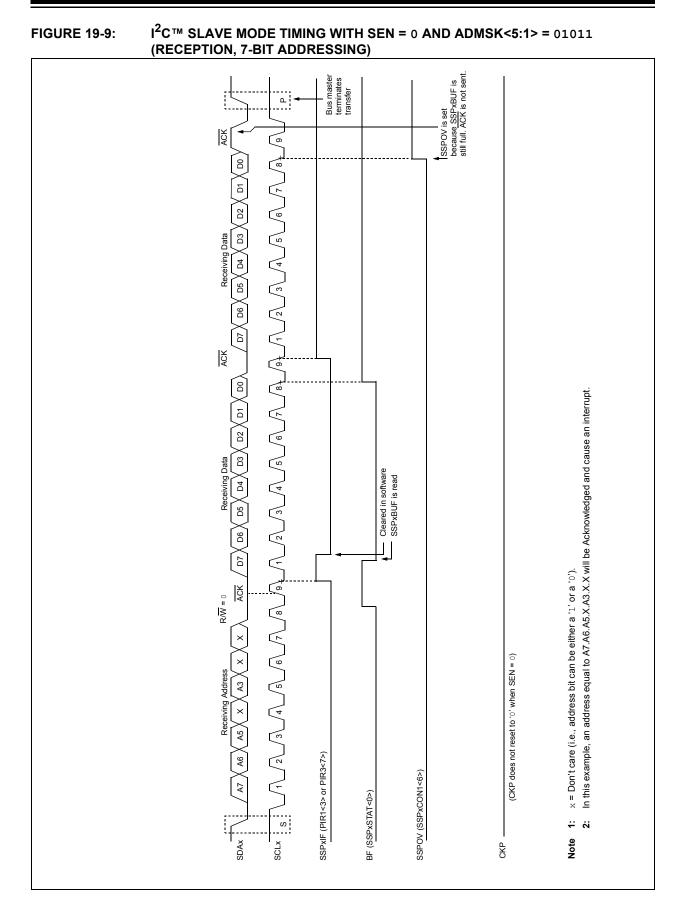
A CALL type instruction causes a push onto the stack. The Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack. The contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.


The Stack Pointer is initialized to '00000' after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of '00000'; this is only a Reset value. Status bits indicate if the stack is full, has overflowed or has underflowed.

6.1.6.1 Top-of-Stack Access


Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL, hold the contents of the stack location pointed to by the STKPTR register (Figure 6-4). This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt (and ADDULNK and SUBULNK instructions if the extended instruction set is enabled), the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user-defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return.

The user must disable the global interrupt enable bits while accessing the stack to prevent inadvertent stack corruption.


FIGURE 6-7: DATA MEMORY MAP FOR PIC18FX5J10/X5J15/X6J10 DEVICES

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF
bit 7	•	·			·	•	bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is c	leared	x = Bit is unk	nown
bit 7		ster Synchrond		•	•		
		nsmission/recepto to transmit/rec		ete (must be c	leared in softwa	re)	
bit 6		s Collision Inter					
		ollision occurre	•	ared in softwa	are)		
L:1 F		collision occurr		L:4			
bit 5		ART2 Receive			eared when RC	RECy is read)	
		SART2 Receiv					
bit 4	TX2IF: EUS	ART2 Transmit	Interrupt Flag	bit			
					(cleared when	TXREGx is writ	ten)
		SART2 Transm					
bit 3		IR4 to PR4 Ma		•	<i>.</i>		
		o PR4 match o R4 to PR4 matc	•	be cleared in	software)		
bit 2		P5 Interrupt Fl					
5112	Capture mod		ag on				
	1 = A TMR1				cleared in softw	vare)	
	Compare mo 1 = A TMR1		r compare ma	tch occurred (must be cleared	l in software)	
		R1/TMR3 regist					
	PWM mode:						
L:1	Unused in th		aa hit				
bit 1	Capture mod	P4 Interrupt Fl	ag bit				
	1 = A TMR1				cleared in softw	vare)	
	Compare mo						
		/TMR3 registe R1/TMR3 regist			must be cleared	l in software)	
	<u>PWM mode:</u> Unused in th						
bit 0	CCP3IF: EC	CP3 Interrupt I	-lag bit				
		/TMR3 registe	•	•	cleared in softw	vare)	
		R1/TMR3 regist	er capture occ	curred			
					must be cleared	l in software)	
	<u>PWM mode:</u>	-					
		is mode.					

