

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67j10-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nomo	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTF is a bidirectional I/O port.
RF1/AN6/C2OUT RF1 AN6 C2OUT	23	I/O I O	ST Analog —	Digital I/O. Analog input 6. Comparator 2 output.
RF2/AN7/C1OUT RF2 AN7 C1OUT	18	I/O I O	ST Analog —	Digital I/O. Analog input 7. Comparator 1 output.
RF3/AN8 RF3 AN8	17	I/O I	ST Analog	Digital I/O. Analog input 8.
RF4/AN9 RF4 AN9	16	I/O I	ST Analog	Digital I/O. Analog input 9.
RF5/AN10/CVREF RF5 AN10 CVREF	15	I/O I O	ST Analog —	Digital I/O. Analog input 10. Comparator reference voltage output.
RF6/AN11 RF6 AN11	14	I/O I	ST Analog	Digital I/O. Analog input 11.
RF7/SS1 RF7 SS1	13	I/O I	ST TTL	Digital I/O. SPI slave select input.
Legend: TTL = TT ST = Sc I = In; P = Pc	L compatible inp hmitt Trigger inpo out ower	out ut with C	MOS levels	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-4: PIC18F8XJ10/8XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)

I²C/SMB = I²C[™]/SMBus input buffer

Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).

2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).

3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).

4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).

5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).

3.7 Effects of Power-Managed Modes on the Various Clock Sources

When PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC_RUN and SEC_IDLE), the Timer1 oscillator is operating and providing the device clock. The Timer1 oscillator may also run in all power-managed modes if required to clock Timer1 or Timer3.

In RC_RUN and RC_IDLE modes, the internal oscillator provides the device clock source. The 31 kHz INTRC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the power-managed mode (see **Section 24.2 "Watchdog Timer (WDT)"** through **Section 24.5 "Fail-Safe Clock Monitor"** for more information on WDT, Fail-Safe Clock Monitor and Two-Speed Start-up).

If the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The INTRC is required to support WDT operation. The Timer1 oscillator may be operating to support a Real-Time Clock. Other features may be operating that do not require a device clock source (i.e., MSSP slave, PSP, INTx pins and others). Peripherals that may add significant current consumption are listed in Section 27.2 "DC Characteristics: Power-Down and Supply Current".

3.8 Power-up Delays

Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 5.5 "Power-up Timer (PWRT)**".

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (parameter 33, Table 27-12). It is always enabled.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

There is a delay of interval, TCSD (parameter 38, Table 27-12), following POR, while the controller becomes ready to execute instructions.

 TABLE 3-3:
 OSC1 AND OSC2 PIN STATES IN SLEEP MODE

Oscillator Mode	OSC1 Pin	OSC2 Pin
EC, ECPLL	Floating, pulled by external clock	At logic low (clock/4 output)
HS, HSPLL	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level

Note: See Table 5-2 in Section 5.0 "Reset" for time-outs due to Sleep and MCLR Reset.

5.2 Master Clear (MCLR)

The MCLR pin provides a method for triggering a hard external Reset of the device. A Reset is generated by holding the pin low. PIC18 extended microcontroller devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The $\overline{\text{MCLR}}$ pin is not driven low by any internal Resets, including the WDT.

5.3 Power-on Reset (POR)

A Power-on Reset condition is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.

To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 5-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the $\overrightarrow{\text{POR}}$ bit (RCON<1>). The state of the bit is set to '0' whenever a POR occurs; it does not change for any other Reset event. POR is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any POR.

5.4 Brown-out Reset (BOR)

The PIC18F87J10 family of devices incorporate a simple BOR function when the internal regulator is enabled (ENVREG pin is tied to VDD). Any drop of VDD below VBOR (parameter D005) for greater than time TBOR (parameter 35) will reset the device. A Reset may or may not occur if VDD falls below VBOR for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR.

Once a BOR has occurred, the Power-up Timer will keep the chip in Reset for TPWRT (parameter 33). If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above VBOR, the Power-up Timer will execute the additional time delay.

