
Microchip Technology - PIC18F67J10T-I/PT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 50

Program Memory Size 128KB (64K x 16)

Program Memory Type FLASH

EEPROM Size -

RAM Size 3.8K x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 3.6V

Data Converters A/D 11x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-TQFP

Supplier Device Package 64-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f67j10t-i-pt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f67j10t-i-pt-4385842
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18F87J10 FAMILY
PORTE is a bidirectional I/O port.
RE0/AD8/RD/P2D

RE0
AD8
RD
P2D

4
I/O
I/O
I
O

ST
TTL
TTL
—

Digital I/O.
External memory address/data 8.
Read control for Parallel Slave Port.
ECCP2 PWM output D.

RE1/AD9/WR/P2C
RE1
AD9
WR
P2C

3
I/O
I/O
I
O

ST
TTL
TTL
—

Digital I/O.
External memory address/data 9.
Write control for Parallel Slave Port.
ECCP2 PWM output C.

RE2/AD10/CS/P2B
RE2
AD10
CS
P2B

78
I/O
I/O
I
O

ST
TTL
TTL
—

Digital I/O.
External memory address/data 10.
Chip select control for Parallel Slave Port.
ECCP2 PWM output B.

RE3/AD11/P3C
RE3
AD11
P3C(3)

77
I/O
I/O
O

ST
TTL
—

Digital I/O.
External memory address/data 11.
ECCP3 PWM output C.

RE4/AD12/P3B
RE4
AD12
P3B(3)

76
I/O
I/O
O

ST
TTL
—

Digital I/O.
External memory address/data 12.
ECCP3 PWM output B.

RE5/AD13/P1C
RE5
AD13
P1C(3)

75
I/O
I/O
O

ST
TTL
—

Digital I/O.
External memory address/data 13.
ECCP1 PWM output C.

RE6/AD14/P1B
RE6
AD14
P1B(3)

74
I/O
I/O
O

ST
TTL
—

Digital I/O.
External memory address/data 14.
ECCP1 PWM output B.

RE7/AD15/ECCP2/P2A
RE7
AD15
ECCP2(4)

P2A(4)

73
I/O
I/O
I/O
O

ST
TTL
ST
—

Digital I/O.
External memory address/data 15.
Capture 2 input/Compare 2 output/PWM 2 output.
ECCP2 PWM output A.

TABLE 1-4: PIC18F8XJ10/8XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name
Pin Number Pin

Type
Buffer
Type Description

TQFP

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output
ST = Schmitt Trigger input with CMOS levels Analog = Analog input
I = Input O = Output
P = Power OD = Open-Drain (no P diode to VDD)
I2C/SMB = I2C™/SMBus input buffer

Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).
2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).
3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).
4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).
5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).
© 2009 Microchip Technology Inc. DS39663F-page 21

PIC18F87J10 FAMILY
PORTH is a bidirectional I/O port.
RH0/A16

RH0
A16

79
I/O
I/O

ST
TTL

Digital I/O.
External memory address/data 16.

RH1/A17
RH1
A17

80
I/O
I/O

ST
TTL

Digital I/O.
External memory address/data 17.

RH2/A18
RH2
A18

1
I/O
I/O

ST
TTL

Digital I/O.
External memory address/data 18.

RH3/A19
RH3
A19

2
I/O
I/O

ST
TTL

Digital I/O.
External memory address/data 19.

RH4/AN12/P3C
RH4
AN12
P3C(5)

22
I/O
I
O

ST
Analog

—

Digital I/O.
Analog input 12.
ECCP3 PWM output C.

RH5/AN13/P3B
RH5
AN13
P3B(5)

21
I/O
I
O

ST
Analog

—

Digital I/O.
Analog input 13.
ECCP3 PWM output B.

RH6/AN14/P1C
RH6
AN14
P1C(5)

20
I/O
I
O

ST
Analog

—

Digital I/O.
Analog input 14.
ECCP1 PWM output C.

RH7/AN15/P1B
RH7
AN15
P1B(5)

19
I/O
I
O

ST
Analog

—

Digital I/O.
Analog input 15.
ECCP1 PWM output B.

TABLE 1-4: PIC18F8XJ10/8XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name
Pin Number Pin

Type
Buffer
Type Description

TQFP

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output
ST = Schmitt Trigger input with CMOS levels Analog = Analog input
I = Input O = Output
P = Power OD = Open-Drain (no P diode to VDD)
I2C/SMB = I2C™/SMBus input buffer

Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).
2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).
3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).
4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).
5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).
DS39663F-page 24 © 2009 Microchip Technology Inc.

PIC18F87J10 FAMILY

6.2.3 INSTRUCTIONS IN PROGRAM

MEMORY
The program memory is addressed in bytes. Instruc-
tions are stored as two bytes or four bytes in program
memory. The Least Significant Byte of an instruction
word is always stored in a program memory location
with an even address (LSB = 0). To maintain alignment
with instruction boundaries, the PC increments in steps
of 2 and the LSB will always read ‘0’ (see Section 6.1.5
“Program Counter”).