REGISTER 10-6: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3

NOTES:

PIC18F87J10 FAMILY

19.4.4 CLOCK STRETCHING

Both 7-Bit and 10-Bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPxCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCLx pin to be held low at the end of each data receive sequence.

19.4.4.1 Clock Stretching for 7-Bit Slave Receive Mode (SEN = 1)

In 7-Bit Slave Receive mode, on the falling edge of the ninth clock at the end of the ACK sequence, if the BF bit is set, the CKP bit in the SSPxCON1 register is automatically cleared, forcing the SCLx output to be held low. The CKP being cleared to '0' will assert the SCLx line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and read the contents of the SSPxBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 19-15).

- Note 1: If the user reads the contents of the SSPxBUF before the falling edge of the ninth clock, the BF bit will be cleared. The CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

19.4.4.2 Clock Stretching for 10-Bit Slave Receive Mode (SEN = 1)

In 10-Bit Slave Receive mode during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPxADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

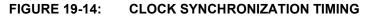
Note: If the user polls the UA bit and clears it by updating the SSPxADD register before the falling edge of the ninth clock occurs, and if the user hasn't cleared the BF bit by reading the SSPxBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

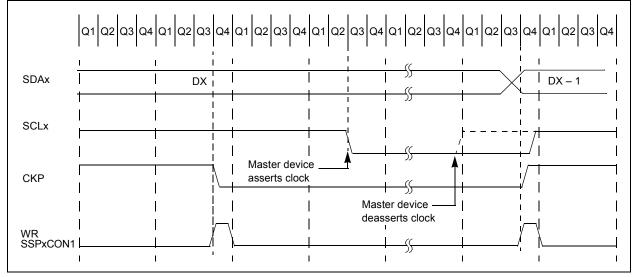
19.4.4.3 Clock Stretching for 7-Bit Slave Transmit Mode

The 7-Bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and load the contents of the SSPxBUF before the master device can initiate another transmit sequence (see Figure 19-10).

- Note 1: If the user loads the contents of SSPxBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit.


19.4.4.4 Clock Stretching for 10-Bit Slave Transmit Mode


In 10-Bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-Bit Slave Receive mode. The first two addresses are followed by a third address sequence which contains the high-order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-Bit Slave Transmit mode (see Figure 19-13).

19.4.4.5 Clock Synchronization and the CKP Bit

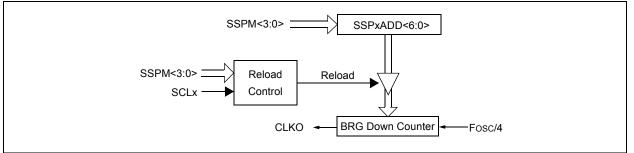
When the CKP bit is cleared, the SCLx output is forced to '0'. However, clearing the CKP bit will not assert the SCLx output low until the SCLx output is already sampled low. Therefore, the CKP bit will not assert the SCLx line until an external I^2C master device has

already asserted the SCLx line. The SCLx output will remain low until the CKP bit is set and all other devices on the I^2C bus have deasserted SCLx. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCLx (see Figure 19-14).

19.4.7 BAUD RATE

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPxADD register (Figure 19-19). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCLx pin will remain in its last state.


Table 19-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

19.4.7.1 Baud Rate and Module Interdependence

Because MSSP1 and MSSP2 are independent, they can operate simultaneously in I²C Master mode at different baud rates. This is done by using different BRG reload values for each module.

Because this mode derives its basic clock source from the system clock, any changes to the clock will affect both modules in the same proportion. It may be possible to change one or both baud rates back to a previous value by changing the BRG reload value.