FIGURE 5-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

5.4.1 DETECTING BOR

The BOR bit always resets to '0' on any BOR or POR event. This makes it difficult to determine if a BOR event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR bit is reset to '1' in software immediately after any POR event. If BOR is '0' while POR is '1', it can be reliably assumed that a BOR event has occurred.

If the voltage regulator is disabled, Brown-out Reset functionality is disabled. In this case, the $\overrightarrow{\text{BOR}}$ bit cannot be used to determine a BOR event. The $\overrightarrow{\text{BOR}}$ bit is still cleared by a POR event.

TADLE 3-2.						
Register	Applicable Devices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt		
INDF2	PIC18F6XJ1X PIC18F8XJ1X	N/A	N/A	N/A		
POSTINC2	PIC18F6XJ1X PIC18F8XJ1X	N/A	N/A	N/A		
POSTDEC2	PIC18F6XJ1X PIC18F8XJ1X	N/A	N/A	N/A		
PREINC2	PIC18F6XJ1X PIC18F8XJ1X	N/A	N/A	N/A		
PLUSW2	PIC18F6XJ1X PIC18F8XJ1X	N/A	N/A	N/A		
FSR2H	PIC18F6XJ1X PIC18F8XJ1X	xxxx	uuuu	uuuu		
FSR2L	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	սսսս սսսս	սսսս սսսս		
STATUS	PIC18F6XJ1X PIC18F8XJ1X	x xxxx	u uuuu	u uuuu		
TMR0H	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	սսսս սսսս		
TMR0L	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TOCON	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	սսսս սսսս		
OSCCON	PIC18F6XJ1X PIC18F8XJ1X	0 q-00	0 q-00	u q-uu		
WDTCON	PIC18F6XJ1X PIC18F8XJ1X	0	0	u		
RCON ⁽⁴⁾	PIC18F6XJ1X PIC18F8XJ1X	01 1100	0q qquu	uu qquu		
TMR1H	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	սսսս սսսս	սսսս սսսս		
TMR1L	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	սսսս սսսս	սսսս սսսս		
T1CON	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	u0uu uuuu	սսսս սսսս		
TMR2	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	սսսս սսսս		
PR2	PIC18F6XJ1X PIC18F8XJ1X	1111 1111	1111 1111	1111 1111		
T2CON	PIC18F6XJ1X PIC18F8XJ1X	-000 0000	-000 0000	-uuu uuuu		
SSP1BUF	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	սսսս սսսս	սսսս սսսս		
SSP1ADD	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	սսսս սսսս		
SSP1STAT	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	սսսս սսսս		
SSP1CON1	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	սսսս սսսս		
SSP1CON2	PIC18F6XJ1X PIC18F8XJ1X	0000 0000	0000 0000	սսսս սսսս		
ADRESH	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	սսսս սսսս	սսսս սսսս		
ADRESL	PIC18F6XJ1X PIC18F8XJ1X	XXXX XXXX	սսսս սսսս	սսսս սսսս		
ADCON0	PIC18F6XJ1X PIC18F8XJ1X	0-00 0000	0-00 0000	u-uu uuuu		
ADCON1	PIC18F6XJ1X PIC18F8XJ1X	00 0000	00 0000	uu uuuu		
ADCON2	PIC18F6XJ1X PIC18F8XJ1X	0-00 0000	0-00 0000	u-uu uuuu		

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

- 3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- 4: See Table 5-1 for Reset value for specific condition.

6.2 PIC18 Instruction Cycle

6.2.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the program counter is incremented on every Q1; the instruction is fetched from the program memory and latched into the instruction register during Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 6-5.

6.2.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles, Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 6-3).