Figure 6-6 shows an example of how instruction words
are stored in the program memory.

The CALL and GOTO instructions have the absolute
program memory address embedded into the instruc-
tion. Since instructions are always stored on word
boundaries, the data contained in the instruction is a
word address. The word address is written to PC<20:1>
which accesses the desired byte address in program
memory. Instruction #2 in Figure 6-6 shows how the
instruction, GOTO 0006h, is encoded in the program
memory. Program branch instructions, which encode a
relative address offset, operate in the same manner. The
offset value stored in a branch instruction represents the
number of single-word instructions that the PC will be
offset by. Section 25.0 “Instruction Set Summary”
provides further details of the instruction set.

FIGURE 6-6: INSTRUCTIONS IN PROGRAM MEMORY

6.2.4 TWO-WORD INSTRUCTIONS
The standard PIC18 instruction set has four two-word
instructions: CALL, MOVFF, GOTO and LSFR. In all
cases, the second word of the instructions always has
‘1111’ as its four Most Significant bits; the other 12 bits
are literal data, usually a data memory address.

The use of ‘1111’ in the 4 MSbs of an instruction
specifies a special form of NOP. If the instruction is
executed in proper sequence – immediately after the
first word – the data in the second word is accessed

and used by the instruction sequence. If the first word
is skipped for some reason and the second word is
executed by itself, a NOP is executed instead. This is
necessary for cases when the two-word instruction is
preceded by a conditional instruction that changes the
PC. Example 6-4 shows how this works.

EXAMPLE 6-4: TWO-WORD INSTRUCTIONS

Word Address
LSB = 1 LSB = 0 ↓

Program Memory
Byte Locations →

000000h
000002h
000004h
000006h

Instruction 1: MOVLW 055h 0Fh 55h 000008h
Instruction 2: GOTO 0006h EFh 03h 00000Ah

F0h 00h 00000Ch
Instruction 3: MOVFF 123h, 456h C1h 23h 00000Eh

F4h 56h 000010h
000012h
000014h

Note: See Section 6.5 “Program Memory and
the Extended Instruction Set” for
information on two-word instructions in the
extended instruction set.

CASE 1:
Object Code Source Code
0110 0110 0000 0000 TSTFSZ REG1 ; is RAM location 0?

1100 0001 0010 0011 MOVFF REG1, REG2 ; No, skip this word

1111 0100 0101 0110 ; Execute this word as a NOP

0010 0100 0000 0000 ADDWF REG3 ; continue code

CASE 2:
Object Code Source Code
0110 0110 0000 0000 TSTFSZ REG1 ; is RAM location 0?

1100 0001 0010 0011 MOVFF REG1, REG2 ; Yes, execute this word

1111 0100 0101 0110 ; 2nd word of instruction

0010 0100 0000 0000 ADDWF REG3 ; continue code
© 2009 Microchip Technology Inc. DS39663F-page 67

PIC18F87J10 FAMILY

6.4.3.2 FSR Registers and POSTINC,

POSTDEC, PREINC and PLUSW
In addition to the INDF operand, each FSR register pair
also has four additional indirect operands. Like INDF,
these are “virtual” registers that cannot be indirectly
read or written to. Accessing these registers actually
accesses the associated FSR register pair, but also
performs a specific action on its stored value. They are:

• POSTDEC: accesses the FSR value, then
automatically decrements it by ‘1’ afterwards

• POSTINC: accesses the FSR value, then
automatically increments it by ‘1’ afterwards

• PREINC: increments the FSR value by ‘1’, then
uses it in the operation

• PLUSW: adds the signed value of the W register
(range of -127 to 128) to that of the FSR and uses
the new value in the operation

In this context, accessing an INDF register uses the
value in the FSR registers without changing them.
Similarly, accessing a PLUSW register gives the FSR
value offset by the value in the W register; neither value
is actually changed in the operation. Accessing the
other virtual registers changes the value of the FSR
registers.

Operations on the FSRs with POSTDEC, POSTINC
and PREINC affect the entire register pair; that is, roll-
overs of the FSRnL register from FFh to 00h carry over
to the FSRnH register. On the other hand, results of
these operations do not change the value of any flags
in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form
of Indexed Addressing in the data memory space. By
manipulating the value in the W register, users can
reach addresses that are fixed offsets from pointer
addresses. In some applications, this can be used to
implement some powerful program control structure,
such as software stacks, inside of data memory.

6.4.3.3 Operations by FSRs on FSRs
Indirect Addressing operations that target other FSRs
or virtual registers represent special cases. For
example, using an FSR to point to one of the virtual reg-
isters will not result in successful operations. As a
specific case, assume that FSR0H:FSR0L contains
FE7h, the address of INDF1. Attempts to read the
value of the INDF1, using INDF0 as an operand, will
return 00h. Attempts to write to INDF1, using INDF0 as
the operand, will result in a NOP.