TABLE 19-3:	I ² C™ CLOCK RATE w/BRG
-------------	------------------------------------

Fosc	Fcy	Fcy * 2	BRG Value	FscL (2 Rollovers of BRG)
40 MHz	10 MHz	20 MHz	18h	400 kHz
40 MHz	10 MHz	20 MHz	1Fh	312.5 kHz
40 MHz	10 MHz	20 MHz	63h	100 kHz
16 MHz	4 MHz	8 MHz	09h	400 kHz
16 MHz	4 MHz	8 MHz	0Ch	308 kHz
16 MHz	4 MHz	8 MHz	27h	100 kHz
4 MHz	1 MHz	2 MHz	02h	333 kHz
4 MHz	1 MHz	2 MHz	09h	100 kHz
4 MHz	1 MHz	2 MHz	00h	1 MHz

20.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTAx<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CKx pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

20.4.1 EUSART SYNCHRONOUS SLAVE TRANSMISSION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep mode.

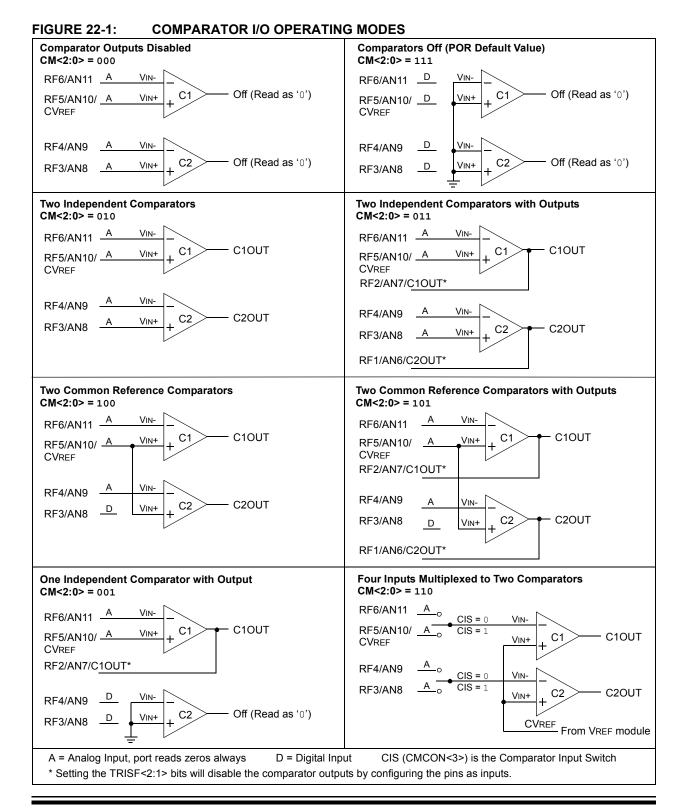
If two words are written to the TXREGx and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREGx register.
- c) Flag bit, TXxIF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREGx register will transfer the second word to the TSR and flag bit, TXxIF, will now be set.
- e) If enable bit, TXxIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

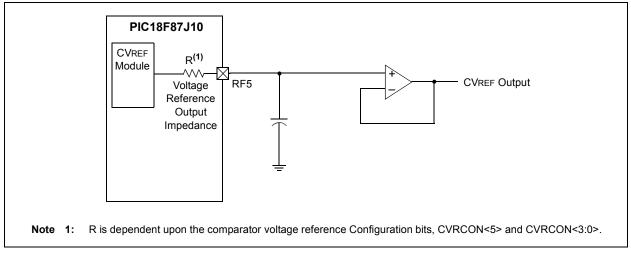
To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXxIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	55
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	55
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	55
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	55
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CCP5IE	CCP4IE	CCP3IE	55
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CCP5IP	CCP4IP	CCP3IP	55
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	55
TXREGx	EUSARTx	Transmit Reo	gister						55
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	55
BAUDCONx	ABDOVF	ABDOVF RCIDL - SCKP BRG16 - WUE ABDEN							
SPBRGHx	RGHx EUSARTx Baud Rate Generator Register High Byte								56
SPBRGx	EUSARTx	Baud Rate G	enerator R	egister Low	Byte				56


TABLE 20-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.


22.1 Comparator Configuration

There are eight modes of operation for the comparators, shown in Figure 22-1. Bits, CM<2:0>, of the CMCON register are used to select these modes. The TRISF register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in **Section 27.0 "Electrical Characteristics"**.

Note: Comparator interrupts should be disabled during a Comparator mode change; otherwise, a false interrupt may occur.

FIGURE 23-2: COMPARATOR VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	55
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	55
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1		56

TABLE 23-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Legend: — = unimplemented, read as '0'. Shaded cells are not used with the comparator voltage reference.