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 6-5: CLOCK/INSTRUCTION CYCLE

EXAMPLE 6-3: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	
OSCFIE	CMIE	—	_	BCL1IE	_	TMR3IE	CCP2IE	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared				eared	x = Bit is unkr	Iown		
bit 7	OSCFIE: Osc	cillator Fail Inter	rupt Enable b	it				
	1 = Enabled							
	0 = Disabled							
bit 6	CMIE: Compa	arator Interrupt	Enable bit					
	1 = Enabled							
	0 = Disabled							
bit 5-4	Unimplemen	ted: Read as '	0'					
bit 3	BCL1IE: Bus	Collision Interr	upt Enable bit	t (MSSP1 mod	lule)			
	1 = Enabled							
	0 = Disabled							
bit 2	Unimplemen	ted: Read as '	0'					
bit 1	TMR3IE: TMR3 Overflow Interrupt Enable bit							
	1 = Enabled							
	0 = Disabled							
bit 0	CCP2IE: ECO	CP2 Interrupt E	nable bit					
	1 = Enabled							
	0 = Disabled							

REGISTER 10-8: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

Pin Name	Function	TRIS Setting	I/O	I/О Туре	Description
RC0/T1OSO/	RC0	0	0	DIG	LATC<0> data output.
T13CKI		1	I	ST	PORTC<0> data input.
	T1OSO	х	0	ANA	Timer1 oscillator output; enabled when Timer1 oscillator enabled. Disables digital I/O.
	T13CKI	1	Ι	ST	Timer1/Timer3 counter input.
RC1/T1OSI/	RC1	0	0	DIG	LATC<1> data output.
ECCP2/P2A		1	Ι	ST	PORTC<1> data input.
	T1OSI	х	Ι	ANA	Timer1 oscillator input; enabled when Timer1 oscillator enabled. Disables digital I/O.
	ECCP2 ⁽¹⁾	0	0	DIG	CCP2 compare output and CCP2 PWM output; takes priority over port data.
		1	Ι	ST	CCP2 capture input.
	P2A ⁽¹⁾	0	0	DIG	ECCP2 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.
RC2/ECCP1/	RC2	0	0	DIG	LATC<2> data output.
P1A		1	Ι	ST	PORTC<2> data input.
	ECCP1	0	0	DIG	CCP1 compare output and CCP1 PWM output; takes priority over port data.
		1	Ι	ST	CCP1 capture input.
	P1A	0	0	DIG	ECCP1 Enhanced PWM output, Channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.
RC3/SCK1/	RC3	0	0	DIG	LATC<3> data output.
SCL1		1	Ι	ST	PORTC<3> data input.
	SCK1	0	0	DIG	SPI clock output (MSSP1 module); takes priority over port data.
		1	Ι	ST	SPI clock input (MSSP1 module).
	SCL1	0	0	DIG	I ² C™ clock output (MSSP1 module); takes priority over port data.
		1	Ι	I ² C/SMB	I ² C clock input (MSSP1 module); input type depends on module setting.
RC4/SDI1/	RC4	0	0	DIG	LATC<4> data output.
SDAT		1	Ι	ST	PORTC<4> data input.
	SDI1	1	I	ST	SPI data input (MSSP1 module).
	SDA1	1	0	DIG	I ² C data output (MSSP1 module); takes priority over port data.
		1	I	I ² C/SMB	I ² C data input (MSSP1 module); input type depends on module setting.
RC5/SDO1	RC5	0	0	DIG	LATC<5> data output.
		1		ST	PORTC<5> data input.
	SDO1	0	0	DIG	SPI data output (MSSP1 module); takes priority over port data.
RC6/TX1/CK1	RC6	0	0	DIG	LAI C<6> data output.
	T)/4	1		SI	PORIC<6> data input.
		1	0	DIG	Synchronous serial data output (EUSART1 module); takes priority over port data.
	CKI	1	0	DIG	an input.
		1		ST	Synchronous serial clock input (EUSART1 module).
RC7/RX1/DT1	RC7	0	0	DIG	LATC<7> data output.
		1		ST	PORTC<7> data input.
	RX1	1		ST	Asynchronous serial receive data input (EUSART1 module).
	DT1	1	0	DIG	Synchronous serial data output (EUSART1 module); takes priority over port data.
		1	I	ST	Synchronous serial data input (EUSART1 module). User must configure as an input.