On the other hand, using the virtual registers to write to
an FSR pair may not occur as planned. In these cases,
the value will be written to the FSR pair but without any
incrementing or decrementing. Thus, writing to INDF2
or POSTDEC2 will write the same value to the
FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the
SFR space, they can be manipulated through all direct
operations. Users should proceed cautiously when
working on these registers, particularly if their code
uses Indirect Addressing.

Similarly, operations by Indirect Addressing are gener-
ally permitted on all other SFRs. Users should exercise
the appropriate caution that they do not inadvertently
change settings that might affect the operation of the
device.
DS39663F-page 80 © 2009 Microchip Technology Inc.

PIC18F87J10 FAMILY

7.5.2 WRITE VERIFY
Depending on the application, good programming
practice may dictate that the value written to the
memory should be verified against the original value.
This should be used in applications where excessive
writes can stress bits near the specification limit.

7.5.3 UNEXPECTED TERMINATION OF
WRITE OPERATION

If a write is terminated by an unplanned event, such as
loss of power or an unexpected Reset, the memory
location just programmed should be verified and repro-
grammed if needed. If the write operation is interrupted
by a MCLR Reset or a WDT Time-out Reset during
normal operation, the user can check the WRERR bit
and rewrite the location(s) as needed.

7.6 Flash Program Operation During
Code Protection

See Section 24.6 “Program Verification and Code
Protection” for details on code protection of Flash
program memory.

TABLE 7-2: REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset

Values on
page

TBLPTRU — — bit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>) 53
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>) 53
TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR<7:0>) 53
TABLAT Program Memory Table Latch 53
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 53
EECON2 Program Memory Control Register 2 (not a physical register) 55
EECON1 — — — FREE WRERR WREN WR — 55
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during program memory access.
© 2009 Microchip Technology Inc. DS39663F-page 93

PIC18F87J10 FAMILY

8.1 External Memory Bus Control
The operation of the interface is controlled by the
MEMCON register (Register 8-1). This register is
available in all program memory operating modes
except Microcontroller mode. In this mode, the register
is disabled and cannot be written to.

The EBDIS bit (MEMCON<7>) controls the operation
of the bus and related port functions. Clearing EBDIS
enables the interface and disables the I/O functions of
the ports, as well as any other functions multiplexed to
those pins. Setting the bit enables the I/O ports and
other functions, but allows the interface to override
everything else on the pins when an external memory
operation is required. By default, the external bus is
always enabled and disables all other I/O.

The operation of the EBDIS bit is also influenced by the
program memory mode being used. This is discussed
in more detail in Section 8.5 “Program Memory
Modes and the External Memory Bus”.

The WAIT bits allow for the addition of wait states to
external memory operations. The use of these bits is
discussed in Section 8.3 “Wait States”.

The WM bits select the particular operating mode used
when the bus is operating in 16-Bit Data Width mode.
These are discussed in more detail in Section 8.6
“16-Bit Data Width Modes”. These bits have no effect
when an 8-Bit Data Width mode is selected.

REGISTER 8-1: MEMCON: EXTERNAL MEMORY BUS CONTROL REGISTER

R/W-0 U-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0
EBDIS — WAIT1 WAIT0 — — WM1 WM0

bit 7 bit 0

Legend: S = Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 EBDIS: External Bus Disable bit
1 = External bus enabled when microcontroller accesses external memory; otherwise, all external bus

drivers are mapped as I/O ports
0 = External bus always enabled, I/O ports are disabled

bit 6 Unimplemented: Read as ‘0’
bit 5-4 WAIT<1:0>: Table Reads and Writes Bus Cycle Wait Count bits

11 = Table reads and writes will wait 0 TCY
10 = Table reads and writes will wait 1 TCY
01 = Table reads and writes will wait 2 TCY
00 = Table reads and writes will wait 3 TCY

bit 3-2 Unimplemented: Read as ‘0
bit 1-0 WM<1:0>: TBLWT Operation with 16-Bit Data Bus Width Select bits

1x = Word Write mode: TABLAT0 and TABLAT1 word output; WRH active when TABLAT1 written
01 = Byte Select mode: TABLAT data copied on both MSB and LSB; WRH and (UB or LB) will activate
00 = Byte Write mode: TABLAT data copied on both MSB and LSB; WRH or WRL will activate
DS39663F-page 96 © 2009 Microchip Technology Inc.

PIC18F87J10 FAMILY

11.4 PORTC, TRISC and

LATC Registers
PORTC is an 8-bit wide, bidirectional port. The corre-
sponding Data Direction register is TRISC. Setting a
TRISC bit (= 1) will make the corresponding PORTC
pin an input (i.e., put the corresponding output driver in
a high-impedance mode). Clearing a TRISC bit (= 0)
will make the corresponding PORTC pin an output (i.e.,
put the contents of the output latch on the selected pin).
Only PORTC pins, RC2 through RC7, are digital only
pins and can tolerate input voltages up to 5.5V.