NOTES:

REGISTER 24-1: CONFIG1L: CONFIGURATION REGISTER 1 LOW (BYTE ADDRESS 300000h)

R/WO-1	R/WO-1	R/WO-1	U-0	U-0	U-0	U-0	R/WO-1
DEBUG	XINST	STVREN	_	_	_	_	WDTEN
bit 7							bit 0
Legend:							
R = Readable	e bit	WO = Write-O	nce bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value wh	en device is unp	programmed		'1' = Bit is se	t	'0' = Bit is cle	eared
bit 6	XINST: Exten 1 = Instructio	Ind debugger e ded Instruction In set extension In set extension	Set Enable b and Indexed	it Addressing m	ode enabled	·	
bit 5	1 = Reset on	ck Overflow/Ur stack overflow, stack overflow,	/underflow en	abled			
bit 4-1	Unimplemen	ted: Read as ')'				
bit 0	1 = WDT ena	chdog Timer Ei abled abled (control is		WDTEN bit)			

REGISTER 24-2: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

U-0	U-0	U-0	U-0	U-0	R/WO-1	U-0	U-0
—	—	—	_	(1)	CP0	—	—
bit 7							bit 0

Legend:			
R = Readable bit	WO = Write-Once bit	U = Unimplemented I	oit, read as '0'
-n = Value when device	e is unprogrammed	'1' = Bit is set	'0' = Bit is cleared

bit 7-3 Unimplemented: Read as '0'

bit 2 CP0: Code Protection bit

- 1 = Program memory is not code-protected
- 0 = Program memory is code-protected
- bit 1-0 Unimplemented: Read as '0'

Note 1: This bit should always be maintained as '0'.