TABLE 11-7: PORTC FUNCTIONS

Legend: PWR = Power Supply, O = Output, I = Input, $l^2C^{TM}/SMB = l^2C/SMB$ us input buffer, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignment for ECCP2/P2A when the CCP2MX Configuration bit is set.

		Oetting		Туре	Description
RE0/AD8/RD/	RE0	0	0	DIG	LATE<0> data output.
P2D		1	I	ST	PORTE<0> data input.
	AD8 ⁽³⁾	х	0	DIG	External memory interface, address/data bit 8 output. ⁽²⁾
		х	I	TTL	External memory interface, data bit 8 input. ⁽²⁾
	RD	1	I	TTL	Parallel Slave Port read enable control input.
	P2D	0	0	DIG	ECCP2 Enhanced PWM output, Channel D; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.
RE1/AD9/WR/	RE1	0	0	DIG	LATE<1> data output.
P2C		1	I	ST	PORTE<1> data input.
	AD9 ⁽³⁾	х	0	DIG	External memory interface, address/data bit 9 output. ⁽²⁾
		х	I	TTL	External memory interface, data bit 9 input. ⁽²⁾
	WR	1	Ι	TTL	Parallel Slave Port write enable control input.
	P2C	0	0	DIG	ECCP2 Enhanced PWM output, Channel C; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.
RE2/AD10/CS/	RE2	0	0	DIG	LATE<2> data output.
P2B		1	Ι	ST	PORTE<2> data input.
	AD10 ⁽³⁾	х	0	DIG	External memory interface, address/data bit 10 output. ⁽²⁾
		х	Ι	TTL	External memory interface, data bit 10 input. ⁽²⁾
	CS	1	Ι	TTL	Parallel Slave Port chip select control input.
	P2B	0	0	DIG	ECCP2 Enhanced PWM output, Channel B; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.
RE3/AD11/	RE3	0	0	DIG	LATE<3> data output.
P3C		1	Ι	ST	PORTE<3> data input.
	AD11 ⁽³⁾	х	0	DIG	External memory interface, address/data bit 11 output. ⁽²⁾
		х	-	TTL	External memory interface, data bit 11 input. ⁽²⁾
	P3C ⁽¹⁾	0	0	DIG	ECCP3 Enhanced PWM output, Channel C; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.
RE4/AD12/	RE4	0	0	DIG	LATE<4> data output.
P3B		1	_	ST	PORTE<4> data input.
	AD12 ⁽³⁾	х	0	DIG	External memory interface, address/data bit 12 output. ⁽²⁾
		х	Ι	TTL	External memory interface, data bit 12 input. ⁽²⁾
	P3B ⁽¹⁾	0	0	DIG	ECCP3 Enhanced PWM output, Channel B; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.
RE5/AD13/	RE5	0	0	DIG	LATE<5> data output.
P1C		1	Ι	ST	PORTE<5> data input.
	AD13 ⁽³⁾	х	0	DIG	External memory interface, address/data bit 13 output. ⁽²⁾
		х	I	TTL	External memory interface, data bit 13 input. ⁽²⁾
	P1C ⁽¹⁾	0	0	DIG	ECCP1 Enhanced PWM output, Channel C; takes priority over port and PSP data. May be configured for tri-state during Enhanced PWM shutdown events.

TABLE 11-11: PORTE FUNCTIONS

Legend: PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignments for P1B/P1C and P3B/P3C when ECCPMX Configuration bit is set (80-pin devices only).

2: External memory interface I/O takes priority over all other digital and PSP I/O.

3: Available on 80-pin devices only.

4: Alternate assignment for ECCP2/P2A when the CCP2MX Configuration bit is cleared (all devices in Microcontroller mode).