The Output Latch register (LATC) is also memory
mapped. Read-modify-write operations on the LATC
register read and write the latched output value for
PORTC.

PORTC is multiplexed with several peripheral functions
(Table 11-7). The pins have Schmitt Trigger input
buffers. RC1 is normally configured by Configuration
bit, CCP2MX, as the default peripheral pin for the
ECCP2 module and enhanced PWM output, P2A
(default state, CCP2MX = 1).

When enabling peripheral functions, care should be
taken in defining TRIS bits for each PORTC pin. Some
peripherals override the TRIS bit to make a pin an output,
while other peripherals override the TRIS bit to make a
pin an input. The user should refer to the corresponding
peripheral section for the correct TRIS bit settings.

The contents of the TRISC register are affected by
peripheral overrides. Reading TRISC always returns
the current contents, even though a peripheral device
may be overriding one or more of the pins.

EXAMPLE 11-3: INITIALIZING PORTC

Note: These pins are configured as digital inputs
on any device Reset.

CLRF PORTC ; Initialize PORTC by
; clearing output
; data latches

CLRF LATC ; Alternate method
; to clear output
; data latches

MOVLW 0CFh ; Value used to
; initialize data
; direction

MOVWF TRISC ; Set RC<3:0> as inputs
; RC<5:4> as outputs
; RC<7:6> as inputs
© 2009 Microchip Technology Inc. DS39663F-page 131

PIC18F87J10 FAMILY

11.9 PORTH, LATH and

TRISH Registers

PORTH is an 8-bit wide, bidirectional I/O port. The cor-
responding Data Direction register is TRISH. Setting a
TRISH bit (= 1) will make the corresponding PORTH
pin an input (i.e., put the corresponding output driver in
a high-impedance mode). Clearing a TRISH bit (= 0)
will make the corresponding PORTH pin an output (i.e.,
put the contents of the output latch on the selected pin).
PORTH<3:0> pins are digital only and tolerate voltages
up to 5.5V.

The Output Latch register (LATH) is also memory
mapped. Read-modify-write operations on the LATH
register read and write the latched output value for
PORTH.

All pins on PORTH are implemented with Schmitt
Trigger input buffers. Each pin is individually
configurable as an input or output.

When the external memory interface is enabled, four of
the PORTH pins function as the high-order address
lines for the interface. The address output from the
interface takes priority over other digital I/O. The
corresponding TRISH bits are also overridden.

PORTH pins, RH4 through RH7, are multiplexed with
analog converter inputs. The operation of these pins as
analog inputs is selected by clearing or setting the
PCFG<3:0> control bits in the ADCON1 register.

PORTH can also be configured as the alternate
Enhanced PWM output Channels B and C for the
ECCP1 and ECCP3 modules. This is done by clearing
the ECCPMX Configuration bit.

EXAMPLE 11-8: INITIALIZING PORTH

Note: PORTH is available only on 80-pin
devices.

CLRF PORTH ; Initialize PORTH by
; clearing output
; data latches

CLRF LATH ; Alternate method
; to clear output
; data latches

MOVLW 0Fh ; Configure PORTH as
MOVWF ADCON1 ; digital I/O
MOVLW 0CFh ; Value used to

; initialize data
; direction

MOVWF TRISH ; Set RH3:RH0 as inputs
; RH5:RH4 as outputs
; RH7:RH6 as inputs
DS39663F-page 144 © 2009 Microchip Technology Inc.

PIC18F87J10 FAMILY

FIGURE 11-4: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 11-21: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset
Values

on page

PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 56
LATD LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 56
TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 56
PORTE RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0 56
LATE LATE7 LATE6 LATE5 LATE4 LATE3 LATE2 LATE1 LATE0 56
TRISE TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 TRISE2 TRISE1 TRISE0 56
PSPCON IBF OBF IBOV PSPMODE — — — — 55
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 53
PIR1 PSPIF ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IF 55
PIE1 PSPIE ADIE RC1IE TX1IE SSP1IE CCP1IE TMR2IE TMR1IE 55
IPR1 PSPIP ADIP RC1IP TX1IP SSP1IP CCP1IP TMR2IP TMR1IP 55
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Parallel Slave Port.

Q1 Q2 Q3 Q4

CS

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

WR

IBF

PSPIF

RD

OBF

PORTD<7:0>
DS39663F-page 150 © 2009 Microchip Technology Inc.

PIC18F87J10 FAMILY

17.4 PWM Mode
In Pulse-Width Modulation (PWM) mode, the CCPx pin
produces up to a 10-bit resolution PWM output. Since
the CCP4 and CCP5 pins are multiplexed with a
PORTG data latch, the appropriate TRISG bit must be
cleared to make the CCP4 or CCP5 pin an output.

Figure 17-4 shows a simplified block diagram of the
CCP module in PWM mode.