REGISTER 24-3: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

Legend:						-		-	
bit 7 bit 0 bit 7 bit 0 Legend: WO = Write-Once bit U = Unimplemented bit, read as '0' -n = Value when device is unprogrammed '1' = Bit is set '0' = Bit is cleared bit 7 IESO: Two-Speed Start-up (Internal/External Oscillator Switchover) Control bit 1 = Two-Speed Start-up enabled bit 6 FCMEN: Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled bit 5-3 Unimplemented: Read as '0' bit 2 FOSC2: Default/Reset System Clock Select bit 1 = Clock selected by FOSC<1:0> as a system clock is enabled when OSCCON<1:0> = 00 bit 1-0 FOSC+1:0>: Oscillator Selection bits 11 = EC oscillator, PLL enabled and under software control, CLKO function on OSC2 10 = EC oscillator, PLL enabled and under software control	R/WO-1	R/WO-1	U-0	U-0	U-0	R/WO-1	R/WO-1	R/WO-1	
Legend: R = Readable bit WO = Write-Once bit U = Unimplemented bit, read as '0' -n = Value when device is unprogrammed '1' = Bit is set '0' = Bit is cleared bit 7 IESO: Two-Speed Start-up (Internal/External Oscillator Switchover) Control bit 1 = Two-Speed Start-up enabled 0 = Two-Speed Start-up disabled bit 6 FCMEN: Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled bit 5-3 Unimplemented: Read as '0' bit 2 FOSC2: Default/Reset System Clock Select bit 1 = Clock selected by FOSC<1:0> as a system clock is enabled when OSCCON<1:0> = 00 bit 1-0 FOSC<1:0>: Oscillator Selection bits 11 = EC oscillator, PLL enabled and under software control, CLKO function on OSC2 10 = EC oscillator, PLL enabled and under software control	IESO	FCMEN	—	_	—	FOSC2	FOSC1	FOSC0	
R = Readable bit WO = Write-Once bit U = Unimplemented bit, read as '0' -n = Value when device is unprogrammed '1' = Bit is set '0' = Bit is cleared bit 7 IESO: Two-Speed Start-up (Internal/External Oscillator Switchover) Control bit 1 = Two-Speed Start-up enabled 0 = Two-Speed Start-up disabled bit 6 FCMEN: Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled bit 5-3 Unimplemented: Read as '0' bit 2 FOSC2: Default/Reset System Clock Select bit 1 = Clock selected by FOSC<1:0> as a system clock is enabled when OSCCON<1:0> = 00 0 = INTRC enabled as a system clock when OSCCON<1:0> = 00 bit 1-0 FOSC<1:0>: Oscillator Selection bits 11 = EC oscillator, PLL enabled and under software control, CLKO function on OSC2 01 = HS oscillator, PLL enabled and under software control	bit 7							bit 0	
R = Readable bit WO = Write-Once bit U = Unimplemented bit, read as '0' -n = Value when device is unprogrammed '1' = Bit is set '0' = Bit is cleared bit 7 IESO: Two-Speed Start-up (Internal/External Oscillator Switchover) Control bit 1 = Two-Speed Start-up enabled 0 = Two-Speed Start-up disabled bit 6 FCMEN: Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled bit 5-3 Unimplemented: Read as '0' bit 2 FOSC2: Default/Reset System Clock Select bit 1 = Clock selected by FOSC<1:0> as a system clock is enabled when OSCCON<1:0> = 00 0 = INTRC enabled as a system clock when OSCCON<1:0> = 00 bit 1-0 FOSC<1:0>: Oscillator Selection bits 11 = EC oscillator, PLL enabled and under software control, CLKO function on OSC2 01 = HS oscillator, PLL enabled and under software control	Legend:								
bit 7 IESO: Two-Speed Start-up (Internal/External Oscillator Switchover) Control bit 1 = Two-Speed Start-up enabled 0 = Two-Speed Start-up disabled bit 6 FCMEN: Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled bit 5-3 Unimplemented: Read as '0' bit 2 FOSC2: Default/Reset System Clock Select bit 1 = Clock selected by FOSC<1:0> as a system clock is enabled when OSCCON<1:0> = 00 0 = INTRC enabled as a system clock when OSCCON<1:0> = 00 bit 1-0 FOSC<1:0>: Oscillator Selection bits 11 = EC oscillator, PLL enabled and under software control, CLKO function on OSC2 01 = HS oscillator, PLL enabled and under software control									
 1 = Two-Speed Start-up enabled 0 = Two-Speed Start-up disabled bit 6 FCMEN: Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled bit 5-3 Unimplemented: Read as '0' bit 2 FOSC2: Default/Reset System Clock Select bit 1 = Clock selected by FOSC<1:0> as a system clock is enabled when OSCCON<1:0> = 00 0 = INTRC enabled as a system clock when OSCCON<1:0> = 00 bit 1-0 FOSC<1:0>: Oscillator Selection bits 11 = EC oscillator, PLL enabled and under software control, CLKO function on OSC2 01 = HS oscillator, PLL enabled and under software control 	-n = Value w	vhen device is unp	programmed		'1' = Bit is se	t	'0' = Bit is cle	ared	
bit 2 FOSC2: Default/Reset System Clock Select bit 1 = Clock selected by FOSC<1:0> as a system clock is enabled when OSCCON<1:0> = 00 0 = INTRC enabled as a system clock when OSCCON<1:0> = 00 bit 1-0 FOSC<1:0>: Oscillator Selection bits 11 = EC oscillator, PLL enabled and under software control, CLKO function on OSC2 10 = EC oscillator, CLKO function on OSC2 01 = HS oscillator, PLL enabled and under software control	bit 6	 1 = Two-Speed Start-up enabled 0 = Two-Speed Start-up disabled FCMEN: Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor enabled 							
 1 = Clock selected by FOSC<1:0> as a system clock is enabled when OSCCON<1:0> = 00 0 = INTRC enabled as a system clock when OSCCON<1:0> = 00 bit 1-0 FOSC<1:0>: Oscillator Selection bits 11 = EC oscillator, PLL enabled and under software control, CLKO function on OSC2 10 = EC oscillator, CLKO function on OSC2 01 = HS oscillator, PLL enabled and under software control 	bit 5-3	Unimplemen	ted: Read as '	כ'					
 11 = EC oscillator, PLL enabled and under software control, CLKO function on OSC2 10 = EC oscillator, CLKO function on OSC2 01 = HS oscillator, PLL enabled and under software control 	bit 2 FOSC2: Default/Reset System Clock Select bit 1 = Clock selected by FOSC<1:0> as a system clock is enabled when OSCCON<1:0> = 00								
	bit 1-0	11 = EC osci 10 = EC osci 01 = HS osci	llator, PLL ena llator, CLKO fu llator, PLL ena	bled and unde	C2		ction on OSC2		