NOTES:

SCLx = 0 before SDAx = 0, bus collision occurs. Set BCLxIF.

Ť

SEN

20.2.4.1 Special Considerations Using Auto-Wake-up

Since auto-wake-up functions by sensing rising edge transitions on RXx/DTx, information with any state changes before the Stop bit may signal a false end-of-character and cause data or framing errors. To work properly, therefore, the initial character in the transmission must be all '0's. This can be 00h (8 bytes) for standard RS-232 devices or 000h (12 bits) for LIN bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., HS or HSPLL mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

20.2.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RCxIF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an Idle mode. The wake-up event causes a receive interrupt by setting the RCxIF bit. The WUE bit is cleared after this when a rising edge is seen on RXx/DTx. The interrupt condition is then cleared by reading the RCREGx register. Ordinarily, the data in RCREGx will be dummy data and should be discarded.

The fact that the WUE bit has been cleared (or is still set) and the RCxIF flag is set should not be used as an indicator of the integrity of the data in RCREGx. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 20-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

0804	n.n.n.n.	a.n.n.a.	pununun.	(N.)	unin.r	unin	in nini	uninin.	./%./%	inini)	ЗŅ.	ana an	19.19.1	<i>1.1</i> %.
100) – 83. ost. byj	ges	· :		· · · · · · · · · · · · · · · · · · ·	; 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	Gjineren	e -
NY 18 NY 1	, ,,,,,,,,,,,,,,,.		7 :	2 J		5	, ,			2	2	, 		
20.020 x 2.05x	ş	:	; 	h		a.		4	Juino	umand				
- 5 - 6 - 7 - 7 - 6 - 7 - 6 - 7 - 7 - 7 - 7	s 5	: ;	;	4 - 34 7 - 5	uuuuuuu ``		,		. guurus					
86768	s ,	;			:	·····	* gaaaaaaaaaaaa * g				·····			
	;	2	,					Official de	e tetye	er rørd	ci ip	20000	7.	
			,											

FIGURE 20-9: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

21.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has 11 inputs for the 64-pin devices and 15 for the 80-pin devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 21-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 21-2, configures the functions of the port pins. The ADCON2 register, shown in Register 21-3, configures the A/D clock source, programmed acquisition time and justification.

REGISTER 21-1: ADCON0: A/D CONTROL REGISTER 0

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADCAL	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'			
-n = Value at	/alue at POR '1' = Bit is set				ared	x = Bit is unkno	= Bit is unknown		
bit 7	ADCAL: A/D	Calibration bit							
	1 = Calibration $0 = Normal A$	n is performed (/D Converter on	on next A/D (peration (no (conversion	orformed)				
bit 6	Unimplement	ted: Read as '0	,		inonned)				
bit 5-2		nalog Channel S	Select hits						
511 0 2	0000 = Chan	nel 0 (AN0)							
	0001 = Chan	nel 1 (AN1)							
	0010 = Chan	nel 2 (AN2)							
	0011 = Chan i	nel 3 (AN3)							
	0100 = Chan	nel 4 (AN4)							
	0101 = Unuse								
	0110 = Chan	nel 7 (AN7)							
	1000 = Cha n	nel 8 (AN8)							
	1001 = Chan	nel 9 (AN9)							
	1010 = Chan i	nel 10 (AN10)							
	1011 = Chan	nel 11 (AN11)	2)						
	1100 = Chani	$\frac{12}{(AN12)}$	-/						
	1101 = Unim	plemented ^(1,2)							
	1111 = Unimp	plemented ^(1,2)							
bit 1	GO/DONE: A	/D Conversion S	Status bit						
	When ADON	<u>= 1:</u>							
	1 = A/D conve	ersion in progre	SS						
	0 = A/D Idle								
bit 0	ADON: A/D C	n bit							
	1 = A/D conve	erter module is e	enabled						
	0 = A/D conve	erter module is o	disabled						
Note 1: Th	nese channels ar	e not implemen	ted on 64-pii	n devices.					
2: Pe	erforming a conve	ersion on unimp	emented ch	annels will retu	ırn random val	ues.			