For a step-by-step procedure on how to set up a CCP
module for PWM operation, see Section 17.4.3
“Setup for PWM Operation”.

FIGURE 17-4: SIMPLIFIED PWM BLOCK
DIAGRAM

A PWM output (Figure 17-5) has a time base (period)
and a time that the output stays high (duty cycle).
The frequency of the PWM is the inverse of the
period (1/period).

FIGURE 17-5: PWM OUTPUT

17.4.1 PWM PERIOD
The PWM period is specified by writing to the PR2
(PR4) register. The PWM period can be calculated
using Equation 17-1:

EQUATION 17-1:

PWM frequency is defined as 1/[PWM period].

When TMR2 (TMR4) is equal to PR2 (PR4), the
following three events occur on the next increment
cycle:

• TMR2 (TMR4) is cleared
• The CCPx pin is set (exception: if PWM duty

cycle = 0%, the CCPx pin will not be set)
• The PWM duty cycle is latched from CCPRxL into

CCPRxH

17.4.2 PWM DUTY CYCLE
The PWM duty cycle is specified by writing to the
CCPRxL register and to the CCPxCON<5:4> bits. Up
to 10-bit resolution is available. The CCPRxL contains
the eight MSbs and the CCPxCON<5:4> contains the
two LSbs. This 10-bit value is represented by
CCPRxL:CCPxCON<5:4>. Equation 17-2 is used to
calculate the PWM duty cycle in time.

EQUATION 17-2:

CCPRxL and CCPxCON<5:4> can be written to at any
time, but the duty cycle value is not latched into
CCPRxH until after a match between PR2 (PR4) and
TMR2 (TMR4) occurs (i.e., the period is complete). In
PWM mode, CCPRxH is a read-only register.

Note: Clearing the CCP4CON or CCP5CON
register will force the RG3 or RG4 output
latch (depending on device configuration)
to the default low level. This is not the
PORTG I/O data latch.

CCPR1L

Comparator

Comparator

PR2

CCP1CON<5:4>

QS

R ECCP1

TRIS
Output Enable

CCPR1H

TMR2

2 LSbs Latched
from Q Clocks

Reset

Match
TMR2 = PR2

Latch

09

(1)

Note 1: The two LSbs of the Duty Cycle register are held by a
2-bit latch that is part of the module’s hardware. It is
physically separate from the CCPR registers.

Duty Cycle Register

Set CCPx pin

Duty Cycle

Pin

Period

Duty Cycle

TMR2 (TMR4) = PR2 (TMR4)

TMR2 (TMR4) = Duty Cycle

TMR2 (TMR4) = PR2 (PR4)

Note: The Timer2 and Timer 4 postscalers (see
Section 14.0 “Timer2 Module” and
Section 16.0 “Timer4 Module”) are not
used in the determination of the PWM
frequency. The postscaler could be used
to have a servo update rate at a different
frequency than the PWM output.

PWM Period = [(PR2) + 1] • 4 • TOSC •
(TMR2 Prescale Value)

PWM Duty Cycle = (CCPRXL:CCPXCON<5:4>) •
TOSC • (TMR2 Prescale Value)
DS39663F-page 174 © 2009 Microchip Technology Inc.

PIC18F87J10 FAMILY

19.4.3.3 Reception
When the R/W bit of the address byte is clear and an
address match occurs, the R/W bit of the SSPxSTAT
register is cleared. The received address is loaded into
the SSPxBUF register and the SDAx line is held low
(ACK).

When the address byte overflow condition exists, then
the no Acknowledge (ACK) pulse is given. An overflow
condition is defined as either bit, BF (SSPxSTAT<0>),
is set, or bit, SSPOV (SSPxCON1<6>), is set.

An MSSP interrupt is generated for each data transfer
byte. The interrupt flag bit, SSPxIF, must be cleared in
software. The SSPxSTAT register is used to determine
the status of the byte.

If SEN is enabled (SSPxCON2<0> = 1), SCLx will be
held low (clock stretch) following each data transfer. The
clock must be released by setting bit, CKP
(SSPxCON1<4>). See Section 19.4.4 “Clock
Stretching” for more detail.

19.4.3.4 Transmission
When the R/W bit of the incoming address byte is set
and an address match occurs, the R/W bit of the
SSPxSTAT register is set. The received address is
loaded into the SSPxBUF register. The ACK pulse will
be sent on the ninth bit and the SCLx pin is held low
regardless of SEN (see Section 19.4.4 “Clock
Stretching” for more detail). By stretching the clock,
the master will be unable to assert another clock pulse
until the slave is done preparing the transmit data. The
transmit data must be loaded into the SSPxBUF regis-
ter which also loads the SSPxSR register. Then pin,
SCLx, should be enabled by setting bit, CKP
(SSPxCON1<4>). The eight data bits are shifted out on
the falling edge of the SCLx input. This ensures that the
SDAx signal is valid during the SCLx high time
(Figure 19-10).