REGISTER 24-4: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

U-0	U-0	U-0	U-0	R/WO-1	R/WO-1	R/WO-1	R/WO-1
—	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0

Legend:			
R = Readable bit	WO = Write-Once bit	U = Unimplemented b	it, read as '0'
-n = Value when device is u	inprogrammed	'1' = Bit is set	'0' = Bit is cleared

bit 7-4 Unimplemented: Read as '0'

bit 3-0 WDTPS<3:0>: Watchdog Timer Postscale Select bits

TABLE 25-2: PIC18F87J10 FAMILY INSTRUCTION SET

Mnemonic, Operands		C, Description		16-bit Instruction Word				Status	
		Description	Cycles	MSb LSI		LSb	Affected	Notes	
BYTE-OR	ENTED	OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	0 u	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
		Borrow							
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB		Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
	. ,	Borrow							
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f. a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	, -	Exclusive OR WREG with f	1		10da	ffff	ffff		,

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

SLE	EP	Enter Slee	ep Mode		SUBF	WB	Subtract f fr	om W with Bo	orrow
Synta	ax:	SLEEP			Syntax		SUBFWB f	{,d {,a}}	
Oper	ands:	None			Opera	nds:	$0 \leq f \leq 255$		
Oper	ation:	$00h \rightarrow WE$	DT,				$d \in [0, 1]$		
			postscaler,		Onered	Han	$a \in [0, 1]$ (W) - (f) - (\overline{C}) deat	
		$1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD}$			Operat	Affected:			
Statu	s Affected:	TO, PD					N, OV, C, DC		c
Enco	oding:	0000	0000 000	0 0011	Encod	•		01da fff	
Desc	cription:	cleared. Th is set. The	r-Down status he Time-out st Watchdog Tir are cleared.	atus bit (TO)	Descri	ριιοπ.	(borrow) from method). If 'd	ster 'f' and Ca n W (2's compl ' is '0', the res , the result is s	lement ult is stored in
Word	le.	•	ssor is put into scillator stoppe	•				e Access Bank BSR is used to	is selected. If select the
Cycle		1					lf 'a' is '0' and	d the extended	d instruction
	ycle Activity:	I							on operates in
QU	Q1	Q2	Q3	Q4				al Offset Addr 95 (5Fh). See	0
	Decode	No operation	Process Data	Go to Sleep			Section 25.2 Bit-Oriented	.3 "Byte-Orie Instructions t Mode" for d	nted and in Indexed
Exan	nnlo:	SLEEP			Words	:	1		
	Before Instruc				Cycles	:	1		
	$\overline{TO} =$?			Q Cyc	cle Activity:			
	PD =	?				Q1	Q2	Q3	Q4
	After Instruction TO = PD =	on 1† 0				Decode	Read register 'f'	Process Data	Write to destination
		0			Examp	<u>ole 1:</u>	SUBFWB	REG, 1, 0	
† If	WDT causes	wake-up, this b	oit is cleared.		В	efore Instruc			
						REG W	= 3 = 2		
					Δ	C fter Instructio	= 1		
						REG	= FF		
						W C	= 2 = 0		
						Z N	= 0	sult is negative	۵
					Examp		SUBFWB		
					•	efore Instruc		-, -, -	
						REG W	= 2 = 5		
						С	= 1		
					A	fter Instruction REG	on = 2		
						W	= 3		
						C Z	= 1 = 0		
					F	N	= 0 ; re	sult is positive	

1 2 0 = =

SUBFWB

Example 3:

Before Instruction REG W C

After Instruction

REG W C Z N

; result is zero

REG, 1, 0

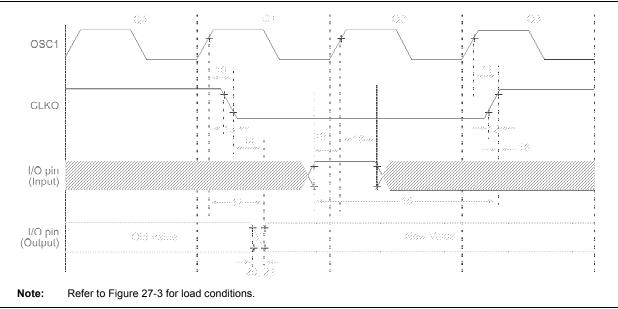
26.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART[®] Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