NOTES:

REGISTER 24-7: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F87J10 FAMILY DEVICES

R	R	R	R	R	R	R	R			
DEV2 ⁽¹⁾	DEV1 ⁽¹⁾	DEV0 ⁽¹⁾	REV4	REV3	REV2	REV1	REV0			
bit 7							bit 0			
Legend:										
R = Read-only bit U = Unimplemented bit, read as '0'										
-n = Value whe	n device is unp	programmed		u = Unchang	ed from program	nmed state				
bit 7-5 DEV<2:0>: Device ID bits ⁽¹⁾ 111 = PIC18F85J10 101 = PIC18F67J10 100 = PIC18F66J15 011 = PIC18F66J15 or PIC18F87J10 010 = PIC18F65J15 or PIC18F86J15 001 = PIC18F65J10 or PIC18F86J10 000 = PIC18F65J10 or PIC18F86J10										
bit 4-0 REV<4:0>: Revision ID bits These bits are used to indicate the device revision.										

Note 1: Where values for DEV<2:0> are shared by more than one device number, the specific device is always identified by using the entire DEV<10:0> bit sequence.

REGISTER 24-8: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F87J10 FAMILY DEVICES

R	R	R	R	R	R	R	R
DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾	DEV3 ⁽¹⁾
bit 7							bit 0
Legend:							

R = Read-only bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	u = Unchanged from programmed state

bit 7-0 DEV<10:3>: Device ID bits⁽¹⁾

These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number. 0001 0101 = PIC18F65J10/65J15/66J10/66J15/67J10/85J10 devices 0001 0111 = PIC18F85J15/86J10/86J15/87J10 devices

Note 1: The values for DEV<10:3> may be shared with other device families. The specific device is always identified by using the entire DEV<10:0> bit sequence.

TSTFSZ	Test f, Skip	Test f, Skip if 0						
Syntax:	TSTFSZ f {	TSTFSZ f {,a}						
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0, 1]						
Operation:	skip if f = 0	skip if f = 0						
Status Affected:	None	None						
Encoding:	0110	0110 011a ffff ffff						
Description:	If 'f' = 0, the during the c is discarded making this	e next instruction current instruct and a NOP is a two-cycle in	on fetched ion execution executed, struction.					
	If 'a' is '0', tl If 'a' is '1', tl GPR bank.	ne Access Bar ne BSR is used	ik is selected. I to select the					
	If 'a' is '0' a set is enabl in Indexed I mode when Section 25 Bit-Oriente Literal Offs	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details						
Words:	1	1						
Cycles:	1(2) Note: 3 cy by a	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.						
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read	Process	No					
	register 'f'	Data	operation					
If skip:	02	02	04					
No	No	Q3 No	Q4 No					
operation	operation	operation	operation					
If skip and followe	d by 2-word in	struction:						
Q1	Q2	Q3	Q4					
No	No	No	No					
operation	operation	operation	operation					
operation	operation	operation	operation					
Example:	HERE 7 NZERO : ZERO :	ISTFSZ CNT : :	, 1					
Before Instruction								
PC = Address (HERE)								
After Instructio	on <u>– oo</u>	h						
PC	= 001 = Ad	dress (ZERO)	1					
If CNT PC	≠ 00 = Ad	h, dress (NZERG))					

XOR	LW	Exclusive	Exclusive OR Literal with W						
Synt	ax:	XORLW	XORLW k						
Oper	ands:	$0 \le k \le 25$	$0 \le k \le 255$						
Oper	ration:	(W) .XOR	(W) .XOR. $k \rightarrow W$						
Statu	is Affected:	N, Z	N, Z						
Enco	oding:	0000	1010	kkk	k	kkkk			
Desc	cription:	The conte the 8-bit li in W.	ents of W teral 'k'. T	are X(The res	ORe sult	d with is placed			
Words:		1	1						
Cycles:		1	1						
Q Cycle Activity:									
Q1		Q2	Q3	Q3		Q4			
	Decode	Read literal 'k'	Proce Data	SS A	۷	/rite to W			
Example:		XORLW	0AFh						
Before Instruction W = B5h After Instruction									