The ACK pulse from the master-receiver is latched on
the rising edge of the ninth SCLx input pulse. If the
SDAx line is high (not ACK), then the data transfer is
complete. In this case, when the ACK is latched by the
slave, the slave logic is reset and the slave monitors for
another occurrence of the Start bit. If the SDAx line was
low (ACK), the next transmit data must be loaded into
the SSPxBUF register. Again, pin, SCLx, must be
enabled by setting bit, CKP.

An MSSP interrupt is generated for each data transfer
byte. The SSPxIF bit must be cleared in software and
the SSPxSTAT register is used to determine the status
of the byte. The SSPxIF bit is set on the falling edge of
the ninth clock pulse.
© 2009 Microchip Technology Inc. DS39663F-page 211

PIC18F87J10 FAMILY

19.4.17.1 Bus Collision During a Start

Condition
During a Start condition, a bus collision occurs if:

a) SDAx or SCLx are sampled low at the beginning
of the Start condition (Figure 19-28).

b) SCLx is sampled low before SDAx is asserted
low (Figure 19-29).

During a Start condition, both the SDAx and the SCLx
pins are monitored.

If the SDAx pin is already low, or the SCLx pin is
already low, then all of the following occur:
• the Start condition is aborted,
• the BCLxIF flag is set and
• the MSSP module is reset to its inactive state

(Figure 19-28).

The Start condition begins with the SDAx and SCLx
pins deasserted. When the SDAx pin is sampled high,
the Baud Rate Generator is loaded from
SSPxADD<6:0> and counts down to 0. If the SCLx pin
is sampled low while SDAx is high, a bus collision
occurs because it is assumed that another master is
attempting to drive a data ‘1’ during the Start condition.

If the SDAx pin is sampled low during this count, the
BRG is reset and the SDAx line is asserted early
(Figure 19-30). If, however, a ‘1’ is sampled on the
SDAx pin, the SDAx pin is asserted low at the end of
the BRG count. The Baud Rate Generator is then
reloaded and counts down to 0. If the SCLx pin is
sampled as ‘0’ during this time, a bus collision does not
occur. At the end of the BRG count, the SCLx pin is
asserted low.

FIGURE 19-28: BUS COLLISION DURING START CONDITION (SDAx ONLY)

Note: The reason that bus collision is not a factor
during a Start condition is that no two bus
masters can assert a Start condition at the
exact same time. Therefore, one master
will always assert SDAx before the other.
This condition does not cause a bus colli-
sion because the two masters must be
allowed to arbitrate the first address
following the Start condition. If the address
is the same, arbitration must be allowed to
continue into the data portion, Repeated
Start or Stop conditions.

SDAx

SCLx

SEN
SDAx sampled low before

SDAx goes low before the SEN bit is set.

S bit and SSPxIF set because

MSSP module reset into Idle state.
SEN cleared automatically because of bus collision.

S bit and SSPxIF set because

Set SEN, enable Start
condition if SDAx = 1, SCLx = 1

SDAx = 0, SCLx = 1.

BCLxIF

S

SSPxIF

SDAx = 0, SCLx = 1.

SSPxIF and BCLxIF are
cleared in software

SSPxIF and BCLxIF are
cleared in software

Set BCLxIF,

Start condition. Set BCLxIF.
DS39663F-page 234 © 2009 Microchip Technology Inc.

PIC18F87J10 FAMILY

20.2.4.1 Special Considerations Using

Auto-Wake-up
Since auto-wake-up functions by sensing rising edge
transitions on RXx/DTx, information with any state
changes before the Stop bit may signal a false
end-of-character and cause data or framing errors. To
work properly, therefore, the initial character in the
transmission must be all ‘0’s. This can be 00h (8 bytes)
for standard RS-232 devices or 000h (12 bits) for LIN
bus.

Oscillator start-up time must also be considered,
especially in applications using oscillators with longer
start-up intervals (i.e., HS or HSPLL mode). The Sync
Break (or Wake-up Signal) character must be of
sufficient length and be followed by a sufficient interval
to allow enough time for the selected oscillator to start
and provide proper initialization of the EUSART.

20.2.4.2 Special Considerations Using
the WUE Bit

The timing of WUE and RCxIF events may cause some
confusion when it comes to determining the validity of
received data. As noted, setting the WUE bit places the
EUSART in an Idle mode. The wake-up event causes a
receive interrupt by setting the RCxIF bit. The WUE bit
is cleared after this when a rising edge is seen on
RXx/DTx. The interrupt condition is then cleared by
reading the RCREGx register. Ordinarily, the data in
RCREGx will be dummy data and should be discarded.

The fact that the WUE bit has been cleared (or is still
set) and the RCxIF flag is set should not be used as an
indicator of the integrity of the data in RCREGx. Users
should consider implementing a parallel method in
firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL
bit to verify that a receive operation is not in process. If
a receive operation is not occurring, the WUE bit may
then be set just prior to entering the Sleep mode.