26.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:


- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
10	TosH2ckL	OSC1 ↑ to CLKO ↓	—	75	200	ns	(Note 1)
11	TosH2ckH	OSC1 ↑ to CLKO ↑	—	75	200	ns	(Note 1)
12	TCKR	CLKO Rise Time	—	15	30	ns	(Note 1)
13	ТскF	CLKO Fall Time	—	15	30	ns	(Note 1)
14	TCKL2IOV	CLKO \downarrow to Port Out Valid	—	_	0.5 Tcy + 20	ns	
15	ТюV2скН	Port In Valid before CLKO \uparrow	0.25 Tcy + 25	_	—	ns	
16	TckH2iol	Port In Hold after CLKO ↑	0	_	—	ns	
17	TosH2IoV	OSC1 \uparrow (Q1 cycle) to Port Out Valid	—	50	150	ns	
18	TosH2iol	OSC1 \uparrow (Q2 cycle) to Port Input Invalid	100	_	—	ns	
18A		(I/O in hold time)	200	_	—	ns	VDD = 2.0V
19	TioV2osH	Port Input Valid to OSC1 ↑ (I/O in setup time)	0		—	ns	
20	TIOR	Port Output Rise Time	—	_	6	ns	
20A			_	_	—	_	
21	TIOF	Port Output Fall Time	—	_	5	ns	
21A					_		
22†	TINP	INTx Pin High or Low Time	Тсү	_	—	ns	
23†	Trbp	RB<7:4> Change INTx High or Low Time	Тсү	_	—	ns	

Legend: TBD = To Be Determined

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

Memory Maps	
PIC18FX5J10/X5J15/X6J10 Devices69	9
PIC18FX6J15/X7J10 Devices70	0
Special Function Registers72	2
Special Function Registers72	2
DAW	2
DC Characteristics	8
Power-Down and Supply Current	1
Supply Voltage	0
DCFSNZ	3
DECF	2
DECFSZ	3
Development Support	3
Device Overview	5
Details on Individual Family Members	6
Features (64-Pin Devices)	7
Features (80-Pin Devices)	7
Direct Addressing	

Е

ECCP	
Associated Registers	192
Capture and Compare Modes1	
Enhanced PWM Mode1	81
Standard PWM Mode1	
Effect on Standard PIC MCU Instructions	340
Effects of Power-Managed Modes on	
Various Clock Sources	37
Electrical Characteristics	
Enhanced Capture/Compare/PWM (ECCP)1	177
Capture Mode. See Capture (ECCP Module).	
ECCP1/ECCP3 Outputs and	
Program Memory Mode1	78
ECCP2 Outputs and Program	
Memory Modes1	78
Outputs and Configuration1	78
Pin Configurations for ECCP1	179
Pin Configurations for ECCP2	179
Pin Configurations for ECCP3	80
PWM Mode. See PWM (ECCP Module).	
Timer Resources1	78
Use of CCP4/CCP5 with ECCP1/ECCP31	
Enhanced Universal Synchronous Asynchronous Received	r
Transmitter (EUSART). See EUSART.	
ENVREG Pin2	288
Equations	
A/D Acquisition Time2	266
A/D Minimum Charging Time2	266
Errata	4
EUSART	
Asynchronous Mode2	249
12-Bit Break Transmit and Receive2	254
Associated Registers, Receive2	
Associated Registers, Transmit2	
Auto-Wake-up on Sync Break	252
Receiver2	
Setting Up 9-Bit Mode with Address Detect2	251
Transmitter2	249
Baud Rate Generator	
Operation in Power-Managed Mode	243