= 1Ah

W

27.3 DC Characteristics: PIC18F87J10 Family (Industrial) (Continued)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.		Characteristic	Min	Min Max		Conditions	
	IPU	Weak Pull-up Current					
D070	IPURB	PORTB Weak Pull-up Current	30	240	μA	VDD = 3.3V, VPIN = VSS	
VoL Output Low Voltage							
D080		I/O Ports (PORTB, PORTC)	—	0.4	V	IOL = 8.5 mA, VDD 3.3V	
		I/O Ports (PORTD, PORTE, PORTJ)	—	0.4	V	IOL = 3.4 mA, VDD 3.3V	
		I/O Ports (PORTA, PORTF, PORTG, PORTH)	_	0.4	V	IOL = 3.4 mA, VDD 3.3V	
D083		OSC2/CLKO (EC, ECIO modes)	—	0.4	V	IOL = 1.0 mA, VDD 3.3V	
	Voн	Output High Voltage ⁽³⁾					
D090		I/O Ports (PORTB, PORTC)	2.4	—	V	IOL = -6 mA, VDD 3.3V	
		I/O Ports (PORTD, PORTE, PORTJ)	2.4	—	V	IOL = -2 mA, VDD 3.3V	
		I/O Ports (PORTA, PORTF, PORTG, PORTH)	2.4	—	V	IOL = -2 mA, VDD 3.3V	
D092		OSC2/CLKO (EC, ECIO modes)	2.4	—	V	IOL = 1 mA, VDD 3.3V	
		Capacitive Loading Specs on Output Pins					
D100 ⁽⁴⁾	Cosc2	OSC2 Pin	_	15	pF	In HS mode when external clock is used to drive OSC1	
D101	Сю	All I/O Pins	_	50	pF	To meet the AC Timing Specifications	
D102	Св	SCLx, SDAx	—	400	pF	I ² C [™] Specification	

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 11-2 for the pins that have corresponding tolerance limits.

27.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 27-6: EXTERNAL CLOCK TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
1A	Fosc	External CLKI Frequency ⁽¹⁾	DC	25	MHz	HS Oscillator mode
			DC	40	MHz	EC Oscillator mode
			DC	10	MHz	HSPLL, ECPLL Oscillator modes
		Oscillator Frequency ⁽¹⁾	4	25	MHz	HS Oscillator mode
			4	10	MHz	HS/EC + PLL Oscillator mode
1	Tosc	External CLKI Period ⁽¹⁾	40	_	ns	HS Oscillator mode
			25		ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	40	250	ns	HS Oscillator mode
			100	250	ns	HS/EC + PLL Oscillator mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	100	_	ns	Tcy = 4/Fosc, Industrial
3	TosL, TosH	External Clock in (OSC1) High or Low Time	10	—	ns	HS Oscillator mode
4	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	7.5	ns	HS Oscillator mode

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations except PLL. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIM	IETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appl	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC18F87J10 Family	Literature Number: DS39663F
Que	stions:	
1. \	What are the best features of this doc	ument?
-		
2. I	How does this document meet your ha	ardware and software development needs?
_		
_		
3. I	Do you find the organization of this do	cument easy to follow? If not, why?
_		
_		
4. \	What additions to the document do yo	u think would enhance the structure and subject?
-		
-		
5. \	What deletions from the document co	uld be made without affecting the overall usefulness?
-		
-		
6. I	s there any incorrect or misleading inf	formation (what and where)?
-		
-		
7. I	How would you improve this documen	t?
-		
-		