FIGURE 20-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

FIGURE 20-9: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

WUE bit(1)

RXx/DTx Line

RCxIF

Note 1: The EUSART remains in Idle while the WUE bit is set.

Bit set by user

Cleared due to user read of RCREGx

Auto-Cleared

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

WUE bit(2)

RXx/DTx Line

RCxIF
Cleared due to user read of RCREGx

SLEEP Command Executed

Note 1: If the wake-up event requires long oscillator warm-up time, the auto-clear of the WUE bit can occur before the oscillator is ready. This
sequence should not depend on the presence of Q clocks.

2: The EUSART remains in Idle while the WUE bit is set.

Sleep Ends

Note 1

Auto-ClearedBit set by user
© 2009 Microchip Technology Inc. DS39663F-page 253

PIC18F87J10 FAMILY

REGISTER 21-2: ADCON1: A/D CONTROL REGISTER 1

U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 Unimplemented: Read as ‘0’
bit 5 VCFG1: Voltage Reference Configuration bit (VREF- source)

1 = VREF- (AN2)
0 = AVSS

bit 4 VCFG0: Voltage Reference Configuration bit (VREF+ source)
1 = VREF+ (AN3)
0 = AVDD

bit 3-0 PCFG<3:0>: A/D Port Configuration Control bits:

Note 1: AN12 through AN15 are available only in 80-pin devices.

A = Analog input D = Digital I/O

PCFG<3:0>

A
N

15
(1

)

A
N

14
(1

)

A
N

13
(1

)

A
N

12
(1

)

A
N

11

A
N

10

A
N

9

A
N

8

A
N

7

A
N

6

A
N

4

A
N

3

A
N

2

A
N

1

A
N

0

0000 A A A A A A A A A A A A A A A

0001 D D A A A A A A A A A A A A A

0010 D D D A A A A A A A A A A A A

0011 D D D D A A A A A A A A A A A

0100 D D D D D A A A A A A A A A A

0101 D D D D D D A A A A A A A A A

0110 D D D D D D D A A A A A A A A

0111 D D D D D D D D A A A A A A A

1000 D D D D D D D D D A A A A A A

1001 D D D D D D D D D D A A A A A

1010 D D D D D D D D D D A A A A A

1011 D D D D D D D D D D D A A A A

1100 D D D D D D D D D D D D A A A

1101 D D D D D D D D D D D D D A A

1110 D D D D D D D D D D D D D D A

1111 D D D D D D D D D D D D D D D
DS39663F-page 262 © 2009 Microchip Technology Inc.

PIC18F87J10 FAMILY

NOTES:
DS39663F-page 276 © 2009 Microchip Technology Inc.

PIC18F87J10 FAMILY

ANDWF AND W with f

Syntax: ANDWF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (W) .AND. (f) → dest

Status Affected: N, Z

Encoding: 0001 01da ffff ffff

Description: The contents of W are ANDed with
register ‘f’. If ‘d’ is ‘0’, the result is stored
in W. If ‘d’ is ‘1’, the result is stored back
in register ‘f’.

If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.

If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: ANDWF REG, 0, 0

Before Instruction
W = 17h
REG = C2h

After Instruction
W = 02h
REG = C2h

BC Branch if Carry

Syntax: BC n

Operands: -128 ≤ n ≤ 127

Operation: if Carry bit is ‘1’,
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0010 nnnn nnnn

Description: If the Carry bit is ’1’, then the program
will branch.

The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

‘n’
Process

Data
Write to

PC
No

operation
No

operation
No

operation
No

operation
If No Jump:

Q1 Q2 Q3 Q4
Decode Read literal

‘n’
Process

Data
No

operation

Example: HERE BC 5

Before Instruction
PC = address (HERE)

After Instruction
If Carry = 1;

PC = address (HERE + 12)
If Carry = 0;

PC = address (HERE + 2)
© 2009 Microchip Technology Inc. DS39663F-page 301

PIC18F87J10 FAMILY

GOTO Unconditional Branch

Syntax: GOTO k

Operands: 0 ≤ k ≤ 1048575

Operation: k → PC<20:1>

Status Affected: None

Encoding:
1st word (k<7:0>)
2nd word(k<19:8>)

1110
1111

1111
k19kkk

k7kkk
kkkk

kkkk0
kkkk8

Description: GOTO allows an unconditional branch
anywhere within entire 2-Mbyte memory
range. The 20-bit value ‘k’ is loaded into
PC<20:1>. GOTO is always a two-cycle
instruction.

Words: 2

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read literal
‘k’<7:0>,

No
operation

Read literal
‘k’<19:8>,

Write to PC
No

operation
No

operation
No

operation
No

operation

Example: GOTO THERE

After Instruction
PC = Address (THERE)

INCF Increment f

Syntax: INCF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f) + 1 → dest

Status Affected: C, DC, N, OV, Z

Encoding: 0010 10da ffff ffff

Description: The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’.

If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.

If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: INCF CNT, 1, 0

Before Instruction
CNT = FFh
Z = 0
C = ?
DC = ?