Baud Rate Generator (BRG)	243
Associated Registers	
Auto-Baud Rate Detect	247
Baud Rate Error, Calculating	244
Baud Rates, Asynchronous Modes	
High Baud Rate Select (BRGH Bit)	
Sampling	
Synchronous Master Mode	
Associated Registers, Receive	
Associated Registers, Transmit	
Reception	
Transmission	
Synchronous Slave Mode	
Associated Registers, Receive	
Associated Registers, Transmit	
Reception	
Transmission	
Extended Instruction Set	200
ADDFSR	336
ADDULNK	
CALLW	
MOVSF	
MOVSS	
PUSHL	
SUBFSR	
SUBULNK	
External Clock Input (EC Modes)	
External Memory Bus	
16-Bit Byte Select Mode	
16-Bit Byte Write Mode	
16-Bit Data Width Modes	99 09
16-Bit Mode Timing	
16-Bit Word Write Mode	
8-Bit Mode	
8-Bit Mode Timing	
Address and Data Line Usage (table)	
Address and Data Line Usage (table)	
Address Shifting	
Control	
I/O Port Functions	
Operation in Power-Managed Modes	
Program Memory Modes	
Extended Microcontroller	
Microcontroller	
Wait States	
Weak Pull-ups on Port Pins	90

F

Fail-Safe Clock Monitor	281, 290
Interrupts in Power-Managed Modes	291
POR or Wake-up from Sleep	
WDT During Oscillator Failure	
Fast Register Stack	65
Firmware Instructions	293
Flash Configuration Words	
Flash Program Memory	85
Associated Registers	
Control Registers	86
EECON1 and EECON2	86
TABLAT (Table Latch) Register	88
TBLPTR (Table Pointer) Register	88
· · · ·	

Erase Sequence	90
Erasing	90
Operation During Code-Protect	93
Reading	89
Table Pointer	
Boundaries Based on Operation	88
Table Pointer Boundaries	88
Table Reads and Table Writes	85
Write Sequence	91
Writing	91
Unexpected Termination	93
Write Verify	93
FSCM. See Fail-Safe Clock Monitor.	

G

GOTO	314
н	
Hardware Multiplier	107
Introduction	
Operation	
Hardware Various Multiply	
Performance Comparisons	107
· ·	
I/O Ports	125
Pin Capabilities	
I ² C Mode (MSSP)	120
Acknowledge Sequence Timing	
Associated Registers	
Baud Rate Generator	225
Bus Collision	
During a Repeated Start Condition	
During a Stop Condition	
Clock Arbitration	
Clock Stretching	218
10-Bit Slave Receive Mode (SEN = 1)	218
10-Bit Slave Transmit Mode	
7-Bit Slave Receive Mode (SEN = 1)	
7-Bit Slave Transmit Mode	
Clock Synchronization and the CKP bit	219
Effects of a Reset	233
General Call Address Support	
I ² C Clock Rate w/BRG	225
Master Mode	
Operation	
Reception	
Repeated Start Condition Timing	
Start Condition Timing	
Transmission	
Multi-Master Communication, Bus Collision	220
and Arbitration	222
Multi-Master Mode	233
Operation	
Read/Write Bit Information (R/W Bit)	209
Registers	
Serial Clock (RC3/SCKx/SCLx)	200
Slave Mode	
Addressing	
Reception	
Transmission	
Sleep Operation	
Stop Condition Timing	
INCF	
INCFSZ	
In-Circuit Debugger	292

In-Circuit Serial Programming (ICSP)	281,	292
Indexed Literal Offset Addressing		
and Standard PIC18 Instructions		
Indexed Literal Offset Mode		
Indirect Addressing INFSNZ		
Initialization Conditions for all Registers		
Instruction Cycle		
Clocking Scheme		
Flow/Pipelining		
Instruction Set		
ADDLW		299
ADDWF		
ADDWF (Indexed Literal Offset Mode)		
ANDLW ANDWF		
BC		
BCF		
BN		
BNC		303
BNN		303
BNOV		304
BNZ		
BOV		
BRA		
BSF		
BSF (Indexed Literal Offset Mode) BTFSC		
BTFSS		
BTG		
BZ		
CALL		
CLRF		309
CLRWDT		309
COMF		
CPFSEQ		
CPFSGT		
CPFSLT DAW		
DCFSNZ		
DECF		
DECFSZ		
Extended Instructions		335
Considerations when Enabling		340
Syntax		
Use with MPLAB IDE Tools		
General Format		
GOTO		
INCFSZINFSNZ		
IORLW		
IORWF		
LFSR		
MOVF		317
MOVFF		318
MOVLB		
MOVLW		
MOVWF		
MULWF NEGF		
NEGF NOP		
Opcode Field Descriptions		