After Instruction
CNT = 00h
Z = 1
C = 1
DC = 1
DS39663F-page 314 © 2009 Microchip Technology Inc.

PIC18F87J10 FAMILY

MOVFF Move f to f

Syntax: MOVFF fs,fd
Operands: 0 ≤ fs ≤ 4095

0 ≤ fd ≤ 4095

Operation: (fs) → fd
Status Affected: None

Encoding:
1st word (source)
2nd word (destin.)

1100
1111

ffff
ffff

ffff
ffff

ffffs
ffffd

Description: The contents of source register ‘fs’ are
moved to destination register ‘fd’.
Location of source ‘fs’ can be anywhere
in the 4096-byte data space (000h to
FFFh) and location of destination ‘fd’
can also be anywhere from 000h to
FFFh.

Either source or destination can be W
(a useful special situation).

MOVFF is particularly useful for
transferring a data memory location to a
peripheral register (such as the transmit
buffer or an I/O port).

The MOVFF instruction cannot use the
PCL, TOSU, TOSH or TOSL as the
destination register

Words: 2

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

(src)

Process
Data

No
operation

Decode No
operation

No dummy
read

No
operation

Write
register ‘f’

(dest)

Example: MOVFF REG1, REG2

Before Instruction
REG1 = 33h
REG2 = 11h

After Instruction
REG1 = 33h
REG2 = 33h

MOVLB Move Literal to Low Nibble in BSR

Syntax: MOVLW k

Operands: 0 ≤ k ≤ 255

Operation: k → BSR

Status Affected: None

Encoding: 0000 0001 kkkk kkkk

Description: The eight-bit literal ‘k’ is loaded into the
Bank Select Register (BSR). The value
of BSR<7:4> always remains ‘0’
regardless of the value of k7:k4.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write literal
‘k’ to BSR

Example: MOVLB 5

Before Instruction
BSR Register = 02h

After Instruction
BSR Register = 05h
DS39663F-page 318 © 2009 Microchip Technology Inc.

PIC18F87J10 FAMILY

CALLW Subroutine Call using WREG

Syntax: CALLW

Operands: None

Operation: (PC + 2) → TOS,
(W) → PCL,
(PCLATH) → PCH,
(PCLATU) → PCU

Status Affected: None

Encoding: 0000 0000 0001 0100

Description First, the return address (PC + 2) is
pushed onto the return stack. Next, the
contents of W are written to PCL; the
existing value is discarded. Then, the
contents of PCLATH and PCLATU are
latched into PCH and PCU,
respectively. The second cycle is
executed as a NOP instruction while the
new next instruction is fetched.

Unlike CALL, there is no option to
update W, STATUS or BSR.

Words: 1

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
WREG

Push PC to
stack

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE CALLW

Before Instruction
PC = address (HERE)
PCLATH = 10h
PCLATU = 00h
W = 06h

After Instruction
PC = 001006h
TOS = address (HERE + 2)
PCLATH = 10h
PCLATU = 00h
W = 06h

MOVSF Move Indexed to f

Syntax: MOVSF [zs], fd
Operands: 0 ≤ zs ≤ 127

0 ≤ fd ≤ 4095

Operation: ((FSR2) + zs) → fd
Status Affected: None

Encoding:
1st word (source)
2nd word (destin.)

1110
1111

1011
ffff

0zzz
ffff

zzzzs
ffffd

Description: The contents of the source register are
moved to destination register ‘fd’. The
actual address of the source register is
determined by adding the 7-bit literal
offset ‘zs’, in the first word, to the value
of FSR2. The address of the destination
register is specified by the 12-bit literal
‘fd’ in the second word. Both addresses
can be anywhere in the 4096-byte data
space (000h to FFFh).

The MOVSF instruction cannot use the
PCL, TOSU, TOSH or TOSL as the
destination register.

If the resultant source address points to
an Indirect Addressing register, the
value returned will be 00h.

Words: 2

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Determine
source addr

Determine
source addr

Read
source reg

Decode No
operation

No dummy
read

No
operation

Write
register ‘f’

(dest)

Example: MOVSF [05h], REG2

Before Instruction
FSR2 = 80h
Contents
of 85h = 33h
REG2 = 11h

After Instruction
FSR2 = 80h
Contents
of 85h = 33h
REG2 = 33h
© 2009 Microchip Technology Inc. DS39663F-page 337

PIC18F87J10 FAMILY
28.0 PACKAGING INFORMATION

28.1 Package Marking Information

64-Lead TQFP

XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

YYWWNNN

Example

18F67J10
-I/PT

0910017

80-Lead TQFP

XXXXXXXXXXXX
XXXXXXXXXXXX

YYWWNNN

Example

PIC18F87J10
-I/PT

0910017

Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
 Pb-free JEDEC designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator ()

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.

3e

3e

3e

3e
© 2009 Microchip Technology Inc. DS39663F-page 